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Chapter 1. Introduction: A Third Phase of  Life 

 

There is a third phase of life, following development and aging, which we call late life. Late 

life requires different evolutionary, demographic, and physiological principles from those that 

characterize the first two phases of life. 

  

 

The First Two Phases of Life 

Life histories have traditionally been organized into two phases: development and adulthood. The 

dividing line between these two phases is the onset of reproductive maturity, an event that is usually 

easily discerned.  

A major qualification to this categorization arises in organisms that reproduce by symmetrical 

fission. Among the organisms that reproduce this way are unicellular species, such as many bacteria, 

some protozoa, and some algae. Some species of both multicellular plants and multicellular animals 

reproduce by approximately symmetrical fission, as well. Fissile reproduction occurs in free-living 

coelenterates, for example, particularly sea anemones and some Hydra species. It is also common 

among clonally spreading plants, such as grasses, some herbs, and even trees. Among species that 

reproduce by symmetrical fission, there is no adult phase of appreciable duration. Juveniles effectively 

reproduce two more juveniles, if they survive to reach reproductive competence. Simply put, there is 

no true adulthood. 

Most multicellular species, however, do attain an adulthood during which they reproduce with 

a soma left behind, a structure that does not itself join the next generation as an immature organism. 

Such asymmetrical reproduction is empirically associated with the occurrence of aging, in which the 
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soma progressively deteriorates with time, even under good conditions, regardless of excellent 

provisioning and protection from predators or obvious contagious disease. That is, adulthood is 

empirically associated with endogenous deterioration under good conditions. When adult mortality 

rates in species with asymmetrical reproduction are studied carefully under protected conditions, 

particularly in laboratories, their mortality rates typically accelerate rapidly after the onset of 

reproduction.  

There is a paradoxical element to this pattern. Multicellular organisms typically undergo a 

complex process of cell proliferation and differentiation during development, before the onset of 

adulthood. Then, shortly after the organism is fully developed, with all of its specialized tissues 

available for use, it proceeds to deteriorate. This deterioration is slow at first, but it progressively 

accelerates over a long period of time, reducing the likelihood of continued survival to much lower 

levels than are observed at the start of adulthood. It is seemingly a contradiction of adaptive evolution, 

given that the life-cycle of a complex organism evolves to proceed successfully through a complex 

process of development, which often takes place under conditions of uncertain access to energy as 

well as threats of predation or mechanical destruction. Yet the reproductive adult that has survived 

this process of development soon begins a process of pervasive deterioration even under the most 

benign conditions that experimenters can contrive. 

Irrespective of how these two phases of life are explained, they are striking in their distinctness. 

As a result, two very different scientific fields have focused on the two widely-recognized phases of 

life: developmental biology and gerontology. The former has been one of the most successful of 20th 

Century biological disciplines. The latter discipline, gerontology, hasn’t been quite as successful, 

though perhaps primarily for institutional and historical reasons more than scientific deficiencies, as 

we will discuss. 
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Within these two disciplines, a wide spectrum of research strategies have been used, from 

biochemistry to molecular biology to cell biology to organismal physiology to population genetics to 

evolutionary theory. However, it is fairly natural to separate this research into two capacious bins: (i) 

molecular, cellular, or reductionist research; versus (ii) comparative, demographic, or evolutionary 

research. We discuss each in turn. 

 

The Scientific Study of the First Two Phases of Life: Molecular and Cell 

Biology 

The study of the molecular and cell biology of development has been extremely successful. 

Piece by piece, the machinery by which adult organisms are produced has been detailed, deconstructed, 

and manipulated. This is such a well-attested success story in biology that we will devote no further 

attention to it here. 

By contrast, it has been extremely difficult to work out the molecular and cell biology of aging, 

leaving aside the mere documentation of its numerous changes. The most interesting result has been 

that lifespan can be ‘stretched’ in organisms with artificially lower metabolic or reproductive rates 

(Weindruch and Walford 1988; Finch 1990), although this result had already been demonstrated as 

early as 1916 and 1917 (Loeb and Northrop 1916; Loeb and Northrop 1917). There has been some 

recent excitement over ‘longevity mutants’ (reviewed by Kenyon 2005), mutants which also appear to 

exemplify the ‘stretching’ pattern, in that they suffer reduced metabolic rates (Van Voorhies and Ward 

1999; Van Voorhies 2002) or diminished reproductive and competitive capacities (Van Voorhies 1992; 

Marden et al. 2003; Jenkins et al. 2004). The insulin-like signaling pathway, in particular, appears to 

modulate the allocation of nutrients between maintenance of the adult soma and reproduction 

(Kenyon et al. 1993; Chen et al. 1996; Bohni et al. 1999; Tatar et al. 2001; Clancy et al. 2001; Bartke 
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2005). A lot of attention has been focused on this pathway because it is conserved across distantly 

related species, from nematodes to fruit flies to mammals (Fontana et al. 2010). 

 

The Scientific Study of the First Two Phases of Life: Demography and 

Evolutionary Biology 

From the standpoint of demographically-focused evolutionary biology (e.g. Charlesworth 

1980, 1994; Rose 1991; Stearns 1992; Roff 1992), the first two phases of life have quite distinct 

evolutionary properties. Development takes place during a period of intense natural selection, which 

is how evolutionary biologists characteristically explain the relative perfection of developmental 

processes. Alleles that have deleterious effects on fitness-related characters early in life are not favored 

by natural selection unless those same alleles have beneficial effects on other parts of the life cycle. 

This can occur in cases of antagonistic pleiotropy between components of life-history during 

development (Rose 1982), one scenario being genetic trade-offs between growth rate and viability. 

The ways in which such trade-offs arise, and their evolutionary consequences, will often involve 

specific aspects of the ecology and developmental biology that affect selection in each species. As 

such, they are not amenable to general theoretical characterization or analysis, although some attempts 

were made in the older ‘optimal life-history’ literature (reviewed in Charlesworth 1980). 

The situation is quite different with respect to aging during adulthood. When demographic 

information is incorporated into evolutionary genetic theory, as in Charlesworth’s (1980) classic 

monograph, then it is possible to derive predictions concerning the evolution of age-specific life-

history characters. At the core of this type of theory are Hamilton’s (1966) twin forces of natural 

selection, with one force acting on age-specific survival and the other force acting on age-specific 

fecundity. Both of these forces suggest that adulthood should be marked by persistent declines in age-
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specific survival probabilities and average fecundity. The use of this theory has led to an outbreak of 

interesting research on the evolution of aging and kindred topics in life-history (Rose 1991; Roff 1992; 

Stearns 1992; Rose et al. 2007).  But that is not our main focus here. 

 

The Demography and Evolutionary Biology of Late Life 

Our concern in this volume is to elucidate the fundamental demographic and evolutionary 

properties of late life, concentrating on data collected from well-defined laboratory experiments. There 

are ongoing studies of late life using data from human cohorts. However, we do not consider such 

data of sufficient quality to be useful in deciding basic scientific questions. Most of these human cohort 

studies are demographic in nature and only provide a post hoc analysis of death and the incidence of 

diseases. We will turn to a discussion of these problematic data in Chapter 11, as well as applying our 

general conclusions to the human case. 

For the time being, let us just mention that the observation that mortality rates follow distinctly 

different trajectories in late life in humans, and do not continue to exponentially increase at very late 

ages, is not a new finding for demographers and actuaries studying human data (Greenwood and Irwin 

1939; Comfort 1964; Finch 1990; Gavrilov and Gavrilova 1991). Much of the work being done on 

late ages in humans is focused on constructing and analyzing life tables and describing trends in age-

specific mortality patterns (e.g. Kannisto 1994; Christensen and Vaupel 1996). What this data has 

revealed is that there is a slowing in the acceleration of mortality rates around age 80, followed by a 

plateau after age 105 (Vaupel et al. 1998; Young et al. 2009). This slowing in mortality at late ages has 

been more pronounced since 1950 in developed countries (Kannisto et al., 1994; Vaupel 1997) and 

contributes to the increase observed in maximum lifespan (Wilmoth et al. 2000). Other work is 

comparative in nature, using autopsies of the ‘oldest old’ (e.g. Bernstein et al. 2004), or comparing 
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cohorts of young or middle age humans with older individuals. Perhaps the most revealing studies on 

late life in humans are longitudinal studies that consider social, behavioral, biological, and 

environmental factors across the lifespan of many individuals. One such study is the Chinese 

Longitudinal Healthy Longevity Survey, which has produced over 60 peer-reviewed articles from the 

data that have already been collected (see Yi 2004).  

But for the present purpose, data collected from other animal species are of much greater 

interest. There has been a recent increase in studies of late life using a variety of laboratory animal 

species, especially after the definitive discovery of the leveling of age-specific dipteran mortality rates 

at late ages by the Carey and Curtsinger labs in 1992 (Carey et al. 1992; Curtsinger et al. 1992). Since 

their reports of late-life mortality-rate plateaus in large cohorts of medflies and fruit flies, several labs 

have investigated the late-life demographic properties of a variety of organisms (reviewed by 

Charlesworth and Partridge 1997; Vaupel et al. 1998; Carey 2003). To our knowledge, late-life 

investigations have revealed similar late-life plateauing in mortality rates in all organisms that have 

sufficiently large cohort numbers surviving into the aging period. Among the species that have been 

studied are the medfly Ceratitis capitata (Carey et al. 1992; Carey 2003), the commonly-studied 

laboratory fruit fly Drosophila melanogaster (Curtsinger et al. 1992; Fukui et al. 1993; Clark and Guadalupe 

1995; Fukui et al. 1996; Promislow et al. 1996; Vaupel et al. 1998; Drapeau et al. 2000; Rose et al. 2002; 

Miyo and Charlesworth 2004), the Mexican fruit fly Anastrephan ludens (Vaupel et al. 1998; Carey et al. 

2005), a parasitoid wasp Diachasmimorpha longiacaudtis (Vaupel et al. 1998), the nematode Caenorhabditis 

elegans (Brooks et al. 1994; Vaupel et al. 1994; Vaupel et al. 1998; Johnson et al. 2001), baker’s yeast 

Saccharomyces cerevisiea (Vaupel et al. 1998), and the beetle Callosobruchus maculates (Tatar et al. 1993). 

The key to studying late life is cohort size. Investigators must employ enough individuals in a 

study so that a significant number of individuals from a particular cohort are alive at late ages. One 

reason that late-life mortality-rate plateaus had not been definitively observed before 1992 in the many 
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laboratory studies of aging may have been because almost all of these studies used cohort sizes of only 

100-200 individuals, or less, per population. Thus, the chance of enough individuals surviving to late 

enough ages for a plateau in age-specific mortality rates to be clearly defined was quite low. 

The studies cited above collectively have demonstrated that late-life plateaus in mortality rates 

are thus far widely observed among experimental cohorts in which enough individuals survive well 

into the aging phase and the environment is maintained with stable conditions. Interestingly, late-life 

mortality-rate plateaus are also observable under a variety of environmental and genetic conditions. 

They have been observed in cohorts of inbred and outbred individuals, in genetic mutants having 

extended lifespans, and in cohorts kept at varying densities (see above citations). These results 

collectively suggest that mortality-rate plateaus are a robust finding, and that late life is a phase of life 

very different from both development and aging, but a phase of life requiring careful study, especially 

large cohorts maintained under good conditions. 

However, some of these data are probably subject to artifacts of inbreeding and genotype-by-

environment interaction, which complicate the interpretation of any study of demography or life-

history evolution. For instance, it has long been known that subtle environmental effects, such as past 

density history, can affect age-specific mortality (Pearl et al. 1927). Genetic correlations will also 

change in different environments (Service and Rose 1985). Inbreeding has been shown to affect life 

history traits in a variety of ways. Inbreeding may change genetic correlations between life history traits 

(Rose 1984a), accelerate senescence (Mueller 1987), and alter population dynamics if it causes 

reductions in female fecundity (Prasad et al. 2003). Therefore, we will be concentrating primarily on 

our own experimental research, which has used Drosophila populations that are well-adapted to our 

laboratory environment, while being kept relatively free of inbreeding (Rose et al. 2004).  

A further limitation on the present discussion is that we are not going to consider the 

physiological or mechanistic foundations of late life in any great detail. We feel that this is a 
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tremendously important subject, but too little is known about it at present to offer more than the 

preliminary findings that we will describe in Chapter 10. But we will return to this topic in future 

publications, once we have analyzed sufficient physiological data from late life. 

Thus, the present volume constitutes an intensive analysis of the demographic and 

evolutionary foundations of late life in theory and in well-defined laboratory cohorts, primarily from 

our own Drosophila laboratories. In this sense, then, we are covering specifically the evolutionary biology 

of late life. Given the novelty of this research area, and its surprising features, we are confident that the 

limited scientific terrain that we survey nonetheless will be of great interest for students and scholars 

of evolutionary biology, demography, ecology, and gerontology. 
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Chapter 2. Discovery of  Late Life 

 

Human demographers have long noticed and documented a reduction in the acceleration of 

human mortality rates with age. But this pattern in human data was not considered of general scientific 

importance until the virtual cessation of aging was documented quantitatively in two insect species in 

1992. Since then, post-aging late life has been documented in a variety of experiments. These plateaus 

are not artifacts arising from inbreeding, density, etc. In the early 2000’s, it was also discovered that 

late-life fecundity plateaus as well.  

 

Intimations of Human Late Life 

Demographers have traditionally characterized adult age-specific mortality rates in terms of 

the Gompertz equation, first intuited in the 19th Century (Gompertz 1825). This equation is usually 

presented in the following form, 

 

𝜇𝜇(𝑥𝑥) = 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼),       (2-1) 

 

where A is the age-independent mortality parameter and α is the age-dependent parameter. The 

parameter α is often interpreted as reflecting the rate of aging. It is interesting that in populations of 

Drosophila selected for postponed aging, the magnitude of α has declined relative to controls, as has 

the magnitude of A (Nusbaum et al. 1996). On the other hand, A reflects background sources of 

mortality, which don’t change fundamentally with age. Environmental factors, like caloric restriction 
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or exposure to urea, increase longevity in Drosophila by decreasing the value of A (Nusbaum et al. 

1996; Joshi et al. 1996). 

There are a number of variants of this model, like the Gompertz-Makeham model, 

 

𝜇𝜇(𝑥𝑥) = 𝑅𝑅 + 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼).      (2-2) 

 

Equation 2-2 was later revised by Makeham to include both linear and exponential components (see 

Gavrilov and Gavrilova 1991), 

 

𝜇𝜇(𝑥𝑥) = 𝑅𝑅 + 𝑆𝑆𝑆𝑆 + 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼).     (2-3) 

 

None of these variants of the Gompertz equation have profound biological motivations. However, all 

of these models have in common the assumption that age-specific mortality rates increase with 

positive acceleration, assuming positive parameter values, as is conventional. For example, the 

mortality rate of humans between ages 50 and 60 years will be underestimated if it is taken as a simple 

continuation of the mortality rate between 40 and 50 years of age.  

“Gompertzian models,” a term that we use to refer to the entire class of models under one 

rubric, often fit mortality rate data extremely well (e.g. numerous plots in Finch 1990). However, there 

was no profound scientific justification for Benjamin Gompertz’s (1825) original proposal of models 

of this kind. It was merely the simplest of an entire class of models that might be fit to actual 

experiment data.  

The post hoc nature of this model for human aging was revealed by the indifference shown by 

scientists to the discovery of substantial slowing in human age-specific mortality rates at later ages. 

Patterns of this kind were casually noticed in the 19th Century, but it wasn’t until 1939 that Greenwood 
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and Irwin analyzed abundant human European data to show that human mortality rates essentially 

plateau late in life, as we discuss in detail in Chapter 11. Because there was no particular theory 

underlying the Gompertz equation, and its Gompertzian congeners, this anomaly in human 

demographic data did not provoke any direct scientific examination of the departure of late life from 

the Gompertzian pattern of the aging phase of human demography. Some scientists were willing to 

attribute the apparent slowing, if not cessation, of demographic aging to recondite and incidental 

factors, such as improved care in nursing homes, among other changes of behavior and environment 

in patients who are extremely old (e.g. Olshansky et al. 1993; Maynard Smith et al. 1999, p. 269). 

Although a better standard of living, public health measures, and medical developments can all 

contribute to the slowing of mortality rates in the oldest old humans, these factors should also slow 

mortality rates at all other ages. 

The fundamental problems with human data concerning age-specific mortality are several-

fold. Humans as individuals are aware of their aging, both immediately and longitudinally, which may 

cause them to change their behavior with time. Humans as social animals are subject to age-dependent 

social interactions. Young humans are treated one way, mature reproductive adults another, and post-

reproductive adults yet another. This is unquestionable. Humans are very long lived, which makes full 

longitudinal studies of our lives hard to arrange and carry out. Humans have lived through remarkably 

different epochs over the last few centuries, as the pace of global change has been striking, affecting 

our nutrition, exposure to disease, and medical treatment. In general, a worse experimental system for 

distinguishing among demographic epochs within a life-cycle is hard to imagine, despite the vast 

amounts of data concerning human age-specific mortality patterns. 
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The Revolution of 1992: Definitive Evidence for a Third Phase of Life 

Scientific studies of age-specific survival rates in non-human species have suffered in other 

respects. The problems with inferring underlying endogenous patterns of mortality from wild 

populations are obvious. Most wild animals move around, making the accurate estimation of their 

mortality extremely difficult, because missing animals might have left the study area or be 

unrecoverable or undetectable for other reasons, without having died. Wild plants do not move 

around, but like animals they are subject to environmental vagaries, from weather to grazing to disease 

to wildfires.  

The problems with studies of laboratory populations are somewhat more recondite, but 

equally substantial. Most studies of mortality in laboratory cohorts use small numbers. While human 

mortality data from Europe may involve millions of individuals and studies of wild populations of 

other species may involve thousands of individuals, laboratory studies of mortality in animals or plants 

are more likely to involve only dozens to hundreds of individuals. Furthermore, many standard 

laboratory stocks are either recently introduced to the laboratory or highly inbred. Genotype-by-

environment interaction makes the properties of newly introduced organisms highly unpredictable 

(vid. Matos et al. 2004; Teotonio et al. 2004; Rose et al. 2005), and such data are not useful for the 

interpretation of the survival rates of organisms in their normal habitats. Highly inbred organisms 

from species that do not usually self-fertilize are subject to inbreeding depression, which can produce 

highly anomalous life-history data (Rose 1984a; Rose 1991).  

The combined effects of these problems afflicting human, wild, and laboratory studies of age-

specific mortality are fairly devastating. The amount of appropriate data on the lifelong pattern of age-

specific mortality is very limited. Furthermore, the data degrades with age in all finite cohorts, simply 

because there are fewer individuals alive at later ages, making the sampling variation of age-specific 

mortality increase rapidly with age at very late ages. 
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[Insert Figure 2-1 here]

 

Figure 2-1 The log of mortality rate as a function of age in the Mediterranean fruit fly, Ceratitis capitata (from Carey et al. 
1992). 
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Given all these difficulties, it can’t be considered surprising that it was not until 1992 that the 

first scientifically definitive data on late life were published by Carey et al. and Curtsinger et al. The 

scientific importance of these papers is hard to understate. Though many quibbled over their 

significance, including some of the present authors (e.g. Nusbaum et al. 1993; Graves and Mueller 

1993), in retrospect, they can be seen as two of the most revolutionary scientific papers published in 

the 20th Century. 

The key to their value was scale, standardization, and replication. Millions of flies were used 

to estimate age-specific mortality rates among adults. Great care was taken to handle these organisms 

in standardized ways, as opposed to the haphazard nature of the data from human or wild population 

studies of similar size. Handling methods were varied between experiments, and some of the 

experiments were replicated internally as well, with multiple cohorts handled in parallel at the same 

time. 

Carey’s lab collected data for three different kinds of cohorts of medflies (Carey et al. 1992). 

In two of these experiments, cohorts of more than 20,000 individuals were housed individually in 

either cups or tissue cells, the flies having more room in the former type of housing compared to the 

latter, but still relatively little opportunity for much activity in either case (Figure 2-1). Thus, many of 

the normal environmental hazards associated with aging, like mating, egg laying, activity, and density 

effects, were limited. The third cohort study by Carey et al. comprised over 1.2 million medflies that 

were housed in cages containing approximately 7,200 flies each. This cohort, unlike the other two, 

experienced mating, egg laying, activity, and decreases in density with age. Despite these differences, 

all three cohorts demonstrated a similar plateauing of age-specific mortality rates at later ages (Figure 

2-1).  
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Figure 2-2. Age-specific mortality in a population of inbred Drosophila (after Curtsinger et al. 1992).  

Curtsinger’s lab observed a similar leveling of age-specific mortality rates at late ages in a single 

genotype of male Drosophila (Figure 2-2, data from Curtsinger et al. 1992). Their experiment employed 

an inbred cohort of 5,751 male fruit flies to better understand the details of mortality rates at very late 

ages. They found that a Gompertz-type mortality model fit the data quite well until 30 days, after 

which mortality rates were better fit to a constant mortality rate (Figure 2-2). 

Mortality plateaus have been documented in several other species, including houseflies 

(Rockstein and Lieberman 1959), bruchiid beetles (Tatar et al. 1993, Tatar and Carey 1994a,b, 1995), 

two different species of seed feeding beetles (Fox et al. 2006), and butterflies (Gotthard et al. 2000). 

To summarize the forgoing studies, these data show that the process of exponentially 

increasing age-specific death rates can come to an end under well-defined laboratory conditions, given 

cohort sizes large enough to allow accurate estimation of age-specific mortality rates late into adult 
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life. After the point of detectable mortality-rate deceleration, mortality rates seem to roughly stabilize, 

with some cohorts even showing declining age-specific mortality rates. However, in principle, a stable 

average mortality-rate is expected to lead to some “sample paths” with declining mortality rates, so 

individual instances of such declining mortality rates are not necessarily important. In other words, in 

well-defined laboratory cohorts, the human late-life pattern of decelerating aging was found again. 

The initial publications revealing decelerating aging in laboratory animal species were met with 

some skepticism and scrutiny. Many critics offered explanations for the observed late-life plateaus in 

mortality, explanations such as the reliability theory of aging (Gavrilov and Gavrilova 1993), 

heterogeneity effects (Kowald and Kirkwood 1993), population density effects (Nusbaum et al. 1993), 

age-related changes in activity and sample size (Olshansky et al. 1993). Although Carey et al.’s 

experiments certainly addressed the problem of small sample size and Curtsinger et al.’s study 

addressed the effect of genetic heterogeneity on the leveling of late-life mortality rates, it was clear 

that further experiments were necessary. 

Curtsinger’s lab addressed a number of these concerns in the years following the 1992 

publications. The first of these studies examined mortality-rate patterns at late ages in four inbred lines 

of Drosophila, using both males and females (Fukui et al. 1993), and thus addressed the concern that 

genetic heterogeneity resulted in the slowing of mortality rates at late ages. Approximately 1,000 

individuals were housed in each of 18 population cages and mortality was monitored daily until all 

flies had died. Flies were not recombined between cages as death occurred, so the effects of decreasing 

density with age were not controlled. However, this experiment further demonstrated that the leveling 

of mortality rates at late ages was not due to genetic heterogeneity and that a two-stage Gompertz 

model with a second-stage “plateau” best fit age-specific mortality data from large cohorts. 

The next experiments to come out of the Curtsinger lab studied the effects of density on age-

specific mortality rates, also using four inbred lines of Drosophila (Khazaeli et al. 1995a). Many critics 
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of the original studies thought it possible that the slowing of mortality rates was at least partially due 

to declining adult density with age (e.g. Graves and Mueller 1993, 1995; but see Curtsinger 1995a, 

1995b for caveats). To address this concern, Khazaeli et al. (1995a) started three fruit fly cohorts with 

initial densities that varied 10-fold and then followed the mortality of approximately 70,000 flies of 

both sexes in total. Mortality leveled off at late ages, just as it had before, regardless of cohort density. 

Vaupel and Carey (1993) performed a similar test using medflies and obtained the same qualitative 

results.  

Varying initial cohort density did not rule out the possibility that mortality rates were slowing 

at later ages because of a declining age-specific cohort density with age. Addressing this concern would 

require that the individuals within a cohort be kept at constant densities at all ages. Khazaeli et al. 

(1996) did just that. They observed age-specific mortality rates for two adult densities, constant at all 

ages, in four inbred lines of Drosophila. Mortality rates decelerated and plateaued at late ages even when 

density was held constant at all ages. Note, however, that this study did not rule out the effects of 

density on mortality rates or lifespan. It just showed that density effects clearly were not the cause of 

the mortality-rate stabilization that characterizes late life in large cohorts. 

Although studies using inbred lines of Drosophila and outbred cohorts of medflies suggested 

that genetic heterogeneity was not the cause of late-life mortality-rate plateaus, environmental 

heterogeneity was still a possible contributing factor. Khazaeli et al. (1995b) addressed this possibility 

by applying an environmental stress to Drosophila cohorts at early ages that did not incapacitate the 

flies, a study referred to here as a ‘stress experiment’. The response of the cohort to this stress was an 

initial spike in mortality rates, followed by a decrease in mortality rates for the experimental cohorts 

compared to controls. The results of this stress experiment suggested that there is heterogeneity in 

mortality rates even in genetically homogenous cohorts, and that this heterogeneity may be 

environmentally based. However, further analysis of the data from this experiment by the authors 
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required them to retract these conclusions (Curtsinger and Khazaeli 1997). The theoretical and 

experimental work surrounding the effects of such heterogeneity effects on late-life mortality rates 

will be addressed in full in later chapters of this book. 

One of the last experiments to come out of the Curtsinger lab in response to the initial 

skepticism surrounding late-life mortality-rate plateaus again addressed the issue of inbred lines (Fukui 

et al. 1996). Curtsinger et al.’s original experiment with Drosophila used inbred lines and only male 

mortality rates were observed. Although Carey et al.’s experiment with medflies used outbred cohorts 

of flies, there was some concern with the design of the fruit fly experiment. Consequently, Fukui et 

al. (1996) studied mortality rates in both inbred and outbred cohorts of Drosophila for both males and 

females. They found that late-life mortality rate deceleration was not unique to inbred cohorts of fruit 

flies, nor to males kept separately from females, when a large number of individuals are used. 

Collectively these experiments eliminated a number of possible artifactual reasons for the 

observation of late-life plateaus in mortality rates. They demonstrated that the leveling in mortality 

rates observed late in adult life was not a result of genetic heterogeneity, that this phenomenon was 

not specific to inbred lines, and that neither initial cohort density nor age-specific density decline 

within a cohort affected the existence of late-life mortality-rate plateaus. Plateaus in mortality rates 

were well-established as a robust finding needing much more theoretical and experimental attention 

by the later 1990s. 

 

The Revolution Continued with Fecundity 

Rauser et al. (2003) intuited that late-life fecundity would also show a cessation of aging similar 

to mortality and tested whether this was in fact true. In evolutionary biology, aging is defined as a 

sustained endogenous decline in age-specific fitness-components (Rose 1991). These fitness 
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components include characters other than age-specific mortality. Most importantly, they include such 

characters as age-specific female fecundity, age-specific male mating success, and the like. Thus, if 

aging generally ceases at late ages, then it should cease for these characters as well, leaving aside 

organisms that undergo such distinct reproductive terminations as human menopause.  

As predicted, female fecundity in Drosophila shows a gradual decline with adult age, with some 

degree of deceleration in the rate of decline toward the end of adult life. To illustrate this deceleration, 

we have displayed the age-specific fecundity from replicated measurements of five outbred D. 

melanogaster populations called CO1 to CO5 (Figure 2-3). These populations are cultured with moderate 

selection for late-life fitness (reproduction is at four weeks of life, about 16-18 days from the onset of 

adulthood). The results shown in Figure 2-3 are taken from six different experiments: a comparison 

of the five CO populations with a set of five populations called the ACO (Rauser et al. 2006), a test 

of life-long heterogeneity on female fecundity plateaus (Rauser et al. 2005a), a test of the effects of 

male age on fecundity plateaus (Rauser et al. 2005b), a test of nutrition level on fecundity plateaus 

(Rauser et al. 2005b), a comparison of the CO populations and a set of five reverse-selected 

populations, the NRCO’s (Rauser et al. 2006), and a comparison of fecundity and mortality plateaus 

(Mueller et al. 2007). This is the largest set of lifelong age-specific fecundity data collected under good 

laboratory conditions known to us. While there is significant variation in the specific patterns of 

individual experiments, as a group these fecundity trajectories show a clear deceleration in the rate of 

decline in age-specific fecundity. Furthermore, the average plateau heights that we have found are at 

levels statistically greater than zero.  That is, fecundity levels do not merely plateau by achieving a 

value of zero.   

It is important to note here that when we are discussing plateaus in fecundity, we are referring 

to the fecundity patterns of a population, and not the fecundity patterns of individual females. Note 
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also that there is a significant complication facing fecundity due to the effects of the process of dying. 

We analyze the effects of this ‘death spiral’ later in this book, in Chapters 3 and 9. 

Despite the consistency of fecundity-decline deceleration in data like these, we were concerned 

about several possible artifacts, specifically whether male age or high nutrition cause the cessation of 

reproductive aging in females (Rauser et al. 2005b). That is to say, upon our initial discovery of late-

life fecundity plateaus, we were as concerned as the Curtsinger lab was about possible artifacts that 

might have generated a misleading appearance of a distinct late-life phase, following aging. As our 

tests for these possible artifacts have not been as widely-communicated as the earlier work of the 

Curtsinger laboratory vindicating late-life mortality rate plateaus, we review this Drosophila fecundity 

research in some detail here. 
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Figure 2-3. Average female fecundity in 19 CO populations from six different experiments, where the numerical 
subscripts refer to individual replicate CO populations.  The additional coding for the graphs refer to the type of 
experiment from which CO cohort fecundity data were obtained, as follows:  “CO/ACO” refers to an experiment 
comparing cohorts from CO and ACO populations; “hetero” refers to an experiment studying lifelong heterogeneity; 
“old males” refers to an experiment testing the environmental effect of male mate on female fecundity; “yeast” refers to 
an experiment testing the environmental effect of yeast level on female fecundity; “NRCO” refers to a reverse-selection 
experiment. 

Are Fecundity Plateaus Caused by Inadequacy of Older Males 

The first of these possible artifacts is diminished male sexual function. The idea is that a slower 

rate of egg-depletion, and thus a stabilization of later-life fecundity, might have arisen from reduced 

availability of sperm among our experimental Drosophila 0cohorts. We tested this artifact hypothesis 

by supplying females with young males before their fecundity declined to plateau levels. In our first 

late-life fecundity study that suggested the existence of late-life fecundity plateaus, male and female 

cohorts were handled in parallel, without replacement, throughout life (Rauser et al. 2003). This design 

resulted in a supply of older mates for the older females, raising the prospect that older males may 

have limited female fecundity at later ages, generating an artifactual plateau in their fecundity. [We 

should be clear that we do not believe this hypothesis; we merely conducted a test of it.]  Certainly 

one simple, if far-fetched, explanation of our experimental results might be that late-life female 

fecundity plateaus may have arisen from diminished male sexual function associated with male aging, 

which in turn could reduce female reproduction, causing both a decline in female fecundity before the 

plateau and the plateau itself.  

Various components of male sexual function in Drosophila have been shown to decline with 

age. Among these functions are overall mating success or ability (Aigaki and Ohba 1984; Kosuda 1985; 

Service 1993; Hughes 1995), which may be related to decreases in the production of both sperm and 

accessory gland proteins that function to elevate egg laying and increase female death rate, among 

other things (reviewed by Wolfner 1997). Furthermore, Prowse and Partridge (1996) found that males 

always exposed to virgin females were sterile when at least 80% of their cohort was still alive. Thus, it 
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is easy to imagine that the decline in fecundity with female age, and even the plateau itself, may be a 

result of an age-related decline in the sexual physiology of males. 

This idea was tested by supplying females with young males before their fecundity declined to 

plateau levels. We reasoned that if older males artifactually created late-life fecundity plateaus, then 

supplying younger mates to older females should either delay the onset of the fecundity plateau until 

the new mates become old or obliterate the plateau altogether, because few females would survive to 

late enough ages for the fecundity plateau to be observable. Therefore, a supply of young males to 

mid-life females should have caused the fecundity plateau at late ages to disappear, but only if male 

reproductive inadequacy established the timing and existence of fecundity plateaus. On the other hand, 

if male age did not cause fecundity plateaus, then we still should have observed a plateau in the 

fecundity of older females given young males. Note, however, that this plateau could have occurred 

earlier or later, because of the physiological effects of supplying older females with younger mates.  

To assess the effects of male age, and subsequently nutrition, on the late-life fecundity 

dynamics of Drosophila, we developed a simple model of age-specific fecundity. This model was a 

3-parameter, two-stage linear model, with a second-stage slope of zero, analogous to the two-stage 

models previously used by us to fit both adult mortality (Drapeau et al. 2000) and fecundity data 

(Rauser et al. 2003). Under such a two-stage model, the fecundity of a female aged t-days can be 

given as  

 

� 𝜙𝜙1 + 𝜙𝜙2𝑡𝑡  𝑖𝑖𝑖𝑖  𝑡𝑡 ≤ 𝜙𝜙3
𝜙𝜙1 + 𝜙𝜙2𝜙𝜙3  𝑖𝑖𝑖𝑖  𝑡𝑡 > 𝜙𝜙3

,      (2-4) 
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where ϕ1 is the y-intercept, ϕ2 is the slope and ϕ3 is the fecundity ‘breakday.’ This term breakday refers 

to a hypothetical transition to a stable late-life condition. Note that this model does not force the data 

to conform to a two-stage pattern; all the data can conform to a one-stage pattern of sustained decline, 

given by the linear model fit to the first stage.  

We also determined the height of the late-life fecundity plateau for both treatments (young 

and old males), along with 95% confidence intervals for these plateau heights, using the parameter 

estimates obtained from the two-stage linear model (Table 2-1, Rauser et al. 2005b). For both the 

young and old male treatments, the height of the plateau, or the number of eggs per female per day 

after the breakday, was significantly greater than zero (Rauser et al. 2005b). These results demonstrated 

that aging males were not artifactually causing the occurrence of the fecundity plateaus that we observed 

at very late ages in our previous experiment (Rauser et al. 2003), although the supply of younger males 

did affect the overall timing and shape of the plateaus. 

Our test indicated that the addition of young males resulted in a more rapid onset of the 

fecundity plateau, as well as a plateau with an increased height (Rauser et al. 2005b). However, the 

earlier onset of the fecundity plateau in the young-male treatment may explain the increased height of 

the plateau. That is, young males caused fecundity to stop declining at an earlier age than older males, 

resulting in a greater number of eggs per female per day at later ages. The important conclusion from 

this study, however, is that female fecundity plateaued at late ages regardless of the age of their mates. 

 

Table 2-1. Parameter estimates from the two-stage linear model that was fit to mid- and late-life 
fecundity data from each type of CO population, those having either males of the same age as the 
females (old males) or young males, added when the females were age 40 days (from egg). The model 
was fit by non-linear least squares regression. The height of the fecundity plateau was computed from 
Equation (2-4) and the estimated height was significantly different from zero (p < 0.05 for each 
population). 
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Population 1st-stage 

y-int (ϕ1) 

1st-stage 

slope (ϕ2) 

Breakday 

(ϕ3) 

Plateau height ± 95% c.i.  

(eggs/female/day) 

Old Males    3.24 ± 0.64 

CO1 92.16 -1.94 45.23  

CO2 77.23 -1.60 46.17  

CO3 70.41 -1.42 48.09  

Young Males    6.89 ± 3.33 

CO1 88.61 -1.86 43.23  

CO2 101.21 -2.34 39.67  

CO3 76.79 -1.61 46.12  

Parameter estimates for ϕ1, ϕ2, and ϕ3 were all significantly different from zero; p < 0.0001 for each 

of the three populations under both treatments. 

Are Fecundity Plateaus Caused by High Nutrition? 

The second artifact hypothesis that we tested is that fecundity plateaus arose in our 

experiments from a change in the calories available for reproduction. That is, it is possible that the 

late-life fecundity plateaus observed by Rauser et al. (e.g. 2003) simply reflected an incidental side-

effect of a shift in resource allocation. The potential for such shifts in resource allocation involving 

fecundity is well-established in the Drosophila populations that we used to study lifelong fecundity, with 

decreased food strongly associated with reduced fecundity and increased longevity (Chippindale et al. 

1993, 1997). 

In particular, it is conceivable, although somewhat implausible, that the fecundity plateau 

phenomenon may have been generated by artifacts arising from environmental factors that modulate 
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female reproduction that arose specifically in the study of Rauser et al. (2003), but are not general. In 

our first experiments that established the existence of late-life plateaus in fecundity (Rauser et al. 2003), 

females were provided high levels of yeast, following the protocols of Chippindale et al. (1993), 

throughout the duration of the assays. Female fecundity may have plateaued later in life only because 

of such sustained high nutrition at all earlier ages. Therefore, we were concerned that females 

maintained at a lower level of nutrition might not exhibit a late-life plateau in fecundity levels. 

Furthermore, fecundity is generally known to be highly responsive to nutrition in Drosophila. 

Specifically, egg laying, utilization of sperm, mating frequency, and vitellogenesis all increase with 

increasing nutrition (Chippindale et al. 1993; Chapman et al. 1994; Chapman and Partridge 1996; Good 

and Tatar 2001). However, this increase in overall female reproduction does not come without a cost 

(cf. Partridge 1987; Reznick et al. 2000), and may even be coupled with a decrease in survival (Fowler 

and Partridge 1989; Chapman et al. 1993; Chippindale et al. 1993; Chapman et al. 1994; Chapman et 

al. 1995; Chapman and Partridge 1996).  

Such plateau-disappearance and resource-diversion hypotheses were tested by comparing the 

effects of high and low nutrition levels on female fecundity at later ages. Specifically, we supplied 

cohorts derived from each experimental population with either high nutrition or low nutrition and 

measured fecundity throughout their adult lives. If high nutrition artifactually allows fecundity to 

plateau at late ages, but plateaus do not otherwise occur, then supplying flies with low nutrition should 

eliminate the plateau altogether. On the other hand, if nutrition does not affect the existence of fecundity 

plateaus, then we should still observe a plateau in the fecundity of females given low nutrition. Note, 

however, that we were not testing whether or not nutrition affects fecundity at all. That point is well-

established in the experimental literature. Instead, we were testing whether late-life fecundity plateaus 

continue to arise as nutrition is experimentally varied. 
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As with the previously described artifact test, we also determined the height of the late-life 

fecundity plateau for both treatments (high and low nutrition), along with the 95% confidence 

intervals for those heights, using the parameter estimates obtained from the two-stage linear model 

described above (Table 2-2, Rauser et al. 2005b). We found that the height of the fecundity plateau 

was significantly greater than zero in the presence of both high and low nutrition. Like in the young 

males experiment, fecundity plateaus arose regardless of nutrition level at some number of eggs greater 

than zero (Rauser et al. 2005b). 

 

Table 2-2. Parameter estimates from the two-stage linear model that was fit to mid- and late-life 
fecundity data from each experimental cohort having either high nutrition (5.0 mg/vial) or low 
nutrition (0.2 mg/vial) throughout each assay. The model was fit by non-linear least squares regression. 
The height of the fecundity plateau was computed from Equation (2-4) and the estimated height was 
significantly different from zero (p < 0.05 for each population). 
 

Population 1st-stage 

y-int (ϕ1) 

1st-stage 

slope (ϕ2) 

Breakday 

(ϕ3) 

Plateau height ± 95% c.i.  

(eggs/female/day) 

High Nutrition    3.43 ± 2.38 

CO1 106.24 -2.11 48.39  

CO2 113.00 -2.30 46.90  

CO3 91.35 -1.80 48.57  

Low Nutrition    0.82 ± 0.56 

CO1 46.17 -0.64 70.98  

CO2 39.63 -0.55 70.42  

CO3 29.25 -0.38 72.65  

Parameter estimates for ϕ1, ϕ2, and ϕ3 were all significantly different than zero; p < 0.0001 for each of 
the three populations under both treatments. 
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Although the existence of fecundity plateaus was not affected by varying nutrition levels, 

fecundity was lower under low nutrition compared to high nutrition at all ages, including those ages 

after the onset of the plateau. Furthermore, fecundity declined at a much slower rate under low 

nutrition compared to high nutrition (see ϕ2, Table 2-2). These results are consistent with dietary 

restriction and other nutrition studies, which have demonstrated that low nutrition levels result in 

decreased daily and lifetime fecundity in Drosophila (David et al. 1971; Trevitt et al. 1988; Chippindale 

et al. 1993; Chapman and Partridge 1996; Good and Tatar 2001). However, the result that the plateau 

height was significantly different from zero regardless of nutrition level allowed us to reject the artifact 

hypothesis that late-life fecundity plateaus were caused merely by high nutrition in the experiment of 

Rauser et al. (2003).  

 

Conclusion: A Third Phase of Life has been Experimentally Established 

From the standpoint of the demography of aging, in particular its eventual cessation, our 

fecundity results are comparable to the finding that mortality rates plateau. Both findings have now 

been tested for possible artifacts, and somewhat replicated, especially in Drosophila. Together, they 

suggest that aging is demographically a transition between two periods of relatively stable mortality 

and fecundity levels, which may render it more amenable to eventual control than a process which is 

an endless and exponential rise in age-specific mortality, debility, and sterility.  

Is late life a period in which all age-specific life-history characters stabilize? We are not aware 

of comparable data for male age-specific fitness components, the third major type of adult life-history 

character. However, it is now reasonable to propose the bare hypothesis that aging generally ceases in 

cohorts of organisms that live long enough as adult somata, under benign and stable conditions. But without doubt, 

after a period of persistently increasing age-specific mortality and decreasing age-specific reproductive 
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output, a third phase of life can occur, a phase that is clearly unlike aging demographically. It is this 

stunning finding that animates our work on late life, whether or not this cessation of aging is indeed 

universal. In particular, we have sought not merely to document this fact. We have also tried to explain 

it in terms of basic biological theory, this explanation being the chief topic of the present book. 
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Chapter 3. Late Life is Predicted by Hamiltonian Evolutionary 

Theory 

 

Hamilton’s forces of natural selection acting on age-specific survival and fecundity imply 

strong selection during development and weakening selection during the first part of adulthood. After 

the last ages of survival and reproduction in a population’s evolutionary history, Hamiltonian theory 

predicts endless plateaus in the forces of natural selection. Explicit models of life-history evolution 

show that these plateaus allow the evolution of late-life plateaus in both age-specific survival and 

fecundity. 

 

The Force of Natural Selection Acting on Mortality: from Aging to Late Life 

Haldane (1941) and Medawar (1946, 1952) were the first to describe aging as a consequence 

of the weakening force of natural selection with age. However, it was Hamilton (1966) who actually 

derived a quantitative formula for this force for the first time. According to Hamilton, the force of 

natural selection acting on mortality is given by s(x)/T, where x is chronological age and T is a measure 

of generation length. The function s at age x is given by 

 

𝑠𝑠(𝑥𝑥) = ∑ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑦𝑦)𝑚𝑚(𝑦𝑦)𝑦𝑦=𝑥𝑥+1 ,    (3-1) 

 

where r is the Malthusian parameter, or the growth rate of the population, associated with the specified 

l(y) survivorship and m(y) fecundity functions. The variable y is used to sum up the net expected 

reproduction over all ages after age x. Ultimately, the s(x) function represents the immediate fitness 
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impact of an individual’s future reproduction. Note that, before the first age of reproduction (b), s is 

always equal to 1 (one), once reproduction has ended, s is equal to zero, and during the reproductive 

period, s(x) progressively falls. Figure 3-1 shows an example of an s(x) function that depicts how the 

force of natural selection acting on mortality declines with adult age, throughout the reproductive 

phase, and converges on zero at very late ages. 

 

Figure 3-1. The force of natural selection (s(x)) as a function of age where b is the first age of reproduction. 

From 1966, when Hamilton first published his analysis, until 1996, it was generally assumed 

by evolutionary biologists that the decline toward zero values of Hamilton’s force of natural selection 

acting on age-specific mortality rates implied unremitting increases in age-specific mortality rates (e.g. 

Rose 1991). This was historically significant, because it was thus assumed that evolutionary theory 

provided a fairly direct warrant of the practically universal intuition among biologists that they could 
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interpret aging as effectively a collapse in the working of a biochemical machine that had worked 

efficiently at an early age. In effect, this intuition led many gerontologists to the view that they could 

largely ignore evolutionary issues in their research, and just focus on patterns of cumulative breakdown 

(vid. de Grey and Rae 2008).  

The research that we will now present supplies an argument that the intuitive interpretations 

of all biologists prior to 1996 were incorrect, from the intuitions of evolutionary biologists to those of 

gerontologists.  Consider the following possibility.  What if the roughly exponential rise in age-specific 

mortality rates with adult age might instead be a direct reflection of the pattern of change in the force 

of natural selection acting age-specific mortality, and not just its decline to lower average values? If 

this intuition is correct, then it implies that later plateaus in age-specific mortality could arise from the 

plateauing of the force of natural selection acting on mortality. 

In order to test the formal cogency of this alternative interpretation of this alternative 

interpretation of Hamilton’s forces, Mueller and Rose (1996) set about simulating the evolution of 

age-specific mortality using standard equations for the evolution of allele frequencies in age-structured 

populations. The results of those simulations corroborated the alternative interpretation: in every case 

that they examined, regardless of the pattern of pleiotropy or mutation that they employed, late life 

plateaus evolved in the simulated populations of Mueller and Rose (1996). 

Put simply, implicit within Hamilton’s (1966) original theory for the force of natural selection 

is an evolutionary theory of late life. Recall that s is equal to zero for all ages after reproduction has 

ceased. Therefore, it is intuitive that age-specific mortality rates should mimic the plateau in the force 

of natural selection, because natural selection is unable to distinguish fitness differences in survival at 

different ages after the cessation of reproduction in the course of a population’s evolution. Survival 

rates do not necessarily have to reach zero as soon as reproduction ceases, because beneficial effects 

that are not age-dependent will continue to benefit individuals who remain alive after the force of 
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natural selection has converged on zero. Any age-independent genetic benefits will be favored by 

natural selection acting at early ages and will have positive pleiotropic benefits at all later ages.  

 

A Simple Analytical Explanation of Late-Life Mortality Plateaus 

Before we turn to examples of simulation results for the evolution of late life, we will try to 

provide a simple mathematical sketch that might help some readers understand the qualitative features 

of late-life evolution.  Suppose that age-specific survival in a particular environment is an exponentially 

decreasing function of age (𝑙𝑙𝑥𝑥 = 𝑒𝑒−𝑑𝑑𝑑𝑑) and fecundity is an exponentially increasing function of age 

(𝑚𝑚𝑥𝑥 = 𝑒𝑒𝑓𝑓𝑓𝑓). Then for a population at stable age-distribution where, 

 

∑ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙𝑥𝑥𝑚𝑚𝑥𝑥 = 1𝑥𝑥 ,      (3-2) 

 

one can show that 𝑓𝑓 − 𝑟𝑟 − 𝑑𝑑 ≤ 0 , and so the magnitude of the terms in Equation 3-2 are 

exponentially decreasing to 0. In fact, this result should hold for any schedule of lx and mx since we 

can always find a d such that 𝑒𝑒𝑓𝑓𝑓𝑓 > 𝑚𝑚𝑥𝑥 ∀ 𝑥𝑥 and likewise we can find an f such that 𝑒𝑒𝑓𝑓𝑓𝑓 > 𝑚𝑚𝑥𝑥 ∀ 𝑥𝑥 

and thus, 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙𝑥𝑥𝑚𝑚𝑥𝑥 < 𝑒𝑒𝑥𝑥(𝑓𝑓−𝑟𝑟−𝑑𝑑)  → 0 as 𝑥𝑥 → ∞. Consequently, there should always be an age at 

which the force of selection is so small that it has a trivial impact on allele frequency dynamics, relative 

to forces like random genetic drift. And for all ages after that, the force of natural selection will remain 

negligible. This implies that natural selection should be entirely unresponsive to differences in the age(s) 

at which alleles affect either age-specific survival or reproduction during this later part of life, making 

such alleles adaptively equivalent. Thus, our first-order expectation is that forces of natural selection 

will generally plateau in such a way as to produce a “plateau” of adaptation at sufficiently late adult 

ages. 
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Numerical Simulations of the Evolution of Late-Life Mortality 

Now we will present some basic numerical results that quantitatively show the patterns that 

the Hamiltonian theory of age-specific selection can produce for age-specific survival. To develop 

these quantitative results, we have carried out extensive numerical simulations. But before presenting 

the results of these simulations, it is important to address the types of inferences that we believe are 

possible from this type of theoretical work. 

All computer simulations suffer from the problem that they can only produce a finite number 

of specific results. Given these results, it is generally hoped that through induction we can infer some 

general patterns that hold beyond the specific cases examined. The advantage of simulations is often 

that complicated problems that are not easily amenable to standard mathematical analysis can be 

examined without the need for making the many simplifying assumptions that such analysis requires, 

assumptions that are typically unrealistic and chosen strictly for their mathematical convenience. 

Mathematically tractable theory will often have limited generality, due to these simplifying 

assumptions. 

One standard pattern of mortality that characterizes many well studied organisms is a pattern 

of exponentially increasing mortality with age that is sometimes described by the Gompertz equation. 

In this chapter, we develop evolutionary outcomes in populations that are initially assumed to have a 

Gompertz mortality pattern. By allowing mutations with small effects to alter the basic mortality 

pattern we develop numerical examples that help reveal the stability over short-term evolution of the 

Gompertz mortality pattern. 

These simulations share in common many of the attributes of a modeling approach called 

“adaptive dynamics” (Waxman and Gavrilets 2005). We assume that a population is initially 
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monomorphic for a life history characterized by a survival (lx) schedule and a fertility (mx) schedule. A 

mutant with an altered survival schedule (𝑙𝑙𝑥𝑥� ) is then introduced into the population. The initial increase 

and ultimate fixation of this mutant is determined by comparing the fitness of the mutant (𝑟̃𝑟) to the 

fitness of the resident (r) genotype, where r is determined from Equation 3-2 and 𝑟̃𝑟 is determined from 

a similar equation with 𝑙𝑙𝑥𝑥�  substituted for lx. As discussed by Waxman and Gavrilets (2005), the 

conditions required for the initial increase of a mutant may not be the same as the conditions for 

fixation. For instance, this procedure ignores genetic complications like stable polymorphisms.  

Perhaps of greater concern is the manner in which new mutants are generated. There are three 

basic models of mutation used in many evolutionary models. (1) A continuum of possible phenotypes 

that are measured as departures from the resident phenotype, with larger departures being less likely 

(Crow and Kimura 1964). (2) The house of cards model in which the distribution of mutant effects is 

statistically independent of the resident phenotypes (Kingman 1978). (3) The regression model of 

mutation, which is intermediate between the house of cards model and the continuum model (Zeng 

and Cockerham 1993).  

The house of cards model is based on the logic that most mutations are deleterious and thus 

produce a phenotype unlike that of the resident. While this is generally a reasonable assumption, in 

these adaptive dynamic models widely deleterious mutants would be eliminated quickly, making them 

impediments to the simulation of adaptive evolution. The successful mutants that actually improve 

fitness are more likely to be only small changes from the resident phenotype. Accordingly, we have 

used the continuum of mutation model in these simulations.  

Generation of mutants. We assumed a fixed maximum lifespan of 109 days and a 9-day 

development time, giving 100 discrete adult age-classes and nine juvenile age-classes. [This is a dipteran 

kind of life-cycle; formally, it can be made into a human-scale life-cycle by converting all age-classes 
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and genetic effects into approximately one year time units, with the development period somewhat 

lengthened.] We considered a target period or window for mutational effects of fixed duration. Here 

we show simulations using a period of 10 age days. These periods correspond to the pleiotropic effects 

of these mutations. Many critiques of our original theory (Mueller and Rose 1996) have focused on 

the special case of mutants that affect only a single age-class and thus were lacking these pleiotropic 

effects (Pletcher and Curtsinger 1998; Wachter 1999). 

The ages at which these effects were imposed were chosen at random. Each mutation had a 

window of beneficial effects and a window of deleterious effects. The first day of action was chosen 

independently for the beneficial window and the deleterious window. Windows that would exceed the 

oldest age-class were truncated to have their last effect at adult age 100 days. For each age-class in the 

window of beneficial effects, the new probability (𝑃𝑃𝑥𝑥� ) of surviving from the current (x) to the next (x 

+ 1) age-class is given by, 

 

𝑃𝑃�𝑥𝑥 = 𝑃𝑃𝑥𝑥 + (1 − 𝑃𝑃𝑥𝑥) 𝛿𝛿
𝜔𝜔

,      (3-3) 

 

where δ is a constant (set to 0.1 in these simulations), ω is the number of days in the window (set to 

10 in these simulations), and Px is the age-specific survival of the current resident genotype. 

Deleterious effects were assumed to result in a new age-specific survival value, 

 

𝑃𝑃�𝑥𝑥 = 𝑃𝑃𝑥𝑥 �1 − 𝛿𝛿
𝜔𝜔
�.     (3-4) 

 

We initially chose 10,000 pairs of random days for the onset of the beneficial and deleterious 

days of each mutant. The order of the 10,000 pairs was then randomly shuffled into 100 different 
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vectors. Each vector constituted a different ordering of these mutations. To some extent, the outcome 

of evolution may be affected by the order that these mutants are introduced into the population. Thus, 

the results that we give here consist of 100 realizations of evolution from the same ancestral 

populations. We used these 100 realizations to construct 96% confidence intervals on the changes in 

age-specific mortality. Descriptions of additional properties of these simulations can be found in the 

Appendix for this chapter. This Appendix also reviews results from alternative models for generating 

mutants. These alternative models also yield plateaus according to our calculations, and thus we believe 

that the basic results in the next section are not artifacts of special assumptions made here. 

Relative roles of drift and selection. Our approach is to study the evolution of life histories 

in the vicinity of a reasonable starting life-history. However, there is some interest among theoreticians 

in understanding the long-term behavior of models, which is sometimes difficult to determine from 

computer simulations, because simulated dynamics can be too slow to provide an adequate guide to 

asymptotic behavior. Nevertheless, at the end of this chapter we give some examples with short life 

spans where in fact we can demonstrate that the populations have converged to a locally stable 

equilibrium. We do this by simply computing the fitness of all possible new mutants as evolution 

proceeds, such that when it is impossible to generate a mutant with greater fitness then the current 

resident genotype we consider the resident the equilibrium phenotype. 

While it seems reasonable to suppose that, if equilibria can be identified for short life cycles, 

they should also exist for longer life cycles. However, these equilibria will certainly take longer to reach 

in the latter case. Perhaps more importantly, we have found that, well before a selection equilibrium 

has been reached, the fitness advantages of new mutants become so small that their fate is primarily 

determined by drift even when such mutants have higher fitness than that of the current resident. [We 

provide more details on this phenomenon in the Appendix for this chapter.] As evolution proceeds, 

there are fewer mutants with positive fitness generated and more mutants with neutral fitness 
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generated. Since the fitness advantage of favored mutants is also becoming smaller as evolution 

proceeds, we see evolution dominated by drift with some type of drift-selection balance over very 

large time spans. The further characterization of this selection-drift balance awaits future research.  

Mortality evolution under different demographic selection. The outcome of repeated 

introductions of new mutants on the evolution of mortality from an initially Gompertz pattern is 

shown in Figure 3-2. Over evolutionary time, early mortality declines and late mortality increases, 

although the exponential pattern of mortality increase is lost at advanced ages and the simulated 

patterns resemble a plateau. This plateau sets in at ages just beyond the peak age of reproduction, 

which in this example is 30 days.  

 

Figure 3-2. The evolution of mortality over a period of 10,000 introduced mutants. The arrow shows the direction of 
change in the mortality curve from the initial Gompertz pattern to a pattern with a pronounced plateau. The numbers 1 
and 10 are next to curves that show the progress of evolution after 1,000 and 10,000 introduced mutants, respectively. 
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The dashed curve represents the age-specific fertility pattern, which is assumed constant during the course of this 
simulation. Fecundity is 1 at all adult ages except 21-30 where it is set to 100. 

 

The plotted lines in Figure 3-2 show the progression of mortality evolution averaged over the 

100 different mutant orders. The average final evolved state and a 96% confidence interval about it 

are shown in Figure 3-3. As one might expect, the confidence interval is rather narrow around the 

averages at early ages, but it gets larger at late ages. This reflects the weakening of natural selection at 

late ages and the increasing influence of random genetic drift. 

 

Figure 3-3. The average final mortality (circles) from the simulation shown in Figure 3-2 along with a 96% confidence 
interval (lines). 
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We kept track of the fitness of the resident population and show its change over time in Figure 

3-4. Over the evolutionary time period of these simulations, there is a nearly monotonic increase in 

fitness, with the largest changes happening during the first 2,000-3,000 mutant introductions. 

 

Figure 3-4. The average change in fitness (circles) for the simulation shown in Figure 3-2 along with a 96% confidence 
interval (lines). 

 

If the peak fecundity is moved to later ages, then the evolution of mortality should show a 

postponement of the age of the onset of the plateau. This simple prediction follows from the point 

that the delay in peak reproduction will make changes in survival relatively more important than they 
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are when reproduction peaks at very young ages. We explored this prediction by altering the conditions 

of the simulation in Figure 3-2. We kept everything the same, except the peak fertility, which was 

shifted from age 41-50 rather than 21-30. The results of this case of simulated evolution depicted in 

Figure 3-5 are similar to those seen in Figure 3-2, except that the plateau is delayed about 20 days – 

corresponding to the delay in peak reproduction. Thus our simple, if you will ‘intuitive,’ prediction is 

confirmed. 

 

Figure 3-5. The evolution of mortality over a period of 10,000 introduced mutants. The arrow shows the direction of 
change in the mortality curve from the initial Gompertz to a pattern with a pronounced plateau. The numbers 1 and 10 
are next to curves that show the progress of evolution after 1,000 and 10,000 introduced mutants, respectively. The 
dashed curve represents the age-specific fertility pattern, which is assumed constant. Fecundity is 1 at all ages except 41-
50 where it is set to 100. 
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Fecundity Evolution in Hamiltonian Theory  

The evolutionary theory of late life based on the force of natural selection can also be applied 

to the evolution of age-specific fecundity. Like mortality, the age-specific force of natural selection 

acting on fecundity, s´(x), has a scaling effect 

 

𝑠𝑠 ′(𝑥𝑥) = 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑥𝑥).      (3-5) 

 

All the variables in Equation 3-5 have the same definitions as those in Equation 3-1. The force 

of natural selection acting on fecundity declines with age if population growth is not negative 

(Hamilton 1966; Charlesworth 1980, 1994). The probability of survival to age x directly affects the 

force of natural selection on fecundity at that age. According to this theory, s´(x) will converge on zero 

after the last age of survival in the population’s evolutionary history. 

Hamilton’s forces of natural selection acting on mortality and fecundity are similar in their 

effects, and thus will shape both age-specific mortality and fecundity within populations in a 

comparable manner. Therefore, the evolutionary theory of late life also predicts that late-life fecundity 

will roughly plateau at ages greater than the age at which s´(x) declines to zero. 

We can again illustrate this evolutionary inference using numerical simulations based on 

conventional age-structured population genetics. Our computer simulations had populations evolving 

with recurrent mutations to explore how age-specific fecundity is molded by natural selection. We 

assumed that survival followed the Gompertz equation and that environmental variation affected 

female fecundity such that a female age-i would have fecundity equal to 𝐹𝐹𝑖𝑖 = 𝑓𝑓𝑖𝑖 + 𝑐𝑐𝑓𝑓𝑖𝑖𝑍𝑍 , where, 

𝑍𝑍~𝑁𝑁(0,1). In a constant environment, fitness in an age-structured population is found from the 

solution, r0, to the Lotka equation, 1 = ∑ 𝑒𝑒−𝑟𝑟0𝑖𝑖𝑙𝑙𝑖𝑖𝑓𝑓𝑖𝑖𝑑𝑑
𝑖𝑖=1 , where d is the total number of age-classes 
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(Charlesworth 1994). Fitness of new mutant genotypes in a variable environment were determined 

from a stochastic growth rate parameter, 𝑤𝑤 = 𝑟𝑟0 −
𝑐𝑐2

2𝑇𝑇02
, where T0 is the mean generation time 

(Tuljapurkar 1990, Eq. 15.2.1).  

Random genetic drift can affect the fate of weakly beneficial or deleterious mutants. We 

modeled this by using the fitness of the resident and novel mutant genotype to determine the 

probability of fixation from Ewens (1979, Eq. 3.28). A uniform random number was then chosen to 

simulate this fixation event. 

In these particular simulations, the mutant fecundity schedules all exhibit antagonistic 

pleiotropy. Thus, a mutant was assumed to produce a stretch of ten consecutive days of elevated 

fecundity and ten consecutive days of depressed fecundity, relative to the resident. The onset of 

elevated fecundity was chosen at random from the 100 possible age-classes, and similarly, but 

independently, for depressed fecundity. If the current resident’s fecundity at day-i was fi, then a 

mutant’s fecundity would be elevated to 𝑓𝑓𝑖𝑖 + (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑖𝑖)𝑈𝑈, where fmax is the maximum allowable 

fecundity set to 100 in these simulations, and U is a uniform random number between 0 and 1. 

Fecundity was depressed by 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑈𝑈. Each simulation run required the generation of 10,000 mutants. 

Their order was also shuffled, as was done previously with the mortality mutants. 

The average results of 100 simulations show that fecundity evolves to a maximum level at 

young ages (Figure 3-6), but then declines rapidly and reaches a more or less constant value at about 

age 25-30 and thereafter. Thus, the force of natural selection becomes so weak at later ages that these 

ages eventually evolve an absence of differences, making fecundity plateau. 
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Figure 3-6. The evolution of age-specific fecundity in populations exposed to 10,000 mutants with antagonistic effects 
on age-specific fecundity characters. Initial survival probabilities were obtained from the same Gompertz mortality 
function used in Figures 3-5 and 3-2. Initial fecundity was assumed to increase with age. Similar results are obtained if 
fecundity is simply constant with age. The arrows show the direction of change in the fecundity curve. The numbers 1 
and 10 are next to curves that show the progress of evolution after 1,000 and 10,000 introduced mutants, respectively. 

In Chapter 9, we discuss in more detail the catastrophic decline in fecundity that precedes 

death, which we call the ‘death spiral.’ The death spiral will obscure the type of pattern predicted in 

Figure 3-6. To illustrate this effect, we have simulated the death process in cohorts of 2,000 females 

and computed the age-specific fecundity when it is genetically determined by the final curve in Figure 

3-6. In addition, we have added the effects of a death spiral on to these mean values using parameter 

estimates for this phenomenon taken from our work with Drosophila (Mueller et al. 2007). The results 

of applying these modifications to the results of Figure 3-6, as shown in Figure 3-7, show that even 

though the underlying age-specific fecundity curve is flat in late-life, the overall pattern suggests a 
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continual decline with age due to the effects of an ever-increasing fraction of the population in the 

death spiral. 

 

Figure 3-7. The effects of the death spiral on female fecundity. The curve labeled “Genotype” is the final fecundity 
schedule reached in the simulation shown in Figure 3-6. One hundred cohorts of 2000 females were created. For each 
cohort the ages of death were simulated using the Gompertz survival schedule used in the simulation in Figure 3-6. The 
mean fecundity at each age for each cohort was computed using the “Genotype” fecundity curve shown above and the 
model of female fecundity developed in chapter 9. The slope of female fecundity in death spiral was set to -0.2, which 
similar to estimates for Drosophila estimated in Mueller et al. (2007). The “Genotype plus death spiral” curve is the mean 
of the 100 simulated cohorts that incorporated the death spiral. 

As with mortality evolution, we can also take the 100 different simulations and compute a 

mean age-specific fecundity at the end of the evolutionary cycle and a 96% confidence interval. Thus, 

while the small details vary with the order in which these mutants are introduced, the overall pattern 

of an early peak in fecundity and broad late-life plateau are always seen (Figure 3-8). The width of the 
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confidence interval increases substantially at ages where fecundity has leveled off, which is consistent 

with the declining strength of selection. 

 

Figure 3-8. The average final fecundity (circles) from the simulation in Figure 3-6 along with a 96% confidence interval 
(lines). 

 

Finally, we show the mean fitness trajectory over these simulations with a 96% confidence 

interval (Figure 3-9). The greatest fitness gains are made by the first 2000 introduced mutants. 
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Figure 3-9. The average change in fitness (circles) for the simulation of Figure 3-6 along with a 96% confidence interval 
(lines). 

 

Joint Evolution of Mortality and Fecundity  

It may be more realistic to let new mutants have effects on both survival and fecundity. We 

have followed the simulated evolution of both traits under a model of antagonistic pleiotropy. That 

is, each mutant had a beneficial effect on either mortality or fecundity and a deleterious effect on the 

alternative trait. Both fecundity and mortality respond as they had previously (Figure 3-10), as did the 

population mean fitness (Figure 3-11). 
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Figure 3-10. The evolution of age-specific fecundity and mortality in populations exposed to 10,000 mutants with 
antagonistic effects on fecundity and mortality. Initial survival was the same Gompertz mortality used in Figures 3-5 and 
3-2. Initial fecundity was assumed to increase with age as in Figure 3-6. Each line shows the progression of evolution 
after the introduction of 1000 mutants as in Figures 3-5 and 3-6. 
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Figure 3-11. The average change in fitness (circles) for the simulation in Figure 3-10 along with a 96% confidence 
interval (lines). 

Other Models of Late-Life Plateaus 

Over the past 15 years there have been a number of additional models proposed to explain 

the observations of late-life mortality plateaus. Some have supported our general proposition that 

natural selection is the primary force in this evolution (e.g. Charlesworth 2001). Many other theories 

are non-genetic, or in some cases suggest novel schemes for the evolution of late-life plateaus. We 

review many of these additional theories in the Appendix for this chapter. 

We do not regard the simple numerical examples that we have given here as the last word on 

the subject of the evolutionary theory of late life.  We expect our colleagues to produce a wide variety 
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of interesting theories for the evolution of late life, together with instantiating analytical or simulation 

models.  Indeed, we hope that they will do so. 

But the ultimate arbiter of the validity of mathematical theories in all fields of science is 

whether or not they are corroborated or refuted by well-designed experiments.  We are not naïve 

about the relationship between experiments and theory.  As experimentalists, we know that bad 

experimental design or execution can give results that may be incorrectly interpreted as supporting or 

falsifying particular theories.  But over the course of sustained and careful experimentation, particularly 

using powerful tools like experimental evolution (vid. Garland and Rose 2009), we believe that the 

relative value of biological theories can be evaluated empirically.  Thus, while a mathematical theory 

may be beautiful to contemplate, in the end its fate should depend more on a collection of ugly, but 

obdurate, experimental facts. 

Our chief point here is to show that simple population genetic models can generate plateaus 

in later adult life, plateaus in both age-specific mortality and age-specific fecundity.  Furthermore, we 

contend, these plateaus arise naturally from basic features of the sensitivity of natural selection to age-

specific genetic effects.  And the broad features of such sensitivity are captured reasonably well by 

Hamilton’s twin forces of natural selection. 

 

Conclusion: Hamilton’s Theory Predicts the Existence of Mortality and 

Fecundity Plateaus. 

Although Hamilton’s original insights were used to deduce a link between aging and natural 

selection, we have shown in this chapter that they also can be used to predict plateaued mortality and 

fecundity patterns during late life. At such advanced ages, selection may no longer distinguish between 

genetic effects among late ages and thus later life history can evolve toward plateaus with high 
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mortality rates and low fecundity at these later ages. This theory is amenable to experimentation. In 

particular it has the corollary that when the strength of age-specific selection is manipulated, the age 

at which plateaus are observed to start should evolve. We describe tests of this theory in the next 

chapter. 
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Chapter 4. Late-Life Mortality and Fecundity Plateaus Evolve  

 

In Drosophila laboratory evolution, mortality and fecundity plateaus evolve in the manner 

predicted by Hamiltonian theory. These ‘strong inference’ experiments provide corroboration for the 

Hamiltonian interpretation of late life. 

 

Experimental Evolution as a Technique for Testing Hamiltonian Aging 

Theory 

Experimental evolution is a powerful technique for testing evolutionary theories of all types 

(vid. Garland and Rose 2009). Indeed, one of its earlier and most successful applications was in tests 

of Hamilton’s original use of the forces of natural selection to explain the evolution of aging (Rose 

and Charlesworth 1980; Rose et al. 2007). Compared to the use of genetic variances and covariances, 

experimental evolution has been a consistently more reliable technique for the purpose of strong-

inference tests of Hamiltonian theory (Platt 1966; Rauser et al. 2009). Genetic variances and 

covariances among life-history characters are subject to tricky inbreeding and genotype-by-

environment interactions (Rose 1991). While it has been found that experimental evolution is also 

subject to these problems, it has been possible to sort these artifacts out with further experiments (e.g. 

Leroi et al. 1994a, b). Similar progress with experimental tests focused on variance components has 

proven considerably more difficult (vid. Shaw et al. 1999). 

The key experimental trick used to test the Hamiltonian explanation of aging is to postpone 

the first day of reproduction in outbred laboratory populations, and then to sustain that regime for 

multiple generations of experimental evolution. This is done by keeping adult flies alive for some time 
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before they are allowed to contribute offspring to the next generation. This can be achieved by 

discarding any eggs that they lay until they have reached the age allowed for reproduction, which can 

be as late as 10 weeks from emergence of the larva. Note that this procedure does not require that the 

fruit flies be kept virgin; mating can be allowed, just not successful reproduction. This regime is expected 

to lead to the evolution of relatively later aging. Wattiaux (1968) and Rose and Charlesworth (1980, 

1981) found evidence of enhanced later-age fertility and longevity in Drosophila populations cultured 

with later ages of first reproduction without replication of selected or control populations. 

Properly replicated experiments using this experimental approach were not performed until 

the 1980's, particularly by Rose (1984b) and Luckinbill et al. (1984). Rose (1984b) analyzed longevity 

and fecundity differences between three populations selected for earlier reproduction and three 

populations selected for increasingly later first ages of reproduction. These early and late reproducing 

populations were derived from the same outbred laboratory population of D. melanogaster, but had 

been separated and selected for their relative ages of reproduction for more than 15 generations at the 

time they were employed in the first assays. Significant differences were observed in longevity between 

the early and late reproducers, with the late reproducers having an increased mean longevity (Figure 

4-1). Luckinbill et al. (1984) found essentially the same results, further demonstrating that selection on 

first age of reproduction can alter longevity in ways consistent with the Hamiltonian explanation of 

the evolution of aging. Experiments using the method of delayed first reproduction are now routine, 

often using fruit fly species of the genus Drosophila, but sometimes other species are used (e.g. Nagai 

et al. 1995; Reed and Bryant 2000).  
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Figure 4-1. The number of adult females alive at each age for the three early-reproduced populations (dashed lines) and 
the three later-reproduced populations (solid lines). Later-reproduced populations demonstrated an increase in mean 
longevity (42.81 days) compared to the early-reproduced populations (33.28 days) after just 50 generations of selection 
for progressively postponed reproduction. [from Rose 1984b, page 1006, Fig. 1]. 

 

Experimental Strategy of Controlling the Last Age of Reproduction and 

Survival 

In Chapter 3, mortality-rate patterns were predicted to follow the pattern of the force of 

natural selection, and plateau sometime after the force of natural selection plateaus in late life (see 
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also Mueller and Rose 1996; Rose and Mueller 2000; Charlesworth 2001). The correspondence 

between the start of the plateau in the force of natural selection and the onset of mortality-rate 

plateaus is not expected to be exact, however, because beneficial gene effects that continue from 

early to late ages will sustain survival somewhat longer than the last age of reproduction in the 

evolutionary history of the population. Nevertheless, the age when mortality-rate acceleration 

stops, or slows, should evolve in accordance with large changes in the age at which the force of 

natural selection hits zero. Therefore, the mortality-rate pattern in late life is predicted to 

evolutionarily follow the pattern of prior selection on the population’s last age of reproduction. If 

experimental populations with abundant genetic variation, whose last age of reproduction has 

been controlled in a consistent manner for numerous generations, do not conform to this pattern, 

then the evolutionary theory for late-life mortality based on the force of natural selection would 

be falsified. We will now review experimental studies that were designed to test these predictions. 

All stocks used in the experiments to be discussed in this chapter were ultimately derived from 

a sample of the Amherst, Massachusetts, Ives population (e.g. Ives 1970) that was collected in 1975 

and cultured at moderate to large population sizes ever since. Individual populations have been 

subjected to a series of selection regimes, as indicated in Figure 4-2 (Rose 1984b; Chippindale et al. 

1994). Each of four distinct types of stocks differs in their age of last reproduction, and each stock in 

turn consists of five outbred replicate populations. What we mean by ‘age of last reproduction’ in 

these stocks is that individuals in these populations are allowed to freely mate and lay eggs at all days 

leading up to their last age of reproduction; however, the way in which these populations are cultured 

only allows eggs that are laid shortly before the last age of reproduction to contribute to the next 

generation. Therefore, the last age of reproduction marks end of a brief window of successful 

reproduction. The four stocks are B1-5, O1-5, CO1-5, and ACO1-5 (subscripts 1-5 indicate the 5 replicated 

populations within each stock). The ACO and B populations have an early age of last reproduction (9 
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and 14 days from egg, respectively), the CO populations have an intermediate last age of reproduction 

(28 days) and the O populations have a late last age of reproduction (70 days). These populations have 

each been maintained for more than 100 generations under their distinctive demographic regime at 

effective population sizes > 1,000, and they are known to be highly polymorphic genetically (Rose et 

al. 2004). Together, these populations define a spectrum of selection on the age of reproduction, and 

thus a spectrum of patterns for the age-specific force of natural selection. 

 

Figure 4-2. Selection histories of the experimental populations. The ancestral population was the IV population, sampled 
from nature in 1975, which was used as the ancestor of the five B and five O populations in 1980. In 1989, the five CO 
populations were derived from the five individual O populations, and the five ACO populations were in turn derived 
from each of the CO populations in 1991. 

 

Testing whether Mortality Plateaus Shift with the Last Age of Reproduction 

We tested the Hamiltonian mortality-plateau prediction that the onset of mortality plateaus 

should evolve in accordance with the last age of reproduction in the population’s evolutionary history, 

using the B, O, ACO and CO Drosophila populations described above (see Figure 4-2). Survivorship 



Mueller, Rauser & Rose      DOES AGING STOP? 

60 
 

assays employing these stocks already indicated that the last age of reproduction was positively 

correlated to life span. That is, the populations with the earliest last ages of reproduction (B and ACO 

populations) had shorter life spans compared to populations with later last ages of reproduction (CO 

and O populations) [data on the lifespans of these laboratory populations are compiled in Rose et al. 

(2002, 2004)]. However, these average life span patterns by themselves do not indicate the timing or 

nature of the mortality-rate plateaus of these populations. 

In order to determine whether the timing of mortality-rate plateaus evolves according to the 

last age of reproduction in a population’s evolutionary history, mortality-rate comparisons between 

populations that were evolutionary distinct with respect to their ages of last reproduction had to be 

done. Therefore, we performed two mortality-rate comparisons using the populations described above 

to provide independent tests of the evolutionary theory for late-life mortality plateaus. These were the 

comparisons of the B with the O populations and the ACO with the CO populations. Specifically, 

these comparisons allowed us to test the prediction concerning the effects of last age of reproduction 

on the start of mortality-rate plateaus.  

The B and O populations share a common ancestor, but have long had a 56-day difference in 

their last age of reproduction. That is, they had evolved separately for more than 17 years (450 B-

generations) at the time that we estimated the age-specific mortality rates presented here. The mortality 

data of the B and O populations were fit to two-stage Gompertz equations by maximum likelihood 

techniques, allowing, but not assuming, a late-life mortality rate plateau (see Estimation of Mortality 

Rate Plateaus in the Appendix). This model fitting was not performed in order to support the 

Gompertz model, but rather merely to infer mortality-rate patterns by an objective procedure. 

The ACO populations were derived directly from the CO populations, as shown in Figure 4-

2. The ACO populations had a last age of reproduction of 9 days, while the CO populations had a last 
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age of reproduction averaging about 28 days, in the period before the present experiments. These 

populations were compared using a paired-comparison test because each ACO population was derived 

from the CO population having the same numeric subscript. 

In these two large-scale and independent comparisons, we collected mortality data for each 

replicate population for both males and females starting at the ninth or tenth day of age from egg until 

all flies in the cohort had died (see Rose et al. 2002, for experimental details). We tried to avert 

problems in interpreting the mortality data by controlling for effects arising from varying density and 

small population sizes. For example, males and females were housed together, density was kept 

roughly constant throughout each assay (cf. Nusbaum et al. 1993; Carey et. al. 1993; Graves and 

Mueller 1993, 1995; Curtsinger 1995a, 1995b; Khazaeli et al. 1995, 1996), and high cohort sizes (at 

least 2000 individuals per replicate) were used to reduce sampling variance in our estimations of 

mortality rates (cf. Promislow et al. 1999; Pletcher 1999) (see Tables 4-1, 4-2 for sample sizes).  

Mortality data from the B - O and ACO - CO populations were fit to a two-stage Gompertz 

model using maximum likelihood techniques, as described in the Appendix. This model allows, but 

does not assume, a late-life mortality rate plateau, although we observed plateaus in mortality rates in 

all of our replicate populations at later ages. The importance of this two-stage model is that it allowed 

us to estimate the approximate age at which mortality rates started to plateau, or the ‘breakday’ 

between the two stages of the model, within each population. This in turn permitted us to test the 

Hamiltonian mortality-plateau prediction that the onset of mortality plateaus should evolve in 

accordance with the last age of reproduction in the population’s evolutionary history. 
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Mortality Plateaus Evolutionarily Shift with the Last Age of Reproduction 

These two independent comparisons between laboratory-evolved populations selected for 

different last ages of reproduction tested the predictions made by the Hamiltonian evolutionary theory 

for late-life mortality and our computer simulations described in Chapter 3. Specifically, we predicted 

that the five later-reproducing O populations would have a later onset of mortality-rate plateaus 

compared to the early-reproducing B populations. Similarly, in the pair-wise comparison between the 

CO and ACO populations, we predicted a later onset of mortality-rate plateaus in the five later-

reproducing CO’s compared to the five ACO’s. This is exactly what we found (see Figures 4-3, 4-4 

and Table 4-1). Our experimental predictions were confirmed and our results fully corroborated the 

Hamiltonian mortality-plateau prediction.  
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Figure 4-3. Two-day mortality rates for ten cohorts sampled from the B and O populations. B populations (early last 
reproduction) are shown as gray lines and O populations (late last reproduction) are shown as black lines. Occasional 
regions are missing because mortality rates of zero cannot be properly interpreted on a logarithmic scale. The ages at 
which late-life mortality plateaued in the O populations (male: 58.0; female: 68.4) were significantly greater than the age 
at which mortality plateaus in the B populations (male: 23.6; female: 24.0). a. Male mortality. b. Female mortality. 
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Figure 4-4. Two-day mortality rates for ten cohorts sampled from CO and ACO populations. In each case, ACO 
populations (selected for early-life fecundity) are shown by gray lines and CO populations (selected for mid-life 
fecundity) are shown by black lines. Occasional regions are missing because mortality rates of zero cannot be properly 
interpreted on a logarithmic scale, except for one case, which was a result of experimental error. Late-life mortality 
plateaued later in the CO populations (male: 58.6; female: 57.0) compared to the ACO populations (male: 42.6; female: 
40.6). The ACO-CO comparison is a completely independent test of Hamiltonian evolutionary theory from the B-O 
comparison in Figure 4-3. a. Male mortality. b. Female mortality. 
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Notably, both experiments described above could have refuted the evolutionary theory if there 

had been no difference between populations in the breakday of their mortality-rate plateaus, after long 

maintenance of very different terminal ages for reproduction, or if the difference between these 

breakdays had been in the opposite direction from the difference in the last day of reproduction.  

 

Table 4-1. Results from a test of the evolutionary theory for late-life mortality using comparison 
between the early reproducing B populations and the late reproducing O populations with respect to 
onset of mortality-rate plateaus; A and α are from the Gompertz equation. 
 Males Females 

 B O  B O  

Sample size 4,867 8,855  5143 10,037  

Breakday 23.6 58.0 *** 24.0 68.4 *** 

Plateau mortality rate 0.338 0.161 *** 0.240 0.195 *** 

A 0.00339 0.00124 * 0.00542 0.00307  

α 0.198 0.0711 *** 0.173 0.0577 *** 

Mean longevity 20.6 52.3 *** 20.8 48.2 *** 

* p<0.1; *** p<0.01 

Table 4-2. Results from an independent test of the evolutionary theory for late-life mortality using a 
comparison between the early reproducing ACO populations and the later reproducing CO 
populations with respect to onset of mortality-rate plateau. Because each ACO population derives 
from a single CO population, paired-difference t-tests were used to test for significant differences 
between characters.  
 Males Females 

 ACO CO  ACO CO  

Sample size 12,444 11,987  14,084 12,361  

Breakday 42.6 58.6 *** 40.6 57.0 *** 
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Plateau mortality rate 0.363 0.286 ** 0.520 0.330 *** 

A 0.00500 0.00156 *** 0.00710 0.00465 ** 

α 0.106 0.0813 *** 0.105 0.0644 *** 

Mean longevity 26.2 44.2 *** 23.5 37.2 *** 

** p<0.05; *** p<0.01 

 

Determining whether Fecundity Plateaus at Late Ages 

In Chapter 3, we discussed how the Hamiltonian theory based on the declining force of natural 

selection with age can just as easily be applied to fecundity as mortality. The greatest difference 

between these two characters is that the force of natural selection acting on fecundity should decline 

with age until the last age of survival in the environment in which a population has evolved, rather than 

the last age of reproduction which is the case with the evolution of mortality (Hamilton 1966). The 

force of natural selection acting on age-specific fecundity scales according to s'(x) = e-rx lx, where x is 

the age of a genetic effect on fecundity, r is the Malthusian parameter for the population, and lx is 

survivorship to age x (Figure 4-5). After the last age at which individuals survive in the population's 

evolutionary history (say d, which is not necessarily the last age of cohort survival under protected 

conditions) s'(x) converges on and remains at zero thereafter.  
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Figure 4-5. An example of the age-specific force of natural selection acting on fecundity. Even in organisms that 
reproduce indefinitely, the strength of selection may be so weak in late life that random genetic drift is the primary 
determinant of the frequency dynamics of alleles that differ only with respect to their effects sufficiently late in adult life. 

 

According to this evolutionary theory, the evolution of fecundity should echo its age-specific 

force of natural selection. That is, fecundity should decline in mid-life and plateau at very late ages, in 

a fashion analogous to mortality rates. However, as with mortality, it may not be possible to detect 

these plateaus in female fecundity unless very large cohorts are examined. If we examine age-specific 

fecundity in a variety of organisms, there are some general patterns that emerge (Figure 4-6). It is 

important to note here that when we are referring to fecundity, we are talking about the average age-

specific fecundity within a population, not individual female fecundity patterns.  As we will describe 
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in detail in Chapter 9, the relationship between the average fecundity and individual fecundity is greatly 

complicated by the effect of dying on each type of fecundity. 

 

Figure 4-6. Age-specific fecundity in U.S. females, the flowering plant, Phlox drummondi, the flatworm Dugesia 
lugubris, and the Mediterranean fruitfly Ceratitis capitata. 

 

Only the data from the flatworm, Dugesia lugubris, suggest a fecundity plateau in late life. 

However, all four species show an increase in fecundity following sexual maturity until it peaks 

sometime in early or mid-life, followed by a decline at later ages. Broadly speaking, we would suggest 

that many organisms show a unimodal age-specific fecundity curve that may either decline steadily to 

a low value or show some type of plateau at late ages, leaving aside seasonal reproduction patterns. 
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Our simulations (Chapter 3) of the evolution of fecundity support a general pattern of decline from a 

peak in early life to a plateau at later ages (Figure 4-7). 

 

Figure 4-7. The expected shape of age-specific fecundity within a population. The evolutionary model developed in 
Chapter 3 predicts the curve labeled “model prediction.” The general pattern from many organisms is labeled “empirical 
data.” The question as to whether data collected sufficiently late in adult life will exhibit a plateau pattern in late life is 
indicated by the question mark. 

 

To our knowledge, we were the first laboratory to empirically demonstrate that fecundity 

within a population peaks during mid-life and then declines to a low level and plateaus at late ages, as 

predicted by the fecundity model in Figure 4-7. We described in Chapter 2 our observations that 

fecundity indeed plateaus at late ages in several independent Drosophila populations (Rauser et al. 2003, 

2006). Although the late-life plateau in fecundity was not always distinct, we always observed a 

significant slowing in the decline in fecundity at late ages and used a variety of different statistical tests 

to determine whether fecundity at late ages was significantly different from zero (see Rauser et al. 

2003, 2006). It is likely that previous experimental examinations of population fecundity did not reveal 

plateaus in fecundity at late ages because of small starting sample sizes. Our experiments consistently 

employed thousands of flies per cohort. 
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Testing whether Fecundity Plateaus Evolutionarily Shift with the Last Age of 

Survival 

Analogously to the experimental tests of the Hamiltonian theory that we performed with 

regards to mortality described above, we tested the Hamiltonian fecundity-plateau prediction that the 

onset of fecundity plateaus in a population should evolve in accordance with the last age of survival 

in the population’s evolutionary history. This prediction was tested in the ACO and CO Drosophila 

populations described above (see Figure 4-2), which are evolutionary distinct with respect to their last 

ages of survival.  

The difference in age of reproduction between the ACO and CO populations resulted in late-

life mortality-rate plateaus that started at a significantly greater age in the CO populations, relative to 

the ACO populations (Rose et al. 2002), as was predicted by the Hamiltonian theory. The difference 

in the age of reproduction between these populations is positively correlated with the age of last 

survival because of the way these populations are maintained and cultured. That is, once these 

populations have been allowed their successful day of reproduction (age 9 days in the ACO and 28 

days in the CO populations), they are discarded, which hence also defines their last age of survival. 

Therefore, this difference in age of reproduction corresponds to the ages at which the force of natural 

selection acting on fecundity declines to zero and plateaus earlier in the ACO populations, relative to 

the CO populations. Together, these 10 populations provide a platform with which to test the 

evolutionary theory of late-life, based on the force of natural selection, as it applies to fecundity. 

During the pairwise comparisons between each replicate ACO population and the 

corresponding CO population, four adult females were housed with four adult males in vials 

containing enough yeast so that mating and nutrition were not limiting factors for fecundity. Flies 

were also recombined between vials as flies died to forestall any age-specific density effects. The 
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fecundity within these cohorts was determined daily until all flies had died. All assays started with 

3,200 females per replicate population, and as many males (see Rauser et al. 2006 for experimental 

details).  

Fecundity data from each of the five ACO and five CO populations in the pairwise 

comparison were independently fit to a two-stage linear model, analogous to the two-stage model fit 

to our mortality data and described in detail in the appendix, to test whether fecundity plateaus evolve 

according to Hamiltonian evolutionary theory. Specifically, the age of onset of the late-life fecundity 

plateau for a population, or the breakday, was estimated from the two-stage model and then used to 

test whether late-life fecundity plateaus evolve according to the age at which the force of natural 

selection acting on fecundity plateaus. 

Population estimates of age-specific fecundity are complicated by the existence of flies that 

are about to die and those that are not. We have shown that females about to die show a rapid decline 

in fecundity no matter how old they are (Rauser et al. 2005b; Mueller et al. 2007). Nevertheless, the 

techniques used here can still reliably infer the onset of the fecundity plateau (see Mueller et al. 2007 

for more details; also further discussions below, particularly in Chapter 9). 

 

Fecundity Plateaus Evolutionarily Shift with the Last Age of Survival 

This pairwise comparison between laboratory-evolved populations selected for different last 

ages of reproduction, and consequently different last ages of survival, tested the predictions made by 

the Hamiltonian evolutionary theory for late-life fecundity. We specifically predicted that the later-

reproducing CO populations would have a later onset of fecundity-rate plateaus compared to the 

early-reproducing ACO populations. This is exactly what we observed (see Figure 4-8 and Table 4-3). 

We found an average pairwise difference in the onset of the late-life fecundity plateaus of 13.80 days 
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between the two selection regimes (Figure 4-9 and Table 4-4). As with mortality, our results for 

fecundity fully corroborated the Hamiltonian late-life prediction. The plateaus in fecundity evolved 

according to the age at which the force of natural selection acting on fecundity declined to zero. 
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Figure 4-8. Mean mid- and late-life fecundity as a function of age for each of the ACO1-5 (early reproducing) and CO1-
5 (late reproducing) populations. Fecundity was measured during the ACOi and COi pairwise comparisons. A two-stage 
linear model was fit to each population independently (see appendix for details). For all 10 populations, plateau height 
was significantly greater than zero. Late-life fecundity plateaued later in the CO populations (49.86 days) compared to 
the ACO populations (36.06 days) as predicted by Hamiltonian theory (p < 0.0001). The arrows indicate the start of the 
fecundity plateau. 
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Table 4-3. Parameter estimates from the two-stage linear model fitted to mid- and late-life fecundity 
data from the early-reproducing ACO populations and the later-reproducing CO populations. The 
height of the fecundity plateau was computed from eq. (A4-2) and the estimated height was 
significantly different from zero (p < 0.05 for each population). 
 

Population 1st-stage 

y-int (c1) 

1st-stage 

slope (c2) 

Breakday 

(fbd) 

Plateau height  

(eggs/female/day) 

ACO1 48.11 -1.49 30.52 2.50 

ACO2 30.61 -0.75 39.44 1.22 

ACO3 22.97 -0.69 31.62 1.21 

ACO4 67.44 -1.66 38.24 3.98 

ACO5 63.99 -1.61 38.44 2.16 

CO1 40.54 -0.80 48.55 1.80 

CO2 137.41 -3.26 40.67 4.86 

CO3 55.74 -0.90 60.43 1.32 

CO4 121.26 -2.51 46.30 5.27 

CO5 101.66 -1.89 51.66 3.81 

Parameter estimates for c1, c2, & fbd were all significantly different from zero; p < 0.001. 
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Figure 4-9. Late-life fecundity plateau age of onset (breakday) for all five pair-wise comparisons of CO and ACO 
populations. The fecundity plateau started significantly later in the later-reproducing CO populations compared to the 
early-reproducing ACO populations (p < 0.0001). The break day and 95% confidence intervals were estimated for each 
population from the two-stage linear model using a non-linear least squares regression function. 

 
Table 4-4. Results from the test comparing the fecundity-model parameters of the early-reproducing 
ACO populations and the later-reproducing CO populations. Plateau height was computed from Eq. 
(A4-2). The x,y-values used in the regression were from 100 vials (400 females) randomly sampled 
daily from an initial population size of 4,000 vials (16,000 females).  
 

 Population  

 ACO CO  

Sample size (x,y-values) 6,540 12,873  

1st-stage y-int  43.58  88.31 * 

1st-stage slope  -1.14  -1.80  
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Fecundity break day  36.06  49.86 *** 

Plateau height 

(eggs/female/day) 

 2.21 3.41  

*** p < 0.0001; * p < 0.05 

 

The pairwise comparison between the two replicated sets of populations long having different 

last ages of survival in their evolutionary histories would not have supported the evolutionary theory 

for late life as described by Hamilton if there had been no difference between the populations in the 

onset of their fecundity plateaus (breakday). Furthermore, the theory would not have been supported 

if the onset of these fecundity plateaus had been in the opposite direction from the difference in the 

last age of survival in their respective evolutionary histories. However, that was not the case.  

Most evolutionary theories suggest a rapid rise in age-specific fecundity at early ages 

followed by a long decline after some peak value. Our interpretation of the evolutionary theory of 

late life, based on the decline in the force of natural selection, was that population fecundity will 

plateau at very late ages, like age-specific mortality rates (Rauser et al. 2003). We made this 

prediction because the force of natural selection acting on age-specific fecundity asymptotically 

falls to such a low level that it can no longer distinguish fitness differences in fecundity at different 

ages. Our experimental work supports this interpretation. We found that the decline in fecundity 

greatly slows, or plateaus, in 10 independent populations at some number of eggs laid per day 

greater than zero. Furthermore, we found that fecundity plateaus evolve according to the age of 

last survival in these populations’ evolutionary histories. These results corroborate the basic 

evolutionary theory of late life and its prediction that fecundity, just like mortality rates, should 

plateau sometime after the age-specific force of natural selection acting on fecundity itself plateaus.  
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Experimental Evolution Supports the Hamiltonian Theory of Late Life 

Over the past decades our laboratory has tested the predictions of Hamilton’s evolutionary 

theory based on the age-specific decline in the forces of natural selection with respect to both mortality 

and fecundity using experimental evolution techniques in numerous Drosophila cohorts. Hamilton’s 

classic theory (1966) predicts that the force of natural selection acting on these characters should 

decline to zero at late ages, or to levels so insignificant that age-specific natural selection is essentially 

nonexistent at such late ages. The timing in the decline in the force of natural selection to zero is 

dependent on the last age of reproduction and survival in the population’s evolutionary history for 

mortality and fecundity, respectively. 

Therefore, by employing populations of flies that have long undergone selection for specific 

and different ages of last reproduction and survival, we were able to test the specific predictions of 

the Hamiltonian theory that apply to late life. For our experiments, our numerical calculations led us 

to the hypothesis that the onset of mortality rate plateaus at late ages should evolve, or shift, in 

accordance with the last age of reproduction in that population’s evolutionary history. Similarly, the 

onset of fecundity plateaus at late ages should evolve according to the last age of survival in that 

population’s evolutionary history. This is precisely what we observed. In sum, all of our experiments 

have corroborated Hamiltonian theory, as we have observed the evolution of both mortality rate 

plateaus and fecundity plateaus at late ages as predicted by that theory. Next, we turn to the genetic 

mechanisms that might underlie these experimental evolutionary results. 
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Chapter 5. Genetics of  Late Life involve Antagonistic Pleiotropy 

 

Reverse evolution experiments implicate antagonistic pleiotropy in the evolution of both 

mortality and fecundity during late life. Hybridization experiments do not implicate mutation 

accumulation in the evolution of late life, but do not necessarily preclude its involvement. 

 

Population Genetics of Aging and Late Life 

The population genetics of aging without regard to late life have been theoretically developed 

and empirically tested, starting around the midpoint of the 20th century. There are two main population 

genetic mechanisms that can explain aging: mutation accumulation and antagonistic pleiotropy (see 

Rose 1991). These two mechanisms can function separately or in concert, which means that they are 

not mutually exclusive. Furthermore, these same population genetic mechanisms can explain plateaus 

in age-specific mortality rates and the evolution of late life in general (Mueller and Rose 1996; 

Charlesworth 2001).  

The ways in which mutation accumulation and antagonistic pleiotropy function in the 

evolution of aging and late life, and how these mechanisms can be empirically tested, will be described 

in turn. Mutation accumulation affects the evolution of aging and late life when alleles that are 

deleterious at later ages, but neutral at all earlier ages, accumulate by mutation pressure and genetic 

drift (Medawar 1952; Rose 1991; Charlesworth 1994, 2001). Such mutations are expected to be unique 

to each evolving population. They are also expected to be somewhat recessive on average, since that 

is usually the heterozygous effect of deleterious mutations (Simmons et al. 1978). Despite their 

deleterious effects, these mutations are able to persist in populations because they only increase 

mortality rates later in life, when the force of natural selection is relatively weak. These features of 



Mueller, Rauser & Rose      DOES AGING STOP? 

79 
 

mutation accumulation are expected to produce hybrid vigor in experimental crosses of populations 

subject to mutation accumulation. However, it is important to note that not all alleles are expected to 

foster hybrid vigor with mutation accumulation, and mutation accumulation is not the only possible 

cause of hybrid vigor (Charlesworth and Hughes 1996). Nevertheless, the demonstration of hybrid 

vigor in crosses between populations influenced by mutation accumulation provides at least indirect 

support for the hypothesis of mutation accumulation as a genetic mechanism in the evolution aging 

and late life, as argued by Mueller (1987) and Rose et al. (2002).  

Another genetic mechanism that may explain the evolution of aging and late life is antagonistic 

pleiotropy, specifically when alleles that are beneficial early in life are deleterious later in life (Williams 

1957; Rose 1985; Charlesworth 1994). With mortality, for example, alleles that are deleterious and 

cause increased mortality rates late in life can persist within a population because these same alleles 

enhance another fitness-related trait, such as reproduction, earlier in life when the force of natural 

selection is much stronger. For life-history evolution, this genetic mechanism can be experimentally 

distinguished from mutation accumulation and genetic drift by subjecting long-established late-

reproducing populations to an evolutionary reversion to much earlier ages of reproduction, an 

experimental protocol that has been of value in the study of the evolution of aging (e.g. Service et al. 

1988). So long as this reverse selection (cf. Teotónio and Rose 2001) is imposed on large populations 

for a small number of generations, there is too little evolutionary time for mutation accumulation or 

genetic drift to act significantly. For mortality, switching to a selection regime with an earlier last age 

of reproduction for a short amount of time should lead to an earlier onset age for late-life mortality 

rate plateaus, if this genetic mechanism is active in the evolution of late life. This experimental design 

tests whether antagonistic pleiotropy is operating in the evolution of late life because selection for 

early reproduction will increase the frequency of alleles enhancing early-fitness characters, and those 

alleles with antagonistic pleiotropy between early and late ages will in turn increase mortality rates 
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before the start of the plateau, causing an earlier plateau onset. Therefore, if a shift in the age of onset 

of mortality plateaus to earlier ages is observable in the populations reverted to earlier ages of 

reproduction for a small number of generations, then antagonistic pleiotropy can be inferred as a 

genetic mechanism underlying late-life mortality patterns.  

 

Populations Employed in Our Tests of Genetic Mechanisms 

The stocks used in the experimental tests of the population genetics of late life described in 

this chapter were ultimately derived from a sample of the Amherst, Massachusetts, Ives population 

(e.g. Ives 1970) described in Chapter 4 (see Figure 4-2 and Figure 5-1). Recall that each of the stocks 

differs in their age of last reproduction, which is controlled in the laboratory by the way in which the 

stocks are cultured. Furthermore, each of these stocks in turn consists of five outbred replicate 

populations (Rose 1984b; Chippindale et al. 1994). The four stocks described before are the B1-5, O1-

5, CO1-5, and ACO1-5. The ACO and B populations have an early age of last reproduction (9 and 14 

days from egg, respectively), the CO populations have an intermediate last age of reproduction (28 

days), while the O populations have a late last age of reproduction (70 days). These populations had 

been maintained for more than 100 generations at population sizes > 1,000 at the time of the 

experiments described here. Together, these populations define a spectrum of selection on the age of 

reproduction, and thus a spectrum of patterns for the age-specific force of natural selection acting on 

mortality. As described in Chapter 4, the timing of the onset of mortality-rate plateaus in these 

populations positively corresponds with the last age of reproduction in the evolutionary history of the 

populations. That is, late-age plateaus in mortality occurred earliest in the ACO populations, followed 

by the B, CO and O populations. For testing the population genetic theories of aging and late life, the 

B populations were employed in an experiment to test whether mutation accumulation contributes to 
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the evolution of late-life mortality rate plateaus, and the O and CO populations were used to test the 

theory of antagonistic pleiotropy in the evolution of late-life mortality and late-life fecundity, 

respectively. 

To properly test the role of antagonistic pleiotropy in the evolution of aging and late life, new 

stocks were created that originated from the O and CO stocks. To specifically test whether 

antagonistic pleiotropy influences the evolution of late-life mortality, the O populations were reverted 

to an earlier last age of reproduction (14 days) for only 24 generations prior to the experimental assays. 

This new stock was named NRO1-5 and each of the five NRO populations was derived from its 

respective O population (Figure 5-1). The NRO culture procedure was like that of the O populations, 

except that flies were placed in cages at about 10 days from egg, followed by egg collection at 14 days, 

after feeding with yeast.  

In order to test whether antagonistic pleiotropy contributes to the evolution of late-life 

fecundity, four NRCO populations were derived from their corresponding CO populations and 

subjected to selection for earlier reproduction using procedures similar to those routinely used with 

the ACO populations (see Figure 5-1). This reverse selection was only imposed for 24 generations, as 

with the NRO populations described above, after which time the experimental assays were performed. 
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Figure 5-1. Selection histories of the reverse-selected populations. The five NRO populations were derived from the 
individual O populations in 1998 and four NRCO populations were derived from the corresponding CO populations in 
2003 to test whether the population genetic mechanism antagonistic pleiotropy operates in the evolution of late life. 

 

Testing whether Mutation Accumulation Acts as a Genetic Mechanism in the 

Evolution of Late-Life Mortality 

In order to test whether late-life mortality does indeed reproducibly undergo some type of 

mutation accumulation, we generated 25 distinct outbred populations of Drosophila melanogaster by 

making all possible crosses of the five B populations, described in Chapter 4 (see Figure 4-2 and Figure 

5-1). These populations were derived from a common ancestral population in February 1980, and 

since then have been kept on a two-week culture regime with population sizes of approximately 1,000 

individuals (Rose 1984b; Leroi et al. 1994a). Therefore, at the time the experiments described here 

were performed, about 18 years, or 465 generations, had elapsed since their founding. It is unlikely 
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that a substantial number of new mutations affecting survival have arisen in these replicate B 

populations since their founding. Rather, it is more likely that each B population started with a large 

number of rare alleles that were deleterious in their effects on late-life survival while in nature, but 

were subsequently made neutral by laboratory culture. A fraction of these neutral alleles are expected 

to increase in frequency by random genetic drift. Furthermore, molecular studies of the five 

independent B populations have shown that they are genetically differentiated (Fleming et al. 1993). 

The way in which the B populations are cultured actually creates conditions for mutation 

accumulation. Such an accumulation of mutations, however, depends on several factors, such as (i) 

the elimination of selection in late life, (ii) a finite population size, and (iii) the existence of late acting 

deleterious alleles for the life history characters we examine. The first two factors are part of the 

experimental design developed to culture these populations in the laboratory, while the third factor 

constitutes the biological hypothesis of mutation accumulation. The dynamic aspects of the process 

of mutation accumulation in the B-populations are shown in Figure 5-2. This process presumes that 

multiple loci affect the trait of interest. It further assumes that some existing deleterious alleles will 

rise to high frequency in each population and others will not. Furthermore, the particular alleles that 

rise to high frequency in one population are different then those alleles that rise to high frequency in 

the other populations.  



Mueller, Rauser & Rose      DOES AGING STOP? 

84 
 

 

Figure 5-2. Alleles in the five independent B populations undergo independent rounds of genetic drift that can ultimately 
result in different sets of initially rare deleterious alleles rising to high frequency. When the different lines are crossed, the 
resulting hybrids are expected to be heterozygous and hence show improved late life characters. 

 

We assume that most deleterious alleles that rise to high frequency by drift will be recessive or 

partially recessive. This conclusion follows from the simple population genetic considerations that 

suggest that in the ancestral population recessive deleterious alleles will be at a much higher 

equilibrium frequency than dominant alleles. Consequently, in the simplest case, which involves 

fixation of the deleterious alleles, the parental populations would show a depression in the same late-

life characters that would be elevated in the F1 hybrids created from crosses between any of the 

independent B populations (Figure 5-2). If on the other hand, fitness-characters early and late in life 
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are determined wholly by alleles with antagonistic effects, there should be little difference between the 

hybrids and parental populations for their late-life fitness characters when simultaneously compared. 

However, it is important to note that there is nothing about the design of this experiment that 

guarantees or assumes that these deleterious alleles would be fixed after only 465 generations of drift. 

This is because for neutral alleles at an initial frequency of p, and with an effective population size of 

N, it will take on average –4N(1-p)ln(1-p)/p generations to fix the allele (assuming it is fixed, which 

will occur with probability p, Ewens 1979, pg. 77). Therefore, in the B populations where Ne ≅ 1000, 

and assuming that p = 0.05, the average time to fixation would be 3,898 generations.  

While 465 generations is not a sufficient amount of time for most initially rare neutral alleles 

to be fixed, there may be some that have risen to sufficiently high frequencies that late-life characters 

would be depressed. For instance, using the stationary distribution of neutral alleles we can calculate 

the chance of finding neutral alleles in certain frequency ranges (Crow and Kimura 1970, pg. 383). In 

the B populations 4-9% of the neutral alleles are expected to be at a frequency of 0.4, or greater 

(assuming Ne=1000, and the initial frequencies are between 0.01 and 0.1). At final frequencies above 

0.4, there would be sufficient numbers of homozygotes with deleterious effects at late ages, yet still 

neutral under B conditions, to reduce late-life fitness-characters.  

As a test of mutation accumulation underlying late-life mortality plateaus, we estimated the 

amount of hybrid vigor between the genetically divergent B laboratory selection lines. That is, every 

pair-wise combination of the cross Bi × Bj (both i and j varying from 1 to 5) was performed, which 

resulted in 25 total crosses that included five parental (non-hybrid) and 20 hybrid fly cultures. The 

progeny from these crosses were assayed for mortality (for experimental details see Rose et al. 2002), 

similar to the mortality assays described in Chapter 4. Over 800 males and an equal number of females 

were assayed from each of the 25 resulting fly cultures, and mortality-rate estimations were done in 
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the same manner for both the hybrid and non-hybrid populations. Due to missing observations when 

collecting survival data, only 14 of the 20 hybrid crosses produced were included in the final analysis. 

We found that the late-life mortality of the hybrids created from crosses between the five B 

populations exhibited no detectable difference, or superiority, to the uncrossed cohorts sampled from 

the parental B populations for (i) overall longevity (Figure 5-3), (ii) onset of mortality-rate plateaus at 

late ages (Figure 5-4), or (iii) mean estimated mortality rate on the plateau (males: t-test, p = 0.14; 

females: t-test, p = 0.46). While this empirical test did not support mutation accumulation as a genetic 

mechanism contributing to the evolution of late-life mortality rate plateaus, it was not necessarily 

refuted, because different patterns of dominance among alleles with effects specific to late life could 

eliminate hybrid vigor (cf. Charlesworth and Hughes 1996). In any case, the absence of hybrid vigor 

is interesting in itself, because it suggests an absence of inbreeding depression in these populations. 
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Figure 5-3. Mean longevity of male and female B flies derived from 14 hybrid and five non-hybrid crosses of the B 
populations. 
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Figure 5-4. Test for hybrid vigor between the B populations. This figure shows the mean estimated mortality-rate plateau 
breakday for males and females from the nonhybrid (parental) and hybrid crosses, or the day on which a slope of zero 
better describes the mortality rate data than a nonzero slope. There was no significant difference between the breakdays 
of the hybridized and non-hybridized B cohorts (males: t-test, p = 0.67; females: t-test, p = 0.46). Error bars are standard 
errors. 

 

While these five B populations experienced independent evolution for 18 years before this 

experiment was performed, their demographic selection regimes were identical. Our expectation was 

that, while the B populations evolved under the aegis of the same demographic selection, mutation 

accumulation might have produced enough divergence among the five populations to give hybrid 

vigor upon crossing. However, this is not what we found. 
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Results from Testing whether Antagonistic Pleiotropy Acts as a Genetic 

Mechanism in the Evolution of Late-Life Mortality by Reverse Evolution 

To test antagonistic pleiotropy as a genetic mechanism involved in late-life mortality, we 

derived the five NRO populations from the corresponding O populations by reverse evolution and 

cultured them with an age of reproduction of 14 days from egg. The NRO populations were subjected 

to selection for early reproduction for only 24 generations after derivation from the O populations 

(see Figure 5-1) prior to their employment in the experimental assays described here. As we explained 

before, 24 generations is not enough time for either mutation accumulation or genetic drift to have a 

significant effect within populations of this size. After the 24 generations of selection for an earlier 

last age of reproduction, the five NRO populations were then compared to the five corresponding O 

populations from which they were derived with regards to the onset of late life. Evolutionary theory 

predicts that the NRO populations would eventually evolve an earlier plateau in mortality rates when 

compared to the O’s. However, this pattern would only be observable after so few generations of 

reverse selection if antagonistic pleiotropy is operating as a genetic mechanism underlying the 

evolution of late life. 

When the NRO populations were compared to their corresponding O populations using the 

same mortality assays that we previously described (Chapter 4 and Rose et al. 2002), we found 

significant evidence of a rapid response to selection in the NRO populations with regards to the onset 

of mortality-rate plateaus, or the breakday (Table 5-1). In fact, the breakdays’ response to selection 

was remarkably rapid and highly significant in males, demonstrating a net response of more than 20 

days in only 24 generations. Furthermore, the female response to selection for the start of the 

mortality-rate plateau was nearly significant and showed a net response of 13 days in the predicted 



Mueller, Rauser & Rose      DOES AGING STOP? 

90 
 

direction. Together these results are consistent with an evolutionary model in which the last age of 

reproduction and the evolution of mortality-rate plateaus are positively related (Figure 5-1). The highly 

significant male result with respect to the breakday after such a small number of generations of reverse 

selection is sufficient to support antagonistic pleiotropy as a genetic mechanism involved in the 

evolution of late-life mortality, as drift is unlikely to contribute a significant effect in populations of 

this size in such a short amount of evolutionary time.  

Table 5-1. Results from a test for response to a brief period of reverse selection in the NRO 
populations. Because each NRO population derives from a single O population, paired-difference t-
tests were used to test for significant average differences between the O and NRO groups. 
 Males Females 

 O NRO  O NRO  

Sample size 7,343 9,072  12,784 13,445  

Breakday 68.6 48.2 ** 67.8 54.6 † 

Plateau 

mortality rate 

0.28 0.22  0.24 0.26  

 A 0.0015 0.0021  0.0019 0.0033 * 

 α 0.062 0.081 * 0.063 0.076  

Longevity 53.3 41.8 ** 50.4 39.2 ** 

** p < 0.01; * p < 0.05; † p < 0.1 

 

Determining whether Antagonistic Pleiotropy Acts as a Genetic Mechanisms 

in the Evolution of Late-Life Fecundity 

Because the start of late-life fecundity plateaus depends on the timing in the drop in fecundity’s 

force of natural selection, specifically the last age of survival in the population’s evolutionary history, 
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we predicted that switching to a selection regime with an earlier last age of reproduction should lead 

to an earlier age for the onset of fecundity plateaus if antagonistic pleiotropy is a genetic mechanism 

underlying late-life fecundity patterns. This experimental design is analogous to the experiment that 

we performed to test whether antagonistic pleiotropy operates as a genetic mechanism in the evolution 

of late-life mortality rate plateaus. As with the mortality experiment, we subjected later-reproducing 

populations, specifically the CO populations described in Chapter 4 and above (see Figure 5-1), to an 

evolutionary reversion to earlier ages of reproduction (cf. Rose et al. 2002; Rose et al. 2004), and 

consequently, earlier ages of last survival. These newly derived populations were named NRCO, and 

each of these populations was derived from the corresponding CO population.  

After the new selection regime had been imposed on the NRCO populations for only 24 

generations, we compared the fecundity patterns of each of the new early-reproducing populations to 

its parental later-reproducing CO population to see whether the NRCO populations also had an earlier 

age of fecundity plateau onset (see Rauser et al. 2006 for experimental details). This selection regime 

not only selected for early reproduction in the NRCO populations, but also for accelerated 

development and an earlier last age of survival. As before, antagonistic pleiotropy is distinguished 

from other population genetic effects in this assay by implementing this specific experimental design, 

which allows for too little evolutionary time for mutation accumulation or drift to have a significant 

effect within the population sizes we employ. 

Evolutionary theory predicts that the NRCO populations will evolve an earlier age of onset 

for the plateau in fecundity, compared to the CO populations, if antagonistic pleiotropy is a genetic 

mechanism shaping late-life fecundity patterns. Because antagonistic pleiotropy does not simply 

depend on early fecundity, selection for multiple early fitness characters [e.g. early reproduction or 

accelerated development] in the NRCO populations encompasses all types of antagonistic pleiotropy. 

Therefore, a shift in late age fecundity in response to this selection will implicate antagonistic 
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pleiotropy as a genetic mechanism shaping late-life fecundity patterns, regardless of which particular 

early-life fitness components are involved. Our pairwise comparisons of the late-life fecundity plateau 

patterns between the NRCO and CO populations corroborated this theory (statistical analyses were 

performed as described in the Appendix). Figure 5-5 depicts the average population fecundity for the 

four pairwise comparisons between these populations, along with the estimated ages of each breakday, 

or start of the late-life fecundity plateau.  

 

Figure 5-5. The mean age-specific fecundity for four NRCO populations and each of the CO populations from which 
they were derived. The arrows pointing down indicate the estimated breakday for the CO populations, while the arrows 
pointing up indicate the breakday for the NRCO populations. In each case the breakday occurs at a younger age in the 
earlier-reproducing NRCO population than its paired later-reproducing CO population (mean breakday = 49.59 days in 
the NRCO populations and 56.16 days in the CO populations). 
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The breakday, estimated from the two-stage model described in the appendix of Chapter 4, 

was significantly earlier in the earlier-reproducing NRCO populations compared to the later-

reproducing CO populations (Table 5-2). This result suggests that late-life fecundity plateaus rapidly 

respond to selection, and that antagonistic pleiotropy connects late-life fecundity to early-life fitness 

characters, resulting in the evolution of an average pair-wise difference of 6.57 days in only 24 

generations.  

Table 5-2. Results from the test of antagonistic pleiotropy demonstrate that the onset of the late-life 
fecundity plateau starts significantly earlier in the NRCO populations, selected for earlier reproduction 
for just 24 generations, compared to the CO populations. Plateau height was computed from Equation 
A4-2. The regression coefficients (see Equation A4-1) were estimated from the age-specific fecundity 
observed in 100 vials (400 females) randomly sampled daily from an initial population size of 3,200 
vials (12,800 females). 

 Population  

 NRCO CO  

Sample size 9,750 13,587  

1st-stage y-int (c1) 71.24 84.80  

1st-stage slope (c2) -1.36 -1.44   

Breakday (fbd) 49.59 56.16 *** 

Plateau height (ϕ4) 

(eggs/female/day) 

3.97  3.94  

*** p < 0.0001 

 

Although our experimental results implicate antagonistic pleiotropy in the evolution of late 

life, it is important to note that the two genetic mechanisms of antagonistic pleiotropy and mutation 

accumulation are not mutually exclusive and that a positive result for antagonistic pleiotropy does not 

necessarily mean that mutation accumulation is not involved in the evolution of late life. 
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Antagonistic Pleiotropy is Implicated as a Genetic Mechanism in the 

Evolution of Late Life 

With antagonistic pleiotropy between early and late ages, some of the alleles that enhance early 

reproduction will depress later survival or fecundity (Williams 1957, 1966; Rose 1985; Charlesworth 

1994). Furthermore, late-acting deleterious genes that cause reproductive senescence late in life can 

persist in a population because these same genes enhance reproduction, or other fitness characters, at 

earlier ages when the force of natural selection is much stronger.  

We specifically tested antagonistic pleiotropy as a genetic mechanism affecting late-life 

mortality and fecundity in two independent reverse selection experiments. These experiments utilized 

our well-established later-reproducing O and CO populations (Figure 5-1). From these populations 

we used reverse selection for only a short number of generations to create new earlier-reproducing 

populations, which we then compared to their corresponding parental population. Evolutionary 

theory predicts that reversion to an earlier age of reproduction shifts the age at which the force of 

natural selection acting on fecundity and survival declines to zero. Natural selection on early 

reproduction for a short period will therefore tend to increase mortality rates and decrease fecundity 

later in life, providing there is antagonistic pleiotropy between early and late ages.  

The experiments on the genetic mechanisms of aging and late life that we have described in 

this chapter reveal that both late-life mortality and late-life fecundity can be remarkably responsive to 

selection for early reproduction imposed for a small number of generations, which implicates 

antagonistic pleiotropy as a powerful genetic mechanism shaping the evolution of late life. The 

forgoing studies demonstrate that antagonistic pleiotropy between early fitness-related characters and 

late-life characters can affect the evolution of late life. While no evidence for the action of mutation 
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accumulation was found, there is no critical evidence against its involvement in the evolution of late 

life, either. 
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Chapter 6. Demography of  Late Life with Lifelong Heterogeneity 

 

Within-cohort selection can theoretically lead to the deceleration of mortality rates when there 

is substantial lifelong heterogeneity in robustness. This effect arises in both non-aging and aging 

organisms. If there is implausibly extreme lifelong heterogeneity in robustness, late life can arise from 

the relictual survival of the extremely robust.  

 

The Concept of Lifelong Demographic Heterogeneity 

The first theories proposed to explain the leveling of mortality rates at late ages were not 

evolutionarily based, but instead were demographic theories based on lifelong differences in individual 

robustness within an aging cohort. These theories suppose that there is sufficient heterogeneity in 

lifelong robustness within a population to cause the slowing of mortality rates at late ages. That is, it 

is imagined that mortality rates will start to slow at later ages, after the less robust individuals in the 

population have died. Note that demographic heterogeneity should not be confused with mere genetic 

or environmental variation within a population (cf. Carnes and Olshansky 2001). The assumption of 

consistent lifelong differences between individuals is more exigent than that. 

The idea of demographic heterogeneity predates the definitive demonstration of late-life 

mortality-rate plateaus by Carey et al. (1992) and Curtsinger et al. (1992). In crude verbal form, the 

idea is mentioned by Greenwood and Irwin (1939). Beard (1959) derived mathematical models for 

mortality that accounted for lifelong heterogeneity in individual mortality. He was an actuary who 

primarily analyzed human data and was concerned about the way late-age human data did not conform 

to the Gompertz family of mortality models. Specifically, his mortality models included variables that 

incorporated individual differences in “vitality” (Beard 1964). He even suggested that these differences 
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in individual vitality may be the underlying cause of the slowing in late-age human mortality rates 

within a population (Beard 1971). 

However, it wasn’t until Vaupel et al. (1979) that the first complete lifelong demographic 

heterogeneity theory to explain late life was developed, also based on observations made on human 

mortality data. This theory leads to a robust prediction of decelerating age-specific cohort mortality 

late in life, granting only a few, seemingly natural, assumptions. The Vaupel heterogeneity theory 

assumes that aging cohorts are comprised of a collection of secondary groups, with each subgroup 

having its own characteristic Gompertz function that defines its mortality pattern. Thus, one subgroup 

might have a relatively low baseline mortality rate (A from Equation 2-1) compared to other subgroups 

that will reduce its age-specific mortality rates throughout life, but the same rate of aging (α from 

Equation 2-1). With this version of Vaupel’s heterogeneity model the average age-specific mortality 

rate is, 

 

𝜇̅𝜇(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝛼𝛼𝛼𝛼

1+[𝜎𝜎2𝐴𝐴(𝑒𝑒𝛼𝛼𝛼𝛼−1)]𝛼𝛼−1
     (6-1) 

 

where σ2 is proportional to the variance in A. At advanced ages, once most individuals in the less 

robust subgroups have died, the average mortality rate of Equation (6-1) approaches a mortality-rate 

plateau equal to α σ-2.  

On the other hand, the rate of aging, or the value of α, may be the parameter that is imagined 

to vary among the subgroups, resulting in some groups having a significantly higher rate of aging than 

others (e.g. Pletcher and Curtsinger 2000). Although allowing the rate of aging to vary among such 

hypothetical subgroups is much more difficult to analyze, Pletcher and Curtsinger (2000) and Service 

(2000) have examined the age-dependent changes in the variance of mortality rates with models of 
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this kind. Note that with this general type of model, regardless of whether the variation in mortality 

lies within the baseline mortality rate (A) or the rate of aging (α), the hypothetical differences among 

the subgroups are lifelong. That is, individuals that are less robust at late ages are imagined to be less 

robust at all other ages, too. 

 

Sources of Variation 

Sources of possible variation in mortality are outlined in Figure 6-1.  
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Figure 6-1. Potential sources of variation in mortality rates estimated from experimental cohorts include genetic variation 
(subscript i) and environment-developmental variation (subscript m). 

 

At the first level, genetic variation may affect the age-independent and dependent parameters 

of the Gompertz equation. We examine the ith genotype in Figure 6-1 in more detail. Individuals that 

are identical for this identical genotype may also vary in their mortality rates due to environmental 

differences encountered early in life, which may cause A, α, or both variables to vary over the 

individuals’ life time. Environment, m, in Figure 6-1, for example, can be examined in more detail. 

Suppose we could create many individuals of genotype i that have all experienced the exact same 
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environment, m. Although this would be difficult in practice, it could be accomplished in computer 

simulations. However, even under these conditions there is theoretically expected to be variation in 

the estimated mortality rates due to binomial sampling variance and experimental error. That is, for 

genotype-i in environment-m the chance of an individual surviving to age t1 is, 

 

 𝑝𝑝(𝑡𝑡1) = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐴𝐴𝑖𝑖𝑖𝑖𝜙𝜙𝑡𝑡1
[1−𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡1)]

𝛼𝛼𝑖𝑖𝑖𝑖
�       

 

Thus, the expected number of survivors at age t1 is 𝑁𝑁𝑡𝑡1 = 𝑝𝑝(𝑡𝑡1)𝑁𝑁0, which has a binomial 

distribution with a variance equal to 𝑝𝑝(𝑡𝑡1)[1 − 𝑝𝑝(𝑡𝑡1)]𝑁𝑁0. 

 

Effects of Experimental Error 

We can explore the extent to which experimental error may be responsible for mortality rate 

plateaus by generating artificial cohorts of fruit flies on the computer with varying levels of 

experimental error.  
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Figure 6-2. Experimental error is added to the age-at-death of an experimental cohort. These errors are assumed to have 
a normal distribution with mean zero and variance σ2. Thus, when σ=6 the 95% confidence interval on the estimated 
age-at-death is ±12 days. 

In Figure 6-2, mortality is simulated in cohorts of 1,000 individuals with Gompertz parameters, 

A = 0.00725346 and α = 0.22891005 (see the Appendix for details). These values were estimated 

from the mortality of a large number of Drosophila during ages prior to the mortality plateau. The 

median longevity of the simulated populations in Figure 6-2 is just 14 days and deaths are estimated 

to the nearest day. The experimental error is assumed to have a normal distribution with a mean of 

zero and standard deviations ranging from zero to six, as given in Figure 6-2. For small to moderate 

variance in experimental errors, there is no suggestion that the Gompertz mortality trajectory slows at 

later ages. However, there is a slight suggestion of slowing when the standard deviation reaches six. 

But this level of experimental error would mean that the estimated age at death would be mistaken by 
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nearly 12 days, which is almost equal to the median longevity of individuals in these cohorts. These 

errors must arise from an extreme propensity to make mistakes, such as calling a fly dead when it is in 

fact alive, or handling a fly in such a way as to cause its premature death. Yet it is highly unlikely that, 

in experienced hands, experimental error would ever be this large. In conclusion, variation caused 

solely by experimental error is highly unlikely to contribute substantially to the mortality rate plateaus 

that have been observed in a variety of organisms, especially under controlled laboratory conditions. 

 

Simulated Effects of Hypothetical Extreme Lifelong Heterogeneity for A and α 

Empirically there are several environmental factors that are known to affect longevity. One is 

temperature; however, this is unlikely to be important in laboratory populations where this variable 

can be carefully controlled. The other factor is food level or caloric restriction, and it is certainly 

possible that individuals might vary in their food intake in laboratory experiments. Furthermore, in 

Drosophila there is good evidence that caloric restriction increases longevity through a decline in the 

age-independent parameter of the Gompertz equation, A (e.g. Nusbaum et al. 1996). On a natural log 

scale, caloric restriction results in a decline in A of about 23%. It seems unlikely that, in a carefully 

controlled environment, subtle differences between the environments would be sustained long 

enough to result in changes in A much larger than those that are purposefully induced. In any case, 

we can examine whether late-life mortality-rate plateaus can be generated by producing such extreme 

variation in A.  

In Figure 6-3A, we show the natural log of mortality for a Drosophila B-female cohort (see 

Figure 4-2 for population description) along with mortality rates from several different computer 

simulations. Even when the variation in A is as large as the variation produced by deliberate and 
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extreme caloric restriction in Drosophila experiments (the aforementioned 23%), the mortality rates are 

almost indistinguishable from the standard Gompertz model with 0% lifelong heterogeneity.  

When we make the variation in A four times greater than the variation associated with lifelong 

caloric restriction, a slight plateau is visible, although it is still not as pronounced as the plateau actually 

observed in female B cohorts. Note that this is a hypothetical environmental effect that is vastly greater 

than any yet detected in a Drosophila experiment. Nonetheless, this effect still isn’t big enough to 

generate the late-life mortality-rate plateaus that have actually been observed in Drosophila cohorts. 
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Figure 6-3. Simulated mortality with entirely hypothetical, lifelong, individual heterogeneity for the A and α parameters 
of the Gompertz equation (Equation 2-1). In panel A of the figure, the natural log of A was assumed to have a log 
normal distribution. Observed mortality data for actual B-female cohorts are shown as circles. The lifelong heterogeneity 
variances were chosen so that a 95% confidence interval was equal to 0, 10, 23, or 100% of the mean value of A. 
Simulated cohorts were the same size as those of the actual B-female cohorts. The values of A and α used in the 
simulations were estimated from the first 24 days of the actual B-female data. During the first 24 days these cohorts age 
according to the Gompertz equation and after this age they start to plateau (data from Rose et al. 2002). Simulation 
results for panel B of the figure were carried out as described for panel A, except that the artificially-imposed lifelong 
heterogeneity was in the age-dependent parameter of the Gompertz (α). The solid lines represent the simulations with 0, 
10, 19 and 100% variation in α, while the dashed line is with 23% variation in A and 19% variation in α. Details of these 
simulations are given in the Appendix to this chapter. 

Hypothetical lifelong heterogeneity models may also include variation in the age-dependent 

parameter of the Gompertz equation (α). In Drosophila, environmental effects don’t typically affect the 
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α parameter, but genetic changes may (Nusbaum et al. 1995). Long term natural laboratory selection 

over many generations has resulted in a 19% (on a natural log scale) reduction in the α parameter 

within the long lived O-populations relative to their controls, the B’s (see Figure 4-2). Figure 6-3B 

simply repeats the hypothetical calculations that were done in Figure 6-3A, but with hypothetically 

extreme variation in α rather then A. Even theoretically-generated cohorts with lifelong heterogeneity 

as large as the difference between the B and O populations, which produces two to three-fold 

differentiation in average longevity, do not exhibit late-life mortality-rate plateaus. The dashed line in 

Figure 6-3B has artificially-generated lifelong heterogeneity in both A and α parameters at magnitudes 

equal to those produced by caloric restriction (23%) and long-sustained natural selection level (19%), 

respectively, giving an effect that is not qualitatively discernible in the plot from the cases with either 

one of these individual assumptions.  

In this example, it is important to bear in mind that actual B-female cohorts have extremely 

few individuals that live as long as the top 30% longevities from O populations, with or without caloric 

restriction.  So this unreasonably favorable scenario for the lifelong heterogeneity hypothesis is clearly 

erroneous even as a bare proposition; it does not correspond to what is ever observed. 

But even with such extreme hypothetical variation in both A and α parameters, age-specific 

mortality rates in simulated cohorts fail to plateau at late ages. With sufficiently large synthetic variation 

in α (100%), plateaus do eventually appear in our entirely hypothetical simulated cohorts. However, 

no conditions, whether genetic or environmental, have yet been identified empirically that could 

reasonably be expected to yield variation in α of this extreme magnitude, even when experimental 

evolution over hundreds of generations is deliberately used to force the greatest possible 

differentiation in these parameters. 
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Lifelong Heterogeneity for Fecundity 

There is no equally natural explanation of late-life plateaus in fecundity that derives directly 

from extant lifelong heterogeneity theory, but post hoc explanations are always possible with a theory 

as ill-defined and open-ended as lifelong heterogeneity theory. One such explanation could be the 

differential loss of more fecund individuals. That is, it is conceivable that some females lay a lot of 

eggs at early ages, but die prematurely, leaving only those individual females that always laid a low 

number of eggs preponderant among the females still alive at later ages. This hypothetical scenario 

assumes there is a trade-off between mortality and reproduction, and couples high mortality with high 

fecundity, and conversely. Another possible heterogeneity explanation for the existence of late-life 

fecundity plateaus could be based on some sort of highly generalized robustness, whereby some 

females both survive better and are more fecund. In addition to these two possible explanations, any 

number of variations based on heterogeneity in fecundity can be imagined, given the wide latitude 

with which lifelong heterogeneity scenarios can be constructed.  

 

Simulation of Lifelong Heterogeneity Effects on Cohort Composition for 

Fecundity 

We have examined the consequences for average population fecundity of a cohort with two 

levels of robustness in fecundity and mortality (see Rauser et al. 2005a). We assumed that a phenotype 

with high fecundity was coupled with high mortality (H:H), and a phenotype with low fecundity was 

coupled with low mortality (L:L). A population consisting of just these two phenotypes is the simplest 

example of the trade-off version of a lifelong heterogeneity theory for fecundity. Specifically, we 

assume that more fecund individuals die earlier, leaving the less fecund individuals at later ages. We 

do not offer this example because we think that it is the only possible example of a theory of this kind. 
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We are merely illustrating what the features of such theories are when they are formally explicit, in 

one case. Many models of this type can be invented, in the wide-open context of lifelong heterogeneity 

theory.  

We assumed that the H:H phenotype initially occurs at a frequency p, and thus L:L females 

are at a frequency of 1-p. We modeled adult survival with the Gompertz equation. The probability of 

survival to age-t, lt, is 

 

𝑙𝑙𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐴𝐴(1−𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼))
𝛼𝛼

�,      

 

where A is the age-independent mortality parameter and α is the age-dependent mortality 

parameter. If we let the age-specific survival and fecundity of H:H females be 𝑙𝑙𝑡𝑡 and mt, respectively, 

and for L:L females 𝑙𝑙𝑡𝑡 and 𝑚𝑚�𝑡𝑡, then the average fecundity of a cohort aged t days is, 

 

𝑝𝑝𝑙𝑙𝑡𝑡𝑚𝑚𝑡𝑡+(1−𝑝𝑝)𝑙𝑙𝑡𝑡𝑚𝑚�𝑡𝑡
𝑝𝑝𝑙𝑙𝑡𝑡+(1−𝑝𝑝)𝑙𝑙𝑡𝑡

.     (6-2) 

 

The average population fecundity of a cohort with two levels of lifelong fecundity and 

mortality is high at early adult ages and decreases with age until it plateaus at low fecundity levels 

(Figure 6-4). This plateau in fecundity at late ages occurs once almost all of the lifelong, high-fecundity, 

high-mortality individuals have died. The results of this simulation demonstrate how such a 

hypothetical model with two levels of heterogeneity within a cohort can result in the average 

population fecundity patterns we have observed (Rauser et al. 2003, 2005a, 2005b, 2006). However, 
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we are not asserting that this is the only conceivable lifelong heterogeneity model that has such 

properties. In Chapter 8 we will review empirical tests of such fecundity heterogeneity models.  

 

Figure 6-4. The average population fecundity within a cohort, assuming two phenotypes: high mortality with high 
fecundity (H:H, dashed grey line), and low mortality with low fecundity (L:L, solid grey line) using Equation (6-2). 
Average fecundity starts high, and then declines with age until it stops declining at low levels at late ages. The onset of 
the plateau in average fecundity occurs once the H:H individuals have almost all died. These results assume the H:H and 
L:L types start at equal frequencies, p = 0.5. The A and α parameters were assumed to be 9.13×10-4 and 0.123, 
respectively, for the H:H females, and 4.75×10-4 and 0.059 for the L:L females. These estimates were taken from actual 
mortality data from long- and short-lived fly populations (Nusbaum et al. 1996, Table 1). We assumed that H:H females 
had a constant high fecundity such that mt = 60 eggs/day for all t, and likewise L:L females had a constant low fecundity 
with tm~  eggs/day. The solid and dashed grey lines represent the proportion of individuals alive at each age 
(survivorship) for the low and low mortality phenotypes, respectively. 

Conclusion:  The Big Strain of Lifelong Heterogeneity Theory 

The lifelong heterogeneity theories we have reviewed in this chapter do not rest upon well-

established principles of biology and require extremely high levels of lifelong heterogeneity. The lack 
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of a well-defined mechanistic basis for these heterogeneity theories makes it difficult to measure or 

infer the types of lifelong heterogeneity that these theories require. The chief support for these theories 

comes from their ability to mimic post hoc patterns of mortality seen in actual biological populations. 

This is a weak form of support for models in biology, because there are often many conceivable post 

hoc models with these properties (vid. Mueller and Joshi 2000, Chapter 1).  In this chapter, we have 

focused on demonstrating that extremely high levels of lifelong heterogeneity are required even to 

construct the type of hypothetical post hoc model that has been used to fit observed cohort survival 

patterns.  In Chapter 7, we discuss whether such extreme levels of lifelong heterogeneity could 

plausibly evolve, while in Chapter 8 we discuss critical tests of lifelong heterogeneity theories.  

However, we hope that this chapter has already shown the reader the extent to which these theories 

impose considerable strain on biological credulity with respect to the magnitude of their presumed 

lifelong heterogeneity.  

Many heterogeneity theories proposed to explain the slowing of mortality rates at late ages 

assume that individuals within a cohort are still aging according to Gompertz’s law, but that the 

differences between individual Gompertz functions is large (Vaupel 1990; Kowald and Kirkwood 

1993). Like us, Abrams and Ludwig (1995) point out that the amount of heterogeneity assumed to 

make these models fit population mortality-rate data is extremely large, without precedent in actual 

data. In fact, the difference between the Gompertz parameters in our long and short-lived fly 

populations (Nusbaum et al. 1996) does not come close to the magnitude of heterogeneity required 

within a population to make heterogeneity models fit the data (Vaupel and Carey 1993; Kowald and 

Kirkwood 1993). Furthermore, we know that the demographic patterns of short-lived populations do 

not indicate the presence of individuals as long-lived as the typical member of the long-lived 

population. 
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Chapter 7.  Evolution of  Lifelong Heterogeneity 

 

It is unlikely that lifelong heterogeneity in robustness will be extreme, if it occurs at all. Natural 

selection will favor genotypes with much greater lifelong robustness, reducing the genetic variance for 

robustness over time. Natural selection will also favor genotypes that reduce the amount of 

developmental or environmental variation in robustness. Stable genetic equilibria with sufficient levels 

of lifelong heterogeneity to cause mortality plateaus seem unlikely. 

 

 

An Evolutionary Critique of Lifelong Heterogeneity Theory 

Some variability in robustness, the underlying controller of mortality rates in cohorts free of 

exogenous mortality, undoubtedly exists within natural populations due to genetic and environmental 

variation. In fact, there is a substantial amount of literature showing that life-history characters vary 

(reviewed in Finch 1990; Rose 1991; Roff 1992; Stearns 1992), which might be taken to mean that the 

lifelong heterogeneity model is well-founded. Indeed, some types of heterogeneity can arise when 

evolution by natural selection maintains genetic variation. But what the heterogeneity theory requires, 

as an explanation of the profound late-life deceleration of aging, is sufficiently extreme lifelong 

differences in individual mortality rates to produce this effect. This is the essential problem: for lifelong 

heterogeneity to work as an explanatory hypothesis for late-life phenomena, it must be so extreme 

that it raises questions as to whether or not it is even remotely plausible. 

The lifelong heterogeneity theory of late life faces major difficulties in meeting this challenge, 

not only with respect to observable data, but even with respect to basic theoretical presuppositions. 

Evolutionary theory predicts that natural selection will tend to decrease genetic variation in fitness-
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related traits like early adult mortality (Nagylaki 1992), because genetic variation in fitness is the ‘fuel’ 

that natural selection consumes to produce adaptation. Yet the lifelong heterogeneity theory requires 

a large amount of sustained lifelong heterogeneity for mortality, either genetic or environmental. If 

the genetic heterogeneity for mortality rates, both early and late, is heritable, it is going to be strongly 

subject to natural selection. Natural selection will, of course, reduce the amount of genetic 

heterogeneity in a population over time, unless there is some form of balancing selection, which is not 

necessarily common. Without balancing selection, or some other mechanism constantly introducing 

genetic variation for fitness into the population, natural selection will purge most genetic variation for 

lifelong robustness from the population. 

The lifelong heterogeneity required by the late-life heterogeneity theory can also be 

environmental, or even merely developmental. If there is a substantial amount of variation arising 

from the environment, whether it is spatial, temporal, or both, then the measure of fitness is given by 

the average effect of an allele minus a term giving the variation in fitness. Thus the equation 𝜇𝜇 −

1
2
𝜎𝜎2determines the evolutionary outcome, or fitness, of a genotype (Gillespie 1973), where μ is the 

measure of average fitness and σ2 is the measure of environmental variance in fitness. Therefore, 

evolution by natural selection will also tend to reduce environmental sources of lifelong heterogeneity. 

Because fecundity is also a major fitness component, we expect the same reduction in genetic and 

environmental variation from natural selection on fecundity as with mortality. 

 

Simulated Evolution of Lifelong Heterogeneity 

To illustrate the potential of evolution to maintain genetic variation, and to demonstrate the 

likelihood that such genetic variation will lead to substantial lifelong heterogeneity, we studied a simple 

single-locus population genetic model. We started the population at a state of complete fixation for a 
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single allele that determined a particular Gompertz mortality phenotype in the homozygous carriers 

of this allele (see Figure 7-1). Mutations were then generated that affected the mortality phenotype of 

the most common allele in the population in two different ways. 

In the first scenario that we considered, mutants were constrained to have positive correlations 

for age-specific effects (Figure 7-1), and these effects could be either entirely positive or entirely 

negative.  This is the case assumed by genetically-based models of lifelong heterogeneity. 

 

Figure 7-1. The effects of mutation on mortality when age-specific effects are positively correlated, in keeping with 
lifelong heterogeneity theory. The solid line is the initial starting Gompertz mortality. The dotted line shows a mutant 
phenotype with deleterious effects. The dashed line shows a mutant phenotype with beneficial effects. See the Appendix 
for this chapter for more details. 

Alternatively, in our second scenario, mutations could have a negative correlation with respect 

to their effects on age-specific mortalities. Thus, a mutant that had an increase in mortality at an early 



Mueller, Rauser & Rose      DOES AGING STOP? 

113 
 

age would have the pleiotropic effect of decreasing mortality at later ages (Figure 7-2).  Under these 

conditions, there is no lifelong heterogeneity, though there can be age-specific variation.  

 

Figure 7-2. The effects of mutation on mortality when age-specific effects are negatively correlated. The solid line is the 
initial starting Gompertz mortality. The dotted line shows a mutant phenotype with deleterious effects early in life and 
beneficial effects later. The dashed line shows a mutant phenotype with beneficial effects early in life and deleterious 
effects later. See the Appendix for more details. 

For each of the mutation schemes outlined in Figures 7-1 and 7-2, we generated 100 mutants. 

After the creation of each new mutant and its associated fitness, we used standard single locus 

population genetic theory to determine the outcome of evolution (see the Appendix for this chapter 

to see further details). Allele frequencies were iterated for 50,000 generations or until an equilibrium 

was reached, whichever came first. The mean fitness and number of alleles maintained by selection 

are shown in Figures 7-3 and 7-4.  
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Figure 7-3. The mean fitness and number of alleles maintained by selection after the introduction of 100 mutants into a 
population initially showing Gompertz mortality patterns. These mutants showed positive correlations in age-specific 
mortality changes (see Figure 7-1). Between the introductions of each new mutant section was allowed to progress for 
up to 50,000 generations (see the Appendix for additional details). 
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Figure 7-4. The mean fitness and number of alleles maintained by selection after the introduction of 100 mutants into a 
population initially showing Gompertz mortality patterns. These mutants showed negative correlations in age-specific 
mortality changes (see Figure 7-2). Between the introductions of each new mutant selection was allowed to progress for 
up to 50,000 generations (see the Appendix for additional details). 

Although the simulations with positive correlations among genetic effects on survival across 

ages produced two and occasionally three allele polymorphisms, the two allele polymorphisms 

typically had a single very common allele, and the rare allele  declined in frequency over the course of 

selection after it arose (Figure 7-3). With negative correlations, there were typically six alleles 

maintained by selection (Figure 7-4). This particular simulation ended with a seven-allele 

polymorphism. This was not a transient state, since we checked the equilibrium allele frequencies and 

stability conditions by standard analytical procedures (Mandel 1959); this seven-allele equilibrium was 

globally stable and the computer simulation had accurately converged to the equilibrium allele 
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frequencies. [Previous research on randomly generated fitness matrices has shown that selection at a 

single locus can typically support six and seven allele polymorphisms (Spencer and Marks 1992) so the 

observations in Figure 7-4 are not exceptional in that regard.] In other words, when there is the type 

of positive correlation in genetic effects required to generate lifelong heterogeneity, there is 

systematically less genetic variation than there is when there are negative correlations among genetic 

effects on survival. 

In Chapter 6, we showed that the levels of life-long heterogeneity in demographic parameters 

must be exceptionally large to generate late-life plateaus. The present simulation results provide 

another means of testing whether or not this requirement is likely to be met. If we use the final 

equilibrium allele frequencies and phenotypes from the evolutionary process shown in Figure 7-4, we 

can simulate mortality in this heterogeneous population and see if the late-life mortality level off. The 

results from such an exercise are shown in Figure 7-5.  Note that this model is limited to genetic 

effects at one locus on an underlying Gomerptzian mortality pattern.  Its failure to generate late-life 

plateaus is not evidence against Hamiltonian theories of late life, which are not subject to this type of 

evolutionary constraint. 
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Figure 7-5. The age-specific mortality pattern exhibited by a genetically heterogeneous cohort that has evolved by 
modifying an initial Gompertzian mortality pattern. The allele frequencies and genotypic specific mortalities were 
derived from the final equilibrium population shown in Figure 7-4. The age-at-death of 1,566 individuals at Hardy-
Weinberg equilibrium were simulated to give the mortality values in the “Heterogeneous mortality” curve above. Since 
this population had 7 alleles there were a total of 28 genotypes that were represented with at least one individual in this 
simulation. 

[insert figure 7-5 here] 

Despite the genetic heterogeneity due to the seven-allele polymorphism, there is no leveling 

of mortality in late life. Now this result is in part a consequence of the magnitude of the genetic 

differences between the different mutants. However, as new mutants with ever decreasing mortality 

are introduced into the simulated population, alleles with substantially higher mortality are gradually 

eliminated from the population despite the overdominance built into this genetic model (see Appendix 

for details). This scenario suggests that the build-up of the large-scale genetic variation required to 

create late-life mortality plateaus is unlikely to occur in populations that evolve according to the rules 
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of population genetics. This does not, of course, preclude the artificial generation of lifelong 

heterogeneity in composite cohorts assembled from extremely different genotypes, as first supposed 

by Greenwood and Irwin (1939). An omnipotent deity could do this for a population in the wild or 

an interfering gerontologist could do this for a model organism in the laboratory. But calculations like 

these suggest that such lifelong heterogeneity is not readily or ubiquitously produced by natural 

processes occurring on their own. 

 

Conclusion:  Evolution abhors Extreme Lifelong Heterogeneity 

Demographic heterogeneity may arise from standing genetic variation in natural populations. 

However, these explanations must confront the problem that, when such genetic variation has 

lifelong, pronounced, and positively correlated effects on components of fitness like mortality and 

fecundity, it is certain to affect fitness and thus be acted upon by natural selection. Population genetic 

theory suggests that, all other things being equal, natural selection will favor reductions in fitness 

variation making the life-long heterogeneity hypothesis less tenable as an explanation for the 

pronounced deceleration of aging that is observed during late life. Although certain patterns of genetic 

variation, like overdominance with antagonistic effects across ages – the opposite pattern from lifelong 

heterogeneity, may result in stable genetic polymorphisms, our results suggest that such population-

genetic mechanisms are unlikely to sustain the type of variation that could produce late-life mortality 

plateaus from the sieving of lifelong heterogeneity. 
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Chapter 8. Experimental Tests of  Lifelong Heterogeneity 

 

Experimental tests of lifelong heterogeneity generally do not corroborate the theory. For 

example, populations that have evolved a considerable increase in the level of their robustness show 

little change in their late life patterns compared to their parental populations, and physiological 

manipulation of cohort heterogeneity does not significantly affect the occurrence of late life. 

Furthermore, lifelong heterogeneity models predict that far more individuals survive to very late ages 

than are observed when these models are fit to actual data. With fecundity, experimental studies have 

shown that heterogeneity is not lifelong; that is, heterogeneity in early fecundity does not predict late-

life outcomes. 

 

Tests of Lifelong Heterogeneity in Mortality based on Reduced Variance 

Recall from Chapter 6 that the Vaupelian heterogeneity theory based on lifelong differences 

in robustness requires a large amount of variance in A or α values between subgroups of individuals 

comprising a cohort. Although lifelong heterogeneity this extreme has yet to be shown experimentally 

for any organism, a theoretical analysis of the Carey et al. (1992) mortality data for medflies 

demonstrated that their data could be fitted post hoc to a Vaupelian demographic heterogeneity model 

(Kowald and Kirkwood 1993), using entirely hypothetical high levels of lifelong heterogeneity.   

So, where might this extreme lifelong heterogeneity in mortality come from? In general, it 

could be genetic or environmental in origin. Therefore, if the hypothesized lifelong heterogeneity is 

genetic, then an important empirical corollary is that genetically homogenous populations should show 

a less distinct mortality-rate plateau compared to genetically heterogeneous populations. To this end, 

Brooks et al. (1994) compared an isogenic cohort of Caenorhabditis elegans with a cohort that they 
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deliberately constructed from extremely different mutants. Naturally enough, they found a more 

distinct plateau in the heterogeneous population, just as Greenwood and Irwin (1939) had suggested 

would be found in such contrived cohorts 55 years earlier, based on the demography of Drosophila 

mutants. But Vaupel et al. (1994) pointed out that the isogenic line was grown under different 

environmental conditions than the heterogeneous line, complicating the interpretation of these results. 

It is possible that genetic variation could drive the heterogeneity models. But extensive 

experimental work has shown that, after removing genetic variation by extensive inbreeding, well-

defined late-life mortality-rate plateaus continue to be observed (Curtsinger et al. 1992; Fukui et al. 

1993; Fukui et al. 1996).  In particular, Fukui et al. (1993) found clear mortality plateaus with highly 

inbred Drosophila lines (inbreeding coefficient > 0.99), suggesting that genetic variation is not required 

for mortality plateaus to occur. In any case, as we demonstrated in Chapter 7, genetic variation is not 

a plausible source of the hypothetical, extreme,  and lifelong heterogeneity in mortality required to 

explain the existence of late-life plateaus in mortality, since evolution would strongly favor the 

elimination of genetic variants associated with such extreme and consistent differences in death rates.  

It follows then that, in the absence of genetic variation, all lifelong heterogeneity that is supposed to 

cause late-life mortality rate plateaus must be environmental in origin. 

Thus, if lifelong heterogeneity in mortality does not arise from genetic heterogeneity, then it 

must come from heterogeneity in the environment, or from accidents of development. However, 

Khazaeli et al. (1998) found that heterogeneity that was environmentally-induced in flies is not a 

primary factor in determining late-life mortality rates.  They went to a great deal of trouble to reduce 

recondite sources of variation in laboratory-reared cohorts of inbred  Drosophila melanogaster lines, and 

compared cohorts handled so as to reduce environmental variation with cohorts in which no such 

care was exerted.  Through diligent application of this procedure in the ‘experimental’ cohorts, they 

were able to reduce the variance in age at death in these cohorts compared to unmanipulated controls, 
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indicating that they successfully reduced environmental sources of variation.  This was achieved with 

two different inbred lines, as well as two different conditions of cohort maintenance, with and without 

mates.  While there were somewhat fewer ‘experimental,’ or low-variance, cohorts (64 out of 69) 

showed mortality-rate deceleration compared to the ‘control,’ or high-variance, cohorts (37 out of 37), 

this effect was not statistically significant.  In particular, strenuous attempts to reduce environmental 

variance during larval and pupal development did not come close to abolishing the transition to late 

life consistently, any more than severe inbreeding has (vid. Fukui et al. 1993).  Apparently these efforts 

did reduce the initial mortality level in virgin cohorts (Khazaeli et al. 1998), which may in turn have 

had some effect on the ability of the experimenters to detect the transition to late life in ‘experimental’ 

low-variance cohorts.  If the Gompertz demographic parameters are affected by environmental 

effects, then plateaus should have been less prominent or non-existent in the reduced-variance 

populations. However, there was also no difference found in the timing of late-age mortality 

deceleration between these populations, further suggesting that variation in the pre-adult environment 

contributes little to the creation of lifelong heterogeneity in demographic parameters.  They concluded 

“environmental heterogeneity accrued during larval development is not a major factor contributing to 

mortality deceleration at older ages” (Khazaeli et al. 1998, p. 314).  We know of no other experiments 

of this kind that have reached a different conclusion, regardless of the methods used to reduce 

environmental sources of variation. 

 

Testing Lifelong Heterogeneity Using Extremal Survivors 

Service (2000, 2004) showed that the natural log of age-specific mortality rates should show a 

unimodal distribution if there is sufficiently large variation in A and α across genetically different 

populations to explain late life. We examined this variance across the five B-populations and the five 
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O-populations (Mueller et al. 2003). Despite the fact that these populations had been isolated and 

undergoing independent evolution for 100-500 generations at the time of this experiment, the pattern 

predicted by Service was not seen. These observations don’t preclude the possibility that purposeful 

methods of creating genetic differentiation between populations, like selection or inbreeding, might 

not result in these patterns. However, differentiation that arises naturally from random genetic drift is 

apparently not sufficient to cause these unimodal patterns. 

Inspired by the analysis of Service (2000), Mueller et al. (2003) tested the Vaupelian 

heterogeneity theory by fitting lifelong heterogeneity models to mortality data from cohorts of 

Drosophila melanogaster, specifically choosing parameter values for these models that fit the observed 

cohort data as closely as possible. One such model, the heterogeneity-in-α model, assumes that a small 

portion of the population will have very small values of α, or small rates of aging, and will consequently 

be very long lived. Service (2000) produced some calculations which suggest that this model is not an 

adequate explanation of mortality plateaus in cohorts of Drosophila. When he varied α in his 

simulations, populations with average longevities of 50 days were generated, which is reasonable for 

D. melanogaster.  But these simulations also resulted in maximum lifespans of 365 days in reasonably-

sized cohorts, which is absurdly long for this species. We know of no case of a D. melanogaster individual 

surviving as long as 200 days when adult diapause is not induced.  

We explore these questions in more detail here and expand upon our earlier work from Mueller 

et al. (2003). In Chapter 6, we showed that if heterogeneity entered the Gompertz equation only 

through the age-independent parameter, then it is very difficult to generate sufficient variation to 

account for the plateaus in late-life mortality observed in Drosophila cohorts. This problem is somewhat 

reduced if heterogeneity is introduced in the age-dependent Gompertz parameter (α), so we consider 

this latter case in more detail here. 
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Consider a model in which the age-dependent parameter, α, is a random variable equal to 𝜉𝜉𝛼𝛼� 

where the random variable, ζ, has a gamma distribution with a mean of one and variance equal to k-1. 

We call this the “heterogeneity-in-α model”. The mean (over all individuals with different α-values, 

i.e. α-types) instantaneous mortality rate for individuals aged-x under the heterogeneity-in-α model is, 

following Pletcher and Curtsinger (2000), given by 

 

𝑢̄𝑢(𝑥𝑥) = ∫ 𝐴𝐴𝑧𝑧𝑘𝑘−1 𝑒𝑒𝑒𝑒𝑒𝑒[𝛼𝛼�𝑧𝑧𝑧𝑧−𝜑𝜑(𝑥𝑥,𝑧𝑧)]𝑑𝑑𝑑𝑑∞
0

∫ 𝑧𝑧𝑘𝑘−1 𝑒𝑒𝑒𝑒𝑒𝑒[−𝜑𝜑(𝑥𝑥,𝑧𝑧)]𝑑𝑑𝑑𝑑∞
0

,    (8-1) 

 

where 𝜑𝜑(𝑥𝑥, 𝑧𝑧) = 𝑘𝑘𝑘𝑘 + 𝐴𝐴(𝛼𝛼�𝑧𝑧)−1[𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼�𝑧𝑧𝑧𝑧 − 1)]. To estimate the three parameters in Equation (8-

1) we need to fit the observed mortality over finite time periods of several days to the predictions of 

the model. The predicted mortality between times t1 and t2 (t2>t1) is given by 1 − 𝑝𝑝𝑡𝑡2
𝑝𝑝𝑡𝑡1

, where pt is the 

probability of surviving to time t. We estimated this heuristically as follows. If we let −1
𝑁𝑁

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑢̄𝑢(𝑥𝑥), 

then it follows that, 

 

𝑁𝑁𝑡𝑡
𝑁𝑁0

= 𝑝𝑝𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−∫ 𝜇̅𝜇(𝑥𝑥)𝑑𝑑𝑑𝑑𝑡𝑡
0 �    (8-2) 

 

Equation (8-2) can only be considered an approximation, because 𝑢̄𝑢(𝑥𝑥) is an average mortality 

rate and thus the integral in (8-2) is only an approximation to the average of the integrals of each of 

the different α-types in the population, e.g. the integral of the average mortality rate is not equal to 

the average of the integrals of the distinct mortality rates. 
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The weighted least-squares fit to the heterogeneity model for actual B1 female cohort data is 

shown in Figure 8-1a. (See the Appendix for this chapter to see the details of the estimation methods.) 

Given the variability of these observations it would appear that the heterogeneity-in-α model can 

mimic the mortality rates of Drosophila quite well. However, the heterogeneity-in-α model is more than 

an equation that mimics these observed cohort deaths post hoc.  It also contains a scientific hypothesis 

about the cause of these mortality rates. Therefore, it can be subject to more careful scrutiny than just 

goodness of fit.  

The least squares estimates of the lifelong heterogeneity-in-α model parameters can be used 

to generate the distribution of age-at-death under this model (see Appendix), which can then be 

compared to the observed distribution. Following this procedure for the B1 female cohort (Figure 8-

1b), we see that a larger fraction of the cohort dies at younger ages than predicted by the heterogeneity-

in-α model.  
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Figure 8-1. The two figures show results for the B1 female population. (a) The line is the weighted least-squares non-
linear fit of the heterogeneity-in-α model to the observed B1 female mortality. The circles show the observed two-day 
mortality at each sampled age along with binomial 95% confidence limits. (b) Using the parameter estimates obtained 
from the best-fit parameters required to fit the line in panel (a), 113,200 (100N) ages at death were randomly generated 
using the Gompertz equation with gamma distributed α-values (see text and Appendix for details). These were used to 
generate a distribution function for this model and plotted against the empirical distribution function. If the two 
distribution functions were identical, they would both fall on the y=x line. Since the empirical curve is above the equality 
line, especially at higher values of the distribution function, it indicates that B1 females in this cohort are not as long 
lived as predicted by the heterogeneity-in-α model that was the best fit to the data of this cohort. 
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To formally test the ability of the heterogeneity-in-α model to predict the distribution of age 

at death in observed cohorts when the model has been specifically fit to these particular cohorts, we carried out 

two different statistical tests. We generated 100 sample populations using the parameter estimates 

from the heterogeneity-in-α model (see the Chapter 8 Appendix for the fits of this model to each of 

the 40 study populations). Each sample cohort was the same size as our original Drosophila population. 

We then used the Kolmogorov-Smirnov test to determine if the observed cumulative distribution 

function (CDF) was above the heterogeneity-in-α model CDF. This hypothesis-test specifically 

addresses the previous observation that a larger fraction of the population dies at younger ages than 

predicted by the heterogeneity-in-α model. 

For each of the 40 observed cohorts of Drosophila, in Table 8-1 we show the fraction of the 

100 tests that resulted in a statistically significant difference between the observed and expected CDF 

from the heterogeneity-in-α model. We see that in the overwhelming majority of the populations, the 

heterogeneity-in-α model produces a significantly different CDF function, typically with more 

probability mass in the right tail of the distribution. 

Table 8-1. The fraction of 100 Kolmogorov-Smirnov tests that resulted in significant results at 
p<0.001. 

CO ACO 

Population Females Males Population Females Males 

CO1 1 1 ACO1 1 1 

CO2 1 1 ACO2 1 1 

CO3 1 0 ACO3 0 1 

CO4 1 0 ACO4 0.09 1 

CO5 1 0 ACO5 1 0.99 
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O B 

Population Female Male Population Female Male 

O1 1 1 B1 1 1 

O2 1 1 B2 1 1 

O3 0.97 1 B3 1 1 

O4 1 1 B4 1 1 

O5 1 1 B5 1 1 

 

We have done a similar analysis just focusing on the tail of the distribution of age at death. We 

chose an age at which about 90% of the population is expected to be dead under the heterogeneity-

in-α model. We then compared the observed frequency of the population still alive (𝑝̄𝑝) to the expected 

(𝑝̂𝑝) and used a binomial test to determine if 𝑝̄𝑝 < 𝑝̂𝑝. 

Thirty five of the forty tests in Tables 8-2 and 8-3 are significant failures at the 5% level. Even 

if we control for multiple testing using the Bonferroni inequality, there are still 35 significant test 

results (assessing each individual test using a significance threshold set at p=0.00125). In other words, 

the probability of flies surviving long enough to reach late life is significantly less than predicted by 

the heterogeneity-in-α model, when it is specifically fit to the data from these cohorts. Thus, for these 

Drosophila data, we can confidently reject the heterogeneity-in-α model as an adequate explanation of 

mortality in late-life.  

Table 8-2. The observed ( p ) and expected ( p̂ ) probabilities of females living greater than a critical 
age, with the expectations derived from the heterogeneity-in-α model. The critical ages were: 57.8 
(CO), 41.5 (ACO), 39.3 (B) and 80.8 (O). 
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Population p  p̂  Prob(

p̂p < ) 

Population p  p̂  Prob(

p̂p < ) 

CO1 0.057 0.12 2×10-16 ACO1 0.0089 0.056 2×10-16 

CO2 0.027 0.057 1×10-13 ACO2 0.0014 0.10 2×10-16 

CO3 0.24 0.32 2×10-15 ACO3 0.071 0.018 1 

CO4 0.092 0.13 8×10-11 ACO4 0.01 0.05 2×10-16 

CO5 0.021 0.086 2×10-16 ACO5 0.0055 0.11 2×10-16 

O1 0.03 0.056 1×10-8 B1 0.026 0.099 2×10-16 

O2 0.012 0.026 2×10-5 B2 0.033 0.13 2×10-16 

O3 0.017 0.038 5×10-8 B3 0.02 0.076 2×10-14 

O4 0.032 0.12 2×10-16 B4 0.055 0.14 2×10-16 

O5 0.035 0.057 8×10-7 B5 0.022 0.046 4×10-5 

 

Table 8-3. The observed ( p ) and expected ( p̂ assuming the heterogeneity-in-α model) probabilities 
of males living greater than a critical age. The critical ages were: 57.8 (CO), 41.5 (ACO), 39.3 (B) and 
80.8 (O). 
Population p  p̂  Prob( p̂p < ) Population p  p̂  Prob( p̂p < ) 

CO1 0.17 0.21 2×10-8 ACO1 0.68 0.67 0.85 

CO2 0.11 0.21 2×10-16 ACO2 0.026 0.10 2×10-16 

CO3 0.32 0.085 1 ACO3 0.13 0.26 2×10-16 

CO4 0.12 0.05 1 ACO4 0.057 0.17 2×10-16 

CO5 0.065 0.0009 1 ACO5 0.024 0.056 2×10-16 

O1 0.04 0.13 2×10-16 B1 0.0066 0.11 2×10-16 
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O2 0.017 0.077 2×10-16 B2 0.012 0.057 9×10-14 

O3 0.065 0.16 2×10-16 B3 0.0041 0.036 3×10-11 

O4 0.082 0.15 2×10-16 B4 0.02 0.14 2×10-16 

O5 0.095 0.19 2×10-16 B5 0.033 0.14 2×10-16 

 

We have also done a similar analysis for data from the Mediterranean fruit fly, Ceratitis capitata 

(Carey 1993). Like Drosophila, medflies show far too few long lived individuals based on the predictions 

of the heterogeneity-in-α model, as shown in Figures 8-2 and 8-3. Under the heterogeneity-in-α 

model, 9.7% of females and 9.3% of males should live to 48 days or longer; while in fact only 1.4% 

of females and 0.98% of males live this long in the actual cohorts. These discrepancies from the 

predictions of the heterogeneity-in-α model are statistically significant (p= 2×10-16), and therefore, do 

not lend support to the model. 
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Figure 8-2. The two figures show results for the Medlfy male population (Carey 1993, Appendix 2). (a) The line is the 
weighted least-squares non-linear fit of the heterogeneity-in-α model to the observed Medlfy male mortality. The circles 
show the observed daily mortality at each sampled age along with binomial 95% confidence limits. (b) Using the 
parameter estimates obtained from the calculated results shown in (a), 598,118 ages at death were randomly generated 
using the Gompertz equation with gamma distributed α-values (see text for details). These simulated deaths were then 
used to generate a distribution function for this model which was plotted against the empirical distribution function. If 
the two distribution functions were identical, they would fall on the y=x line. Since the resulting curve is above the 
equality line, especially at higher values of the distribution function, it indicates that Medfly males are not as long lived as 
predicted by the heterogeneity-in-α model. 
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Figure 8-3. The two figures show results for the Medfly female population (Carey 1993, Appendix 3). (a) The line is the 
weighted least-squares non-linear fit of the heterogeneity-in-α model to the observed Medlfy female mortality. The 
circles show the observed daily mortality at each sampled age along with binomial 95% confidence limits. (b) Using the 
parameter estimates obtained in (a), 605,528 ages at death were randomly generated using the Gompertz equation with 
gamma distributed α-values (see text for details). These were used to generate a distribution function for this model and 
plotted against the empirical distribution function. If the two distribution functions were identical, they would fall on the 
y=x line. Since the curve is above the equality line, especially at higher values of the distribution function, it indicates that 
Medfly females are not as long-lived as predicted by the heterogeneity-in-α model. 

In summary, the heterogeneity models that best fit the overall mortality patterns of well-

studied large cohorts of laboratory organisms do not accurately predict the age at death of the last fly 
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to die in the cohort. Furthermore, these heterogeneity models predicted that more flies would be alive 

at late ages than were actually observed. Mueller et al. (2003) also showed that the variance of mortality 

rates changed little with age in laboratory Drosophila, leaving aside very early and late ages, which is 

contrary to predictions that have been made based on the lifelong heterogeneity model (cf. Service 

2004). Collectively, these experimental results do not support a key role of demographic heterogeneity 

in late-life mortality. But they do not necessarily exclude a contribution of lifelong heterogeneity to 

some of the slowing in mortality rates at late ages. However, it is unlikely that this theory can explain 

late-life patterns entirely on its own. 

 

Testing Lifelong Heterogeneity Theories by Manipulating Robustness  

When individual robustness is radically improved by selection for increased robustness, and it 

is hypothesized that lifelong heterogeneity is the cause of late-life mortality rate plateaus, then late-life 

mortality rate plateaus should change with respect to their timing. The more robust population will be 

affected by environmental variation in a radically different fashion than the less robust population, 

and therefore the late life characteristics of the two populations ought to be very different. In 

reasoning like this, we are implicitly accepting the presupposition that robustness at one adult age is 

strongly correlated with robustness at all adult ages.  In doing so, we are conforming to dictates of 

lifelong heterogeneity theory, as a bare supposition, not arguing that this is in fact the case. 

Drapeau et al. (2000) tested this lifelong heterogeneity prediction using populations of 

Drosophila selected for starvation resistance (SO) and comparing them to their controls (CO and RSO); 

they found no differences in late life (Figure 8-4). By contrast, a post-hoc reanalysis of these data by 

Steinsaltz (2005) led him to different conclusions. It is important to note, however, that in a major 

methodological departure, Steinsaltz chose to remove from his analysis the observed mortality data in 
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early life. With such a selective omission, it is hardly surprising that the results might differ. The 

process of removing data is always fraught with danger, because it is by and large a subjective 

procedure often guided by a priori expectations that are in fact part of the hypotheses being tested. 

Therefore, we believe that we can reasonably conclude that selectively produced differentiation in 

robustness does not consistently affect the presence of late-life mortality-rate plateaus, contrary to the 

line of reasoning outlined above that was based on the lifelong heterogeneity hypothesis. 

 

Figure 8-4. The daily mortality rates from the fitted two-stage Gompertz model for females from the SO (solid lines), 
CO (dashed lines) and RSO (dotted lines). An analysis of the breakday and plateau height showed no significant 
differences (Drapeau et al., 2000). 

 

Carey has argued (Carey et al. 1995; Carey 2003) that if mortality is increased by increasing the 

population density, then the age at which a mortality plateau occurs should decline. This is a 
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robustness-reducing environmental manipulation, the converse of the experimental strategy of 

Drapeau et al. (2000).  This follows because at high density the less robust groups are eliminated faster, 

and thus the age at which only the most robust groups are left (or the ‘breakday,’ in our terminology) 

should come sooner. However, in experiments with Mediterranean fruit flies, changing adult density 

had no detectable effect on the age at which mortality rates leveled off (Carey et al. 1995; Carey 2003). 

From these results, Carey (2003) concluded that the “...leveling off of mortality is not an artifact of 

changes in cohort composition”. 

 

Test of Lifelong Heterogeneity Theory Using Correlations of Age-Specific 

Fecundity 

As we discussed in Chapters 2 and 4, previous studies have found that fecundity, like mortality-

rates, plateaus at late ages in several independent cohorts of Drosophila melanogaster (Rauser et al. 2003, 

2005b, 2006). Although evolutionary theory based on the age-specific decline in the force of natural 

selection can explain the decline and plateau in fecundity at late ages (Hamilton 1966; Rauser et al. 

2006), Rauser et al. (2005a) thought it worthwhile to consider the possibility that life-long 

heterogeneity in individual female fecundity could cause a spurious plateau in average late-life 

fecundity.  

Although Vaupelian theory has not been extended to include fecundity by its original 

proponents, several post hoc explanations that are based on demographic heterogeneity might be able 

to explain the existence of late-life plateaus in fecundity, as we outlined in Chapter 6. Fecundity models 

analogous to the Vaupelian model for mortality could be based on lifelong differences in individual 

female fecundity. One possible heterogeneity-based explanation analogous to the Vaupelian model 

for mortality for observing late-life fecundity plateaus in cohorts of D. melanogaster is that females that 
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lay a high number of eggs die prematurely; leaving only the females that always laid a low number of 

eggs preponderant among late ages. Another possibility is that some females both live longer and 

sustain fecundity better. In either case, if fecundity plateaus are a consequence of lifelong differences 

in egg laying, then measuring individual fecundity patterns for females comprising a large cohort, and 

comparing the fecundity of individuals that live to lay eggs in late life with those that do not, would 

test either possibility, and we did just that (Rauser et al. 2005a). 

The first lifelong heterogeneity in fecundity hypothesis described above is implicitly based on a trade-

off between egg-laying and lifelong robustness, while the second is a generalization of the Vaupelian 

lifelong-robustness theory from mortality to all age-specific life-history characters (cf. Vaupel et al. 

1979). Furthermore, many other variations on these themes are conceivable. However, regardless of 

the numerous conceivable lifelong heterogeneity in fecundity hypotheses, all of them have in common the 

ability to infer late-life fecundity patterns from attributes of young individuals in a cohort, just as 

demographic theories of late-life mortality hypothesize that mortality rates plateau because of 

individual heterogeneity effects that are present throughout life (vid. Vaupel et al. 1998). To be 

specific, lifelong heterogeneity theories for mortality assume that individuals are imbued with life-long 

consistent levels of robustness that define their mortality rates. As a result, individuals within a cohort 

that are less robust throughout life die at earlier ages, leaving individuals with lifelong superiority in 

robustness predominant in the cohort at later ages, causing a slowing of mortality rates (Vaupel et al. 

1979; Vaupel 1988, 1990; Pletcher and Curtsinger 2000). 

A major problem with testing lifelong heterogeneity theories with regards to mortality is that 

an individual’s rate of aging with respect to mortality cannot be measured readily while it remains alive, 

so lifelong heterogeneity for robustness has only been studied indirectly where mortality is concerned. 

However, with fecundity this is not the case, as individual age-specific fecundity over a lifetime can 

easily be measured within a cohort. Thus, fecundity can be used to test the general concept of lifelong 
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demographic heterogeneity (Rauser et al. 2005a), because average population fecundity shows the 

same plateauing pattern at late ages as mortality rates. 

Other studies of individual fecundity trajectories helped to motivate this experimental strategy. 

For example, Müller et al. (2001) looked at fecundity and death patterns in Medflies and found no 

apparent trade-off between reproductive output and lifespan. This is preliminary evidence against one 

version of the lifelong heterogeneity in fecundity theory, specifically the hypothesis that females that 

lay a high number of eggs should die at earlier ages. In another study by Novoseltsev et al. (2004), flies 

with short lifespans did not have higher mean fecundity during their midlife “plateau” – note that their 

usage of this term does not correspond to ours -- compared to flies that lived a medium number of 

days. This result is also inconsistent with the predictions of the first type of heterogeneity theory for 

fecundity adduced above. However, they did show that the longest lived flies had a lower mean 

fecundity than the medium and short lived flies, though this difference was not always statistically 

significant. Overall, at the time we decided to test the lifelong heterogeneity in fecundity hypothesis 

using lifetime fecundity trajectories for individual females within a cohort, it was not clear from the 

published literature whether any form of this theory was most likely to be correct. 

We tested whether observable lifelong heterogeneity in fecundity can be used to predict the 

properties of the late life of individual flies, including the survival of individual flies to the late-life 

period. This was done by measuring for individual females both daily fecundity over the entire lifetime 

and the age of death, and then testing whether the age-specific fecundity of females that lived to lay 

eggs at late ages differed significantly throughout life from the age-specific fecundity of females that 

died before the onset of the cohort’s plateau in fecundity (Rauser et al. 2005a). Over the course of this 

experiment we counted 3,169,101 eggs laid over the lifetime of 2,828 females. 

Our study used the outbred laboratory-selected “CO1” population of Drosophila melanogaster 

selected for mid-life reproduction, as described in Chapters 4 and 5 (see Figure 4-2). These populations 



Mueller, Rauser & Rose      DOES AGING STOP? 

137 
 

are cultured using females 28 days of age (Rose et al. 1992), and at the time of the study that we 

describe here had been maintained at population sizes of at least 1,000 individuals for more then 170 

generations. Both late-life mortality-rate plateaus and late-life fecundity plateaus have been observed 

in the CO populations (Rose et al. 2002; Rauser et al. 2006). Three separate assays were performed 

using large cohorts from the CO1 population (see Rauser et al. 2005a for experimental details). 

The basic flavor of our results can be illustrated by examining the third experiment (Figure 8-

5). We have plotted the lifetime fecundity of each female with a line of different shades of white and 

black (Figure 8-5). A line in this figure ends when the fly dies. It is clear from this figure that, just prior 

to death, fecundity has declined dramatically relative to the other females that are still alive (this is the 

death spiral described in more detail in chapter 9). More importantly, if we look at female fecundity 

early in life (ages 12-25 days) we see very little difference between the flies that die first and those that 

live much longer. These visual impressions are confirmed by more formal statistical tests described in 

Rauser et al. (2005a).  
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Figure 8-5. Individual fecundity records of 606 females from the third assay. Females were rank-ordered by age of death 
within this cohort on the y-axes and the individual age-specific fecundity patterns of each female are plotted horizontally 
on each graph along the x-axes. Female fecundity was divided into five categories and color-coded accordingly: 0 eggs, 
1–9 eggs, 10–19 eggs, 20–49 eggs, 50–194 eggs. The zero-fecundity category is black, and the shades get progressively 
lighter as the number of eggs increase. 

 

Our test of lifelong heterogeneity theories for fecundity based on these data depends on 

whether late-life fecundity or survival is predictable from differences in egg laying between individual 

females at earlier phases of adult life, including early adulthood. For example, a cohort that shows 

lifelong heterogeneity in egg laying with strong trade-offs between reproduction and survival should 
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have females that consistently lay more eggs quickly and then die at earlier ages, leaving only females 

who have always laid eggs at a low rate preponderant among late ages. Alternatively, a cohort that has 

some members that show lifelong superiority with respect to all adult life-history characters, including 

all age-specific survival probabilities and all age-specific fecundities, should allow us to predict survival 

to late life from early fecundity data. However, our analysis showed that neither of these hypotheses 

are likely to be correct, because early life fecundity did not predict late-life characteristics. The data 

suggest that there is a significant amount of age-specific variation in fecundity, but that it has no 

predictive value until 12-15 days after the start of reproduction (Rauser et al., 2005a).  

Similarly, our simple model for heterogeneity in fecundity required a 15-fold difference in 

fecundity between the high and low egg-layers in order to simulate accurately our observed cohort 

fecundity values. It would be interesting to see if average cohort fecundity plateaus at late ages in 

genetically homogenous cohorts. A plateau in fecundity under these circumstances would indicate 

whether age-specific, though not lifelong, genetic heterogeneity plays a role in late-life fecundity 

patterns, because it would not eliminate the contribution of age-specific environmental heterogeneity. 

However, it is unlikely that exogenous environmental heterogeneity has much of an effect on the 

existence of fecundity plateaus, as we have observed fecundity plateaus under both constant and 

varying environmental conditions (Rauser et al. 2005a, 2005b, 2006). 

Other studies of the fecundity trajectories of individual flies generally support our 

experimental findings, and do not support the predictions of lifelong heterogeneity models for 

fecundity. As we explained above, Müller et al. (2001) found no apparent trade-off between 

reproductive output and lifespan in Medflies, which is additional evidence against the type of model 

that we simulated here. A lifelong heterogeneity model for fecundity with strong trade-offs between 

reproduction and survival predicts just the opposite: females that lay a high number of eggs should 

die at earlier ages, which is equivalent to a trade-off between reproduction and lifespan. Analysis of 
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the phenotypic relationship between lifetime reproduction and lifespan in our flies indicates that long 

life is also coupled with increased lifetime reproduction (Rauser et al. 2005a). Furthermore, as already 

mentioned, Novoseltsev et al. (2004) showed that flies with short lifespans do not have higher mean 

fecundity during what they call their midlife “plateau” compared with flies that live a medium number 

of days. This too is not consistent with the predictions of the lifelong trade-off heterogeneity theory 

for fecundity [Note that their “plateau” is a midlife plateau for individual females, while our “plateau” 

usage refers to average population fecundity at very late ages]. However, they did show that the 

longest-lived flies had a lower mean fecundity than the medium and short lived flies, but not always 

significantly lower. An analysis of the relationship between the mean number of eggs each female laid 

per day and lifespan in our flies suggests a similar relationship. That is, longer lived flies had a slightly 

lower mean number of eggs laid per day (Rauser et al. 2005a), but not low enough compared to 

shorter-lived flies to significantly improve our ability to predict which females would be long-lived 

plateau females, or not, at earlier ages. 

 Our studies of fecundity indicate that there is significant, predictive, age-specific 

heterogeneity in fecundity within large cohorts, which is to be expected in a genetically heterogeneous 

outbred population. This heterogeneity is not lifelong, nor is it sufficient to cause late-life plateaus in 

average population fecundity. The most significant type of age-specific heterogeneity was between 

flies about to die vs. those that were not about to die. Because lifelong heterogeneity in fecundity 

hypotheses are based on the same type of underlying assumptions as lifelong heterogeneity theories 

proposed to explain late-life mortality-rate plateaus, our test of such lifelong models for fecundity is 

relevant to the mortality models as well. If lifelong heterogeneity effects are generally related to late 

life, then they should have passed this test. Our results refute at least one general class of heterogeneity 

theories, those based on fixed lifelong differences in fecundity. 
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Conclusion:  Evidence against Lifelong Heterogeneity Theories of Late Life 

A great deal of experimental effort has been devoted to tests of lifelong heterogeneity as an 

explanation of late life phenomena involving both mortality and fecundity.  It should be pointed out 

that, while we have not been exponents of lifelong heterogeneity theory for some time, others who 

have conducted tests of it apparently were, at least prior to collecting their data (e.g. Khazaeli et al. 

1998).  But regardless of the views of the experimenters, no one has found support for this hypothesis 

in critical experimental tests, as opposed to post hoc fits of demographic data using the lifelong 

heterogeneity hypothesis, whether merely conjectural (e.g. Greenwood and Irwin 1939; Beard 1964; 

Vaupel et al. 1979) or quantitative and specific (e.g. Kowald and Kirkwood 1993).  Instead, there is a 

proliferation of evidence against lifelong heterogeneity theories of late life. 

In fairness, however, it should be pointed out that there is an abundance of alternative 

mortality models in demography, and some of the tests described here, such as those of Mueller et al. 

(2003) are model-dependent.  Choosing other demographic models might lead to different results, 

and we have not repeated our analyses over the full range of published, much less conceivable, 

demographic models.  Naturally, this would be an endless enterprise. 

On the other hand, some of the tests of lifelong heterogeneity which we have discussed in this 

chapter are not particularly model-dependent.  Examples of relatively model-independent 

experimental tests are those of Fukui et al. (1993), Khazaeli et al. (1998), Drapeau et al. (2000), and 

Rauser et al. (2005a).  Lifelong heterogeneity theory has only received falsifications in these tests, never 

corroborations, when the experimental results have been clear.  However, we have already 

encountered some maneuvering with respect to these ostensible falsifications (see Mueller and Rose 

2004), as we have discussed in this chapter with reference to the re-analysis of our data by Steinsaltz 

(2005).  We can expect more such challenges to experimental refutations of lifelong heterogeneity, 



Mueller, Rauser & Rose      DOES AGING STOP? 

142 
 

since the theory is mathematically elegant as well as intuitively attractive for those who cannot accept 

the conclusion that aging could possibly cease at the level of individuals.   

Thus like those who espouse special creation or intelligent design against the evidence 

accumulated against these hypotheses, we can expect devotees of lifelong heterogeneity theories for 

late life to be with us for some time.   But even if they are wrong, they serve the useful role of Devil’s 

advocates against the claims of Hamiltonian aging research, keeping its proponents on their toes, as 

we will illustrate below. 
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Chapter 9. Death Spirals 

 

Unlike mortality, there are no general purpose models to describe age-specific fecundity 

patterns. Here we show that combining the effects of natural selection on fecundity with a newly-

discovered physiological phenomenon we call the death spiral results in highly accurate descriptions 

of female fecundity in Drosophila. 

 

Models of Fecundity 

Unlike the case of the demography of survival, there is no universal simple model that 

describes age-specific fecundity. Most models of the patterns of age-specific fecundity that are used 

in biological research are simple phenomenological models. These models have as their primary goal 

the accurate prediction and statistical analysis of fecundity (e.g. Geyer et al. 2007; Shaw et al. 2008). 

While such descriptive models serve an important role in population biological research, another 

important goal of modeling is to understand the forces shaping age-specific fecundity. For us, an 

important force is the impact of natural selection on patterns of age-specific fecundity. 

There have been previous attempts to develop models of age-specific fecundity based on 

physiological and evolutionary forces. For instance, Novoseltsev et al. (2003, 2004) proposed a model 

that assumes a decline in fecundity late in life due to age-related oxidative vulnerabilities. While this is 

not an explicitly evolutionary model, one could argue that these vulnerabilities show a decline with 

age due to the declining force of natural selection. Cichon (2001) and Shanley and Kirkwood (2000) 

developed evolutionary models for life history, including fecundity, following the optimal life history 

paradigm pioneered by Gadgil and Bossert (1970). These theories can incorporate a number of 
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complex effects on fecundity, although they often ultimately rely on the questionable assumption that 

natural selection maximizes the lifetime number of offspring.  

In Chapter 4 we developed Hamiltonian evolutionary theory that suggests some very general 

patterns for age-specific fecundity. We elaborate upon that general model here, with the addition of a 

newly discovered physiological phenomenon called the ‘death spiral’ that profoundly affects fecundity 

just prior to death. The resulting model is relatively simple, biologically motivated, and provides 

accurate descriptions of age-specific fecundity in Drosophila. This makes it a potential candidate model 

for the demography of fecundity in other species as well. 

 

The Death Spiral Phenomenon 

There are three important stages of life from the perspective of evolutionary biology (Rose et 

al. 2006; Shahrestani et al. 2009). The first is the developmental period, prior to reproduction. During 

this stage, natural selection works with maximum efficiency to weed out genetic variants that reduce 

survival before the onset of reproduction. Any individual that fails to survive this period will have zero 

fitness, in the absence of altruistic interactions with related individuals. The powerful action of natural 

selection during this stage doesn’t guarantee survival, even under optimal conditions, because of 

recurring mutations, segregational genetic load, and developmental accidents. But it does mean that 

this stage of life is the primary beneficiary of natural selection for enhanced survival.  The aging phase 

is the second stage of life; it is also the period following the onset of reproduction, which brings 

fecundity into consideration as a component of fitness. The theory of selection in age-structured 

populations predicts eventual decreases in age-specific fitness components, even under ideal 

conditions, including age-specific fecundity, during this second stage (Charlesworth 1994).  The third 

stage of life has been called ‘late life’ (e.g. Rose et al. 2002; Rauser et al. 2006). Because at advanced 
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ages age-specific selection is effectively absent, our expectation is that age-specific fecundity under 

protected conditions will plateau.  We have reviewed data suggesting this in Chapter 3.  A more formal 

explanation of fecundity plateaus was then presented in Chapter 4.   

But it turns out that fecundity trajectories are even more complicated.  In the large-scale study 

of age-specific patterns of female fecundity in Drosophila that we described in Chapter 8, we discovered 

a fourth life-cycle phenomenon which we have called the ‘death spiral’ (Rauser et al. 2005a; Mueller 

et al. 2007). For a period of 6-15 days prior to death, the fecundity of females that are about to die 

drops at a much faster rate than the fecundity of similarly aged females that are not about to die. This 

result was discovered by comparing the slopes of the line describing fecundity vs. age as a function of 

the prospect of death for individual females. In Chapter 8, we saw that the ability to distinguish 

between plateau and non-plateau females improves as more non-plateau females are about to die, or 

enter the death spiral, in our terminology (see Figure 8-5). The death spiral is detectable across a wide 

range of adult ages (Figure 9-1); it may signal a very general decline in physiological health prior to 

death. The death spiral has also been independently documented in D. melanogaster by other 

laboratories (e.g. Rogina et al. 2007). 

Phenomena similar to the death spiral have been observed in other organisms. Christensen et 

al. (2008) monitored the physical and cognitive abilities of 2,262 Danish individuals all born in 1905. 

Over the course of the study, the individuals were between 92 and 100 years of age. They found that 

the physical and cognitive scores of a group of individuals that died within two years of the initial 

measurements were significantly lower than the scores of similar aged individuals who did not die. 

Similarly, male medflies will often be found on their backs prior to death, although if the fly can right 

itself it continues more or less normal behavior (Papadopoulos et al. 2002). This supine behavior 

appears to also be a reliable signal of impending death. 
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Figure 9-1. Daily fecundity of 1,100 females from the CO1 population (Rauser et al. 2005a; see also Chapter 8). The thin 
solid line shows the average fecundity for all females. The thick lines show the average fecundity for females five days 
prior to death that have entered the death spiral at different age ranges. It appears that death is accompanied by a 
dramatic decline in fecundity independent of the age at death. 

 

There are a host of interesting questions about the process of dying that could be addressed, 

if it were possible to reliably identify the females that have entered the death spiral prior to their actual 

death. It is reasonable to suppose that, if fecundity is undergoing a dramatic decline prior to death, 

then other aspects of physiology may also be changing dramatically. Since many physiological assays 

in Drosophila and other species are destructive, it will not always be possible to collect this physiological 

data immediately prior to the death of a test female. This inability will limit the study of the process 

of dying. 
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Predicting Death in Female Drosophila 

We have recently developed statistical methods for predicting whether an individual female is 

in the death spiral or not (Mueller et al. 2009). These methods were validated using three different 

data sets that we now describe in more detail. 

Our study used the data collected from the lifelong heterogeneity in the fecundity experiment 

described in Chapter 8 that followed the daily fecundity and time of death of 2,828 individual females 

from the outbred CO1 laboratory population of D. melanogaster (see Rauser et al. 2005a). This 

population is one of the five replicate CO populations derived in 1989 from five corresponding O 

populations (Rose 1984b), and is selected for mid-life reproduction (age 28 days; Rose et al. 1992), as 

further described in Chapters 4 and 5 (see Figure 4-2). The data that we analyze here were derived 

from three large cohorts of flies from the CO1 replicate population and were collected to test the 

lifelong heterogeneity in fecundity hypotheses, as described in Chapter 8 (see Rauser et al. 2005a and 

Mueller et al. 2009 for experimental details). 

Suppose we have a cohort of flies aged t days, an age that we will call the ‘target age.’ At the 

target age, we would like to separate females into two groups, those that are in the death spiral and 

those that are not. To be more specific, we consider a female in the death spiral if she is expected to 

die on day t+1, t+2, .., t+ν, where the age-increment ν is the maximum length of the death process. 

Based on our previous estimates of the duration of the death spiral in Drosophila, v could range from 

5 to 14 days, for a female who enters the death spiral at day t.  

Since it is more likely that flies well into the death spiral will exhibit altered physiology 

compared to females that have just begun the death spiral, we have set ν=5 for the data analysis that 

follows. We regard this as a conservative assumption that also allows the female to be in the death 
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spiral for several days prior to the target day, and her fecundity should reflect this. This definition of 

the duration of the death spiral means that it is possible that some females that have started their death 

spiral might be mistakenly classified as non-death spiral females because they die at an age > t+5. 

However, it is much less likely that a female who would die within five days of the target age would 

not be classified in the death spiral. 

In the absence of any information about female fecundity, we could still use the survival of 

flies prior to the target day to estimate the chance of a fly dying over the next five days. We expect 

that experiments designed to measure the physiology of death spiral females would collect flies at ages 

well before a mortality plateau, in which case survival might be accurately predicted by the Gompertz 

equation (Gompertz 1825; Mueller et al. 1995). Under this model, the chance of dying in the five days 

following the target age (P) would be, 

 

𝑃𝑃 = 1 − 𝑝𝑝𝑡𝑡+5
𝑝𝑝𝑡𝑡

,      (9-1) 

 

where pt is the chance of surviving to age-t. The probability of surviving to age t is given by the 

Gompertz equations as, 

 

𝑝𝑝𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐴𝐴[1−𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼)]
𝛼𝛼

�,     (9-2) 

 

where A is the age-independent Gompertz parameter and α is the age-dependent parameter. 

Information from a cohort’s survival records allows us to predict with some accuracy how 

many females should be in the death spiral. However, with this information alone the only way to use 

this information would be to randomly choose the appropriate number of females for each group, i.e. 
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those in the death spiral and those not in the death spiral.  But data on age-specific female fecundity 

might, in principle, give better information for making more precise predictions about which females 

to put in each category. As shown in Mueller et al. (2009), the total number of eggs laid by females 

three days prior to an assay can be used to reliably classify females as either in the death spiral or not. 

Thus, a practical protocol for creating the two groups of females can make use of demographic 

predictions from both the observed number of deaths prior to the assay and age-specific female 

fecundity (Figure 9-2).  

 

Figure 9-2. A collection of N females is ranked according to their three-day fecundity, with f1 being the lowest value of 
fecundity and fN the greatest. From the survival data, the parameters of the Gompertz equation can be estimated and 
then used in equation 9-1 to predict P, the fraction of the population that should be in the death spiral. Thus, the PN 
females with the lowest fecundity values form the death spiral group and the remaining females form the non-death 
spiral group. Techniques for improving this classification scheme are discussed in Mueller et al. (2009). 

An Evolutionary Heterogeneity Model of Fecundity 

We will now present a statistical model of late life fecundity by distinguishing between the egg-

laying of females before and during their death spiral. Since this model uses predictions from 

evolutionary theory and the fact that females are heterogeneous (e.g. spiral vs. non-spiral), we call this 

model the Evolutionary Heterogeneity Fecundity model, or the EHF model for short. The basic 

pattern of female age-specific fecundity before the death spiral which is assumed in our model is that 
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in mid to late life, fecundity shows a roughly linear decline until the fecundity breakday (fbd), after 

which fecundity remains constant (Figure 9-3). These assumptions lead to the following relationship 

between age (t) and fecundity (f(t)), 

c 

𝑓𝑓(𝑡𝑡) = � 𝑐𝑐1 + 𝑐𝑐2𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐1 + 𝑐𝑐2𝑓𝑓𝑓𝑓𝑓𝑓, 𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑓𝑓𝑓𝑓𝑓𝑓.    (9-3) 

 

 

Figure 9-3. An EHF model of female fecundity. During middle ages, the decline in female fecundity at age t is described 
by the line f(t) = c1 +c2t. At age fbd, called the fecundity breakday, female fecundity reaches a plateau of c1 +c2fbd eggs per 
day. Females about to die are assumed to enter a death spiral that involves a steep decline in fecundity. If a female begins 
this death spiral at age t*, then it is assumed that fecundity declines linearly from that age until death with a slope of 
c3f(t*). This slope may be the same for all flies or may vary for pre- and post-plateau females. The duration of the death 
spiral is assumed to be of fixed length. It may be estimated independently from data or via regression from the 
population fecundity data. 

Just before death, during the death spiral, it is assumed that fecundity declines at a more rapid 

rate (Figure 9-3). If the duration of the death spiral is w days and a particular female dies at age d, then 

her fecundity for w days prior to death, 𝑓𝑓(𝑡𝑡), is given by, 
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𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝑑𝑑 − 𝑤𝑤) + 𝑓𝑓(𝑑𝑑 − 𝑤𝑤)𝑐𝑐3(𝑤𝑤 + 𝑡𝑡 − 𝑑𝑑).     (9-4) 

 

This formulation of the death spiral assumes that the slope of the decline is proportional to the average 

fecundity of females at the age the death spiral begins. Both f(t) and 𝑓𝑓(𝑡𝑡) are constrained to have non-

negative values. Accordingly, the complete four parameter model for age-specific fecundity with 

parameters, θ = (c1,c2,c3,fbd), is, 

 

𝐹𝐹(𝑡𝑡, 𝑑𝑑,𝜃𝜃) = �
𝑓𝑓(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑑𝑑 − 𝑤𝑤
𝑓𝑓(𝑡𝑡) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

.     (9-5) 

 

An important parameter of this stochastic EHF model is the duration of the death spiral, w. While the 

value of this parameter could be estimated from a regression analysis, we first examined individual 

fecundity patterns to see what an empirically estimated value of w might be. To accomplish this, we 

analyzed the individual fecundity data collected for the CO1-1 population described in Chapter 8 and 

in Rauser et al. (2005a) as follows. 

We separated all females within the cohort into two groups, those dying before the breakday 

(fbd) and those dying after fbd. The age of these flies was then rescaled to the number of days before 

their death, rather than absolute age. From these data, we then estimated the slope of female fecundity 

over the days before death using different numbers of observations, varying the duration of the death 

spiral. Our expectation was that, as we added observations further back in time from the day of death, 

the fecundity value should return to the average cohort fecundity value, causing the magnitude of the 

slope of the fecundity decline to fall, relative to its value when only the first few days before death are 

used to estimate this slope. This analysis showed that the slope remains unchanged for non-plateau 
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females until 16 days before death, suggesting a death-spiral duration of 15 days (Figure 9-4). In plateau 

females, the slope-change occurs at seven days before death, suggesting a death window of six days. 

Based on these results, we used a death-spiral duration of 10 days in models that treat w as a fixed 

constant, for the sake of simplicity. 

 

Figure 9-4. The slope of the death spiral as a function of the width of the death spiral window, in days, for non-plateau 
and plateau females. The horizontal line shows the base slope of the death spiral using only 5 (non-plateau females) or 4 
(plateau females) days of fecundity observations before death. Each point represents the slope with additional 
observations added. The error bars can be used to determine when these slopes are significantly different from the base 
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slope. The error bars are twice the square root of the variance of the sum of the two estimated slopes (the base slope and 
the current slope). 

 

Our basic model of female fecundity (Equation 9-5) has four parameters, θ = (c1,c2,fbd,c3), but 

we also examined three other variants of this model. We studied a five-parameter model, which 

assumes that the slope of the death spiral, c3, may be different for pre-plateau and post-plateau females. 

We also generalized this five-parameter model to a six-parameter model by making the duration of the 

death spiral a model parameter. The fourth model that we considered was the most complicated; it 

was the same as the six-parameter model, except that the duration of the death spiral was allowed to 

differ for flies dying before the plateau and after the plateau. 

Estimating the parameters of these EHF models requires information on both age-specific 

fecundity and mortality. Without the mortality data, we cannot directly infer the timing of female death 

spirals. Therefore, we identify three classes of experimental data that we have been able to analyze. (i) 

Experiments that have measured fecundity on individual females and have also recorded the age at 

death of these females (specifically, data from Rauser et al. 2005a). These are the best data and permit 

direct estimates of model parameters. (ii) Experiments where the number of deaths of a cohort of 

females is recorded at regular time intervals, but fecundity is observed on groups of females, not 

individuals. (iii) Finally there are experiments where fecundity was observed on groups of females, but 

no survival data was recorded. We discuss the results and methods of analysis for each of these three 

classes of experimental data in turn. 

 Individual fecundity and survival records. Let the observed number of eggs laid by a 

female-i at age-x be, fix, i = 1,..,N and x = tb.. td. Thus, tb is the age from egg at which female 

reproduction begins and td+1 is the greatest age at death of the N females. For each of the N females 
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let the observed age at death be di. With these observations we can compute the average fecundity at 

each age from 

 

𝑓𝑓𝑥𝑥 = 1
𝑛𝑛𝑥𝑥
∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎

𝑑𝑑𝑖𝑖>𝑥𝑥
,      (9-6) 

 

based on records of nx females still alive at age-x. The predicted average fecundity (𝐹𝐹𝑥𝑥�𝜃𝜃��) at age-x for 

parameter values 𝜃𝜃� is calculated as, 

 

1
𝑛𝑛𝑥𝑥
∑ 𝐹𝐹�𝑥𝑥,𝑑𝑑𝑖𝑖 ,𝜃𝜃��𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎

𝑑𝑑𝑖𝑖>𝑥𝑥
,     (9-7) 

 

where 𝐹𝐹�𝑥𝑥, 𝑑𝑑𝑖𝑖,𝜃𝜃�, � is one of the fecundity models such as Equation 9-5. The model parameters, 𝜃𝜃�, 

are then chosen to minimize, 

 

1
(𝑡𝑡𝑑𝑑−𝑡𝑡𝑏𝑏+1)

∑ �𝑓𝑓𝑥𝑥 − 𝐹𝐹𝑥𝑥�𝜃𝜃���
2𝑡𝑡𝑑𝑑

𝑥𝑥=𝑡𝑡𝑏𝑏 .     (9-8) 

 

Since there are so many more females at the young ages, we have chosen a least squares statistic 

that treats each age as an equivalent sampling unit. However, since there are fewer observations at the 

older ages, we expect these predictions to be less reliable. This uncertainty will be reflected in the size 

of the confidence intervals we compute with these regression predictions. 

To evaluate the uncertainty in the predicted values of female fecundity, we used bootstrap 

resampling of our data. A bootstrap sample, 𝑓𝑓𝑖𝑖𝑖𝑖 , was generated by taking a sample of N females with 

replacement from the original set of N females. This sampling also produced N bootstrap ages at 
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death, 𝑑̃𝑑𝑖𝑖. With this bootstrap sample, we utilized the methods summarized in Equations 9-6 to 9-8 

to obtain a least squares estimate, 𝜃𝜃�. The parameter 𝜃𝜃� was then used to predict the mean fecundity at 

each age, 

 

𝐹𝐹�𝑥𝑥(𝜃𝜃�) = 1
𝑛𝑛�𝑥𝑥
∑ 𝐹𝐹�𝑥𝑥, 𝑑̃𝑑𝑖𝑖 ,𝜃𝜃��𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎

𝑑𝑑�𝑖𝑖>𝑥𝑥
,      

 

where 𝑛𝑛�𝑥𝑥 is the number of females alive at age-x in the bootstrap sample. One hundred bootstrap 

samples were generated and 96% confidence bands on the average value of the 100 𝐹𝐹�𝑥𝑥(𝜃𝜃�) were 

derived from the second smallest and 99th largest value of 𝐹𝐹�𝑥𝑥(𝜃𝜃�). 

We performed an analysis of the EHF models using the individual fecundity and mortality 

data collected by Rauser et al. (2005a) and found that the four-parameter model (Equation 9-5) was 

most often the best model over all three indices used for assessing model fit (see the Appendix for 

this chapter to see statistical details of this analysis, including Table A9-1). This result combined with 

the normal scientific preference for the most simple model suggests that Equation 9-5 is perhaps the 

best and simplest description of age-specific female fecundity. We have used this four-parameter 

model to compare the average predicted fecundity from the model with the observed average 

fecundity in the three CO1-1, CO1-2, and CO1-3 cohorts (Figure 9-5).  
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Figure 9-5. The four parameter fecundity model (dark solid line) and 96% confidence interval (light black lines) for 
cohorts (a) CO1-1, (b) CO1-2, and (c) CO1-3. The circles are the mean observed fecundity at each age. 
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Although the fit of the four-parameter model is very good, we do not consider goodness of 

fit alone to be the sole important criterion for assessing the utility of this type of model. This model 

is our hypothesis about the evolutionary forces molding age-specific fecundity as well as a reflection 

of individual physiological decline prior to death. Thus our belief in this model, or any other model, 

cannot be evaluated solely by its goodness of fit. The strongest virtues of this model are the soundness 

of its theoretical underpinnings and its ability to predict new experimental observations, which are in 

part addressed by the cross-validation statistic. 

Individual survival records and group fecundity records. To estimate the basic four-

parameter model’s (Equation 9-5) coefficients and to provide confidence intervals about the estimated 

parameter values, we compared observed fecundity with those derived from simulations. The 

simulations generated ages at death from the two-stage Gompertz mortality model. The parameter 

estimates for the two-stage Gompertz model were obtained in independent mortality experiments. 

Our experimental data (described in Rauser et al. 2006) consisted of an initial cohort of 3,200 

females. These females were maintained in vials with four females per vial. At each age, if there were 

more than 400 surviving females, a sample of 100 vials was chosen to estimate fecundity. Once the 

number of survivors dipped below 400, all vials were used to estimate fecundity. Thus, the per-capita 

fecundity of females in vial-i at age-x is given by fi(x), i = 1, 2, .., nx, where nx is the number of vials 

used to estimate fecundity at age-x. Age-specific fecundity estimates started at age tb, which was 30 

days from egg for all five populations, and ended at day td, the last day there were four live females, 

which varied among populations. 

In our numerical analysis, the bootstrap fecundity sample at age-x was generated by taking nx 

samples with replacement from fi(x). This bootstrap sample is represented as,𝑓𝑓𝑖𝑖(𝑥𝑥), i = 1, 2, .., nx.  
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The independent mortality data were used to estimate the parameters of the two-stage 

Gompertz that were used in simulations of mortality. The distribution function of the two-stage 

Gompertz, G(x) is, 

 

𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐴𝐴[1 − 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼)]

𝛼𝛼
�  𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐴𝐴[1 − 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝛼𝛼)]

𝛼𝛼
� 𝑒𝑒𝑒𝑒𝑒𝑒�𝐴̃𝐴(𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥)�   𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑚𝑚𝑚𝑚𝑚𝑚

 

 

The age at death, d, for 3200 females in the bootstrap sample was simulated by the inverse 

transform algorithm as, d = G-1(U), where U is a uniform random number on the interval (0,1) 

(Fishman 1996). At each age we took a sample of 400 females or, if there were fewer than 400 

survivors, all females were used. Let the number of females used at each age be 𝑛𝑛�𝑥𝑥. With the simulated 

age at death for these females and an estimate of the model parameter θ0, we estimated the predicted 

fecundity of each female as F(x, di, θ0) (Equation 9-5), for i = 1,...,3,200. The bootstrap estimate of 

the average fecundity at age-x, for parameter θ0, was then estimated from the average, 𝐹𝐹�𝑥𝑥(𝜃𝜃0) =

1
𝑛𝑛�𝑡𝑡
∑ 𝐹𝐹𝑖𝑖=𝑛𝑛�𝑡𝑡
𝑖𝑖=1  (x, di, θ0). The least-squares estimates were found by minimizing the sum, 

∑ ∑ �𝐹𝐹�𝑗𝑗(𝜃𝜃0) − 𝑓𝑓𝑖𝑖(𝑗𝑗)�
2𝑖𝑖=𝑛𝑛𝑗𝑗

𝑖𝑖=1
𝑗𝑗=𝑡𝑡𝑑𝑑
𝑗𝑗=𝑡𝑡𝑏𝑏 . From this first bootstrap sample, one bootstrap estimate of the 

parameter vector, θi was obtained. One hundred bootstrap samples were then generated and their 

mean was used as the final parameter estimate, 𝜽𝜽�. These least squares estimates treat the vials as the 

units of observation. Since the number of vials used was limited at the early ages, these regressions do 

not weight the very early ages heavily, although the very late ages contribute less to minimizing the 

squared deviations due to the small number of survivors at those ages. 
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Our analysis of the EHF models using individual survival and group fecundity data from 

Rauser et al. (2006) found that, except for one case out of the ten examined, the four-parameter model 

(Equation 9-5) had the smallest values of both AIC and BIC (see Appendix for statistical details of 

this analysis and Table A9-2). Accordingly, we focused on this model in our detailed analysis of the 

CO data. 

Fecundity and mortality rates were measured for each of the five replicate CO populations. 

Figure 9-6 shows the data for both age-specific fecundity and female mortality, along with their 

respective fitted models for all five populations. Although the fecundity model is composed entirely 

of linear functions, the fact that the population is composed of two types of females, the normal and 

the dying, produces predicted fecundities that decline slowly and in a nonlinear fashion with age 

(Figure 9-6). The age of onset of the late-life fecundity and mortality-rate plateaus for a population, 

with their respective breakdays, were estimated from the stochastic fecundity model and the two-stage 

Gompertz model, respectively. 
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Figure 9-6. Age-specific female mortality and fecundity data along with the respective model predictions for all five CO 
populations. The circles are the observed mean fecundity and the triangles are the observed mortality rates. A two-stage 
Gompertz model was fit to the mortality data and the four-parameter stochastic fecundity model was fit to the fecundity 
data to determine the breakdays, or the onset of the late life plateaus, for both mortality and fecundity. The dashed lines 
are the upper and lower 96% confidence interval for the fecundity predictions. Fecundity plateaued earlier than mortality 
in all five populations. The average pairwise difference between the onset of the two types of plateaus was 12.7 days. 

Group fecundity records only. When only fecundity data from groups of females exist, it 

isn’t possible to estimate all of the parameters in Equation 9-5. However, using the fecundity data 
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alone we can get estimates of the parameters for Equation 9-3 using standard nonlinear regression 

techniques. From these we can use the estimated breakdays to make important evolutionary 

inferences. For this procedure to be valid, it is important to assume that there is some correspondence 

between the estimated value of the breakday utilizing only Equation 9-3 vs. the value for the breakday 

derived from the full model (Equation 9-5). We explore this problem below. 

For eight different experimental data sets, we estimated the parameters of Equation 9-3 from 

the fecundity data only. Three of these data sets, referred to as CO1-1, CO1-2, and CO1-3, are replicate 

experiments on individual females from the CO1 population (Rauser et al. 2005a). For these three 

cohorts, the parameters of Equation 9-3 were also estimated from the EHF model (Equation 9-5) 

using the techniques described previously for individual fecundity and survival records. The remaining 

five cohorts were obtained from the entire set of five CO populations (CO1-5). However, for these 

data fecundity was recorded on groups of females and survival was observed on a separate group of 

females. Accordingly, the parameters of the stochastic fecundity model were estimated by the 

techniques described previously for individual survival records and group fecundity records. These 

analyses were done using an adult age time scale. Thus, time zero is the start of adult life.  

The results (Figure 9-7) suggest that the values for the fecundity breakday are very similar with 

each technique.  The other parameters of the fecundity model may have estimates that vary depending 

on the technique used. This is not surprising, since the decline in female fecundity with age is described 

by two parameters in the EHF model (Equation 9-5), while the simple model (Equation 9-5) 

summarizes this decline with just one parameter. Given these findings we suggest that reasonable 

estimates of the breakday for the EHF model can be obtained when survival data is absent by simply 

fitting the two-stage fecundity model. 
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Figure 9-7. The estimated fecundity breakday for 8 CO cohorts. For each population the breakday was estimated by 
Equation 9-3 (x-axis) and by Equation 9-5 (y-axis). The solid lines shows equality of the two estimates. 

Early Fecundity and an Alternative Model 

The EHF model does not treat the changes in Drosophila fecundity that take place immediately 

after sexual maturation. As discussed by Novoseltsev et al. (2003), the initial rapid rise in female 

fecundity after sexual maturity may represent the balance of ovariole maturation and egg production, 

with several days being required before females hit their maximum egg output. We believe that the 

falling force of natural selection acting on fecundity will result in a slow decline in age-specific 

fecundity after this initial maturation of the female’s reproductive physiology. Novoseltsev et al. (2003) 

suggest that there will in fact be a plateau for some extended period of time at the female’s maximum 

egg production. Novoseltsev et al. (2003) recognize that the pattern of average female fecundity does 
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not typically show such a plateau, but they argue that this is an artifact of the averaging over many 

females that have plateaus of different lengths.  

Novoseltsev et al. (2003) estimate these plateaus by fitting a model to each individual female’s 

age-specific fecundity. An unresolved problem with this approach is whether individual data is 

sufficiently reliable to distinguish between patterns of fecundity that plateau vs. those that show a 

simple peak with a lot of noise. Future work will hopefully focus on sorting out the different 

predictions of the resource-allocation model of Novoseltsev et al. (2003) and our evolutionary 

heterogeneity fecundity (EHF) model. 

 

Conclusion:  Death Spirals and the Evolution of Late-Life Fecundity Plateaus 

For the chief subject matter of this book, the most important scientific issue arising from the 

discovery of death spirals in Drosophila is whether or not death spirals invalidate the research that we 

have performed on fecundity plateaus when we have not had access to complete records of the age-

specific fecundities and ages-at-death of individual females.  Recall that this is the case for the fecundity 

data discussed in Chapters 2, 4, and 5, none of which was based on the collection of complete 

demographic data for individual females.  

We have already used the EHF model to account for death-spiral effects in our fecundity data 

from previous chapters.  Fortunately, the basic evolutionary inferences that we had made before 

developing the EHF model remain valid; late-life fecundity plateaus evolve in conformity with 

expectations derived from Hamiltonian models.   
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Chapter 10. Physiology of  Late Life 

 

Hamiltonian theory suggests that the physiology of late life could be different from that of 

aging. Drosophila experiments comparing the physiology of aging with the physiology of late life 

corroborate this suggestion, but much work remains to be done. 

 

Intuitive Intimations Concerning Late Life Physiology 

As our discussion to this point should have made clear, there are two chief contending 

explanations for the late life phenomenon: lifelong heterogeneity and Hamiltonian evolutionary 

theory. On the first view, aging is an ineluctable process that never ceases, but in elite sub-cohorts it 

proceeds so slowly that age-specific mortality rates roughly plateau at very late ages, due to the absence 

of inferior sub-cohorts. Intuitively, then, it might be expected that the first view implies that 

physiologically monitoring cohorts undergoing the transition from aging to late life would reveal no 

definitive transition, although there might be a gradual deceleration in physiological deterioration as 

inferior sub-cohorts progressively die off. Thus, lifelong heterogeneity seemingly implies that late life 

physiology should not show distinctive properties compared to the physiology of aging. 

On the Hamiltonian view, aging largely comes to an end, with much older individuals no 

longer afflicted by the collapsing forces of natural selection. For this reason, it has been proposed that 

there is a distinct “third phase” to life, after the end of the aging phase or stage (e.g. Rose et al. 2006). 

By contrast to the implications of the lifelong heterogeneity theory, it might be supposed intuitively 

that the Hamiltonian view necessarily implies that “aging” physiology should stabilize during late life, 

and the characteristic chronological decline in functional attributes that is such a hallmark of aging 

must come to an end. 
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Here we will show that neither of these intuitive expectations are correct, both in principle 

and in some early data collected from our Drosophila experimental system. However, the present 

chapter chiefly serves to open a door into a novel arena for research, and the conclusions that we have 

to offer are only preliminary in character.  

 

Paradoxes and Indeterminacies arising from Lifelong Heterogeneity Theory 

There are four major empirical problems with lifelong heterogeneity theory, as we have 

discussed. First, there is no direct evidence showing that lifelong heterogeneity in key, delimitable, and 

measurable robustness characters leads to sufficient differential survival to explain late-life mortality 

rate plateaus, as we have discussed principally in Chapter 6. Second, there are a range of experiments 

that give results incompatible with specific lifelong heterogeneity theories, which we have reviewed 

particularly in Chapter 8. Third, there are experiments that corroborate the alternative Hamiltonian 

theory for late life (e.g. Rose et al. 2002; Rauser et al. 2006), particularly experiments involving 

experimental evolution, which we have reviewed in Chapters 4 and 5. Fourth, there are no experiments 

or other data that evidently falsify the alternative Hamiltonian theory. For these four reasons, based 

in data, we have argued against the validity of lifelong heterogeneity theory as an explanation for late 

life plateaus in mortality and fecundity. 

But as a theory, in and of itself, lifelong heterogeneity has both the strengths and weaknesses 

of indeterminacy. As an ill-defined and unconstrained theory, it can be modified in innumerable ways. 

We have taken some pains to show its difficulties in previous chapters when it is formulated explicitly, 

particularly when it is formulated in terms of lifelong heterogeneity in either background age-

independent mortality (the A parameter of the Gompertz equation) or the rate of Gompertzian aging 
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(the α parameter). But there are other conceivable, alternative, ad hoc and post hoc demographic models 

for mortality based on lifelong heterogeneity, which we haven’t subjected to the same level of scrutiny.  

We note three particularly slippery features of the full range of lifelong heterogeneity theory 

from the standpoint of the physiological foundations of its presuppositions. (i) It invokes hypothetical 

hidden variables such as underlying ‘robustness’ characters of some type, or their converse ‘frailty’ 

characters. Yet such underlying physiological characters are not operationally defined so that they can 

be measured physiologically in the literature that invokes them. (ii) Lifelong heterogeneity theory then 

posits hypothetical interactions between such hidden physiological variables and known demographic 

variables such as age-specific mortality rates. These linkages can take many conceivable forms, 

including the production of trade-offs between characters mediated by underlying connections 

involving the hypothesized physiology. (iii) Lifelong heterogeneity theories have potentially unlimited 

freedom in the composition of these theory-elements, such as arbitrarily varying sub-cohort-number, 

arbitrarily varying the number of underlying physiological robustness characters, and so on. Taken 

together, all these elements of flexibility in lifelong heterogeneity theory provide an expansive 

playground for the mathematical imagination of a demographer, particularly as it is not reliably 

tethered to physiological particulars. 

Lifelong heterogeneity theory thus seems to meet many of Popper’s (e.g. Popper 1959) criteria 

for unfalsifiability. And thus, we can expect lifelong heterogeneity theory to persist in the 

gerontological and demographic literatures. An often irrefutable and widely flexible theory, with 

hidden variables whose correct identification or measurement can always be disputed, will be very 

difficult to force out of a scientific arena, if it is not rejected on methodological grounds. 

Turning to the implications of lifelong heterogeneity theory for the observable physiology of late 

life leads to some of the typical features of an unfalsifiable theory. If there is no particular expectation 

for the relationship(s) between functional physiological characters and hypothesized lifelong 
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differences in demography, then a transition between aging and late life produced by extreme lifelong 

heterogeneity can lead to a wide spectrum of trajectories for physiological characters. In explicit 

simulations of age-specific physiological characters, simulations that assume lifelong heterogeneity for 

robustness, we can generate a variety of curves for underlying physiological characters. Essentially any 

pattern can be produced: reversal of functional aging, alternating waves of increase and decrease in 

functional physiology, continuing physiological deterioration during late life, accelerating deterioration 

during late life, and so on. An example is shown in Figure 10-1. The lack of structural or parametric 

constraints on the physiological underpinnings of lifelong heterogeneity theories allows such theories 

to generate a great diversity of possible patterns for the physiological transition from aging to late life. 

For those who enjoy theory untrammeled by the risk of experimental refutation, lifelong heterogeneity 

theory will be an attractive way to explain and characterize the physiological features of late life.  
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Figure 10-1. A population is assumed to have a phenotype that declines, linearly in value with increasing age: dotted lines 
in (a). There are 101 different physiological types in the population with phenotype vs. age curves that fall between the 
two dotted lines in (a). We further assume that as this physiological trait declines with age so does the age-independent 
Gompertz parameter for that physiological type. If at age 0 there are equal numbers of all 101 types then the age-specific 
mortality in the whole population remains Gompertzian as shown in (b). The population average phenotype is the solid 
line in (a). The phenotype will eventually start to decline again at very advanced ages when there is only one physiological 
type remaining. The shape of this population average curve can be changed under different assumptions about the 
number of types and the relationship between the physiological phenotype and the Gompertz equation. 
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Potential Physiological Complexity of Hamiltonian Physiology during Late 

Life 

One of the inherent strengths of the Hamiltonian analysis of aging is that it has always had 

within it the implicit prediction that any component of age-specific adaptation that is subject to genetic 

variation is liable to deterioration, thanks to the strongly declining age-specific forces of natural 

selection shaping both survival and reproduction. In effect, if an adult adaptation is subject to 

evolutionary genetic age-specificity, then it should undergo some degree of deterioration during the 

phase of adulthood known as aging. This deterioration may be delayed relative to the age at which the 

forces of natural selection start to fall, and it may not be a very pronounced deterioration in some 

cases, but there should be an overwhelming tendency for physiological deterioration of widely varying 

kinds to occur.  

The only plausible way by which a function can escape this effect would be if there is no 

evolutionary genetic possibility for age-specific selection. This would be true, for example, of 

characters that are essentially unaffected by the passage of biological time. Indeed, such characters 

may underlie the very capacity of old individuals to continue surviving and reproducing, albeit with 

much higher average rates of age-specific mortality, as in Charlesworth’s (2001) analysis of alleles with 

age-independent beneficial effects.  

But turning to the case of late life requires us to leave general expectations behind, except for 

a negative prediction. If the broad and characteristic physiological declines observed during aging 

continued unremittingly after the transition to demographic late life, then the kind of Hamiltonian 

theory that we have proposed here would be implausible. That is because late life is like the period 

prior to the onset of reproduction, the period of ‘development,’ in that it does not feature consistent 

changes in the force of natural selection acting on age-specific survival. During development, mortality 
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rates fluctuate, but do not show general or consistent trends. During points of vulnerability or 

transition, such as hatching, birth, molting, first flights of fledglings, and so on, mortality rates may 

spike upward. But such upward spikes are not sustained, and there are no general mortality or 

functional patterns that compare with the sustained declines exhibited during aging. Likewise, there 

are no general expectations concerning specific physiological functions during development. Some 

capacities may decline as a function of age during development, while others increase. Thus the 

capacity of the human child to acquire new languages peaks at an early age, perhaps at 3-6 years of 

age, and then declines, while the capacity of children to learn mathematics generally peaks later. While 

aging involves general patterns of deterioration across most physiological functions, development 

does not have such widespread patterns. 

Given the existence of plateaus in the forces of natural selection during late life, we cannot 

make specific predictions about the patterns that age-specific physiological characters will show, 

except we predict that during late life the consistent physiological deteriorations of aging will no longer 

prevail. As suggested by Shahrestani et al. (2009), it is possible that functional characters generally 

stabilize during late life, much as age-specific mortality eventually does. But it is also possible that, as 

Shahrestani et al. (2009) suggested too, physiological characters vary in their trajectories during late 

life, some continuing to deteriorate, others stabilizing, and perhaps some even improving with age. 

Broadly speaking, the physiology of late life might be one of general ‘stabilization’ or one of 

‘complexity.’ Either are at least conceivable, since Hamiltonian theory only makes clear predictions 

where components of fitness are concerned, not their underlying physiology. 

 



Mueller, Rauser & Rose      DOES AGING STOP? 

171 
 

Initial Experiments Suggest that Late Life is Physiologically Complex 

Work in the Rose and Mueller Drosophila laboratory by P. Shahrestani (Shahrestani et al., in 

prep.) suggests two things. First, late life is physiologically different from aging. Second, late life is not 

marked by ubiquitous physiological ‘stabilization.’ It is instead more akin to the complexity of 

development. 

Shahrestani has provided us with some preliminary results that are as yet unpublished. She 

followed six populations with well-defined demographic transitions between aging and late life, the 

IV and B populations of Rose (1984b), also described in some detail in Chapter 4 (see Figure 4-2). 

These populations were characterized throughout adult life, during both aging and late life, for a 

variety of functional physiological characters that decline during the aging period. In one of her data 

analyses, she compared the functional trajectories of these characters between aging and late life 

phases, as shown in Figure 10-2 for the character of time spent in motion during a two-minute interval. 

As can be seen from the figure, this character appears to stabilize during late life. Results like this from 

Shahrestani’s study corroborate the Hamiltonian expectation that the physiology of late life should be 

different from that of aging. This particular result leaves open the possibility that late life is marked 

by a general stabilization of functional physiology.  
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Figure 10.2. Time spent in motion in a two-minute time interval, measured in seconds, is plotted against adult age. Each 
point represents the average data from all flies (male and female) from all populations (B1-5 and IV) tested at that age. 
The error bars are standard error of the mean between the six populations. Before age 30, the data points are in the 
aging phase as determined by demographic characterization of other individuals in this cohort; after age 40, the points 
are made up of data collected during the late life phase. Time spent in motion declines during the aging phase, but 
plateaus in the late life phase. 

 

Shahrestani (Shahrestani et al., in prep.) also studied other Drosophila characters in both aging 

and late life phases. Among these other characters was negative geotaxis, as measured by the 

percentage of a group of flies that climb up the side of a vial in a finite period of time. As shown in 

Figure 10-3, there was no stabilization of this character during the late life period. Instead, negative 

geotaxis appears to continue falling during late life, moreover doing so at a faster rate. Again, the 

pattern during aging was clearly different from that during late life, but the late life pattern was not 
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one of stabilization. From this, Shahrestani et al. (in prep.) conclude that late life does not constitute 

a general physiological stabilization. Instead, it is physiologically complex, much as development is. 

 

Figure 10.3. Negative geotactic ability, measured as the percentage of flies that made it to the top of an 8-cm glass vial 
in one minute, is plotted against adult age. Each point represents the average data from all flies (male and female) from 
all populations (B1-5 and IV) tested at that age. The error bars are standard error of the mean between the six 
populations. Before age 30, the data points are in the aging phase as determined by demographic characterization of 
other individuals in this cohort; after age 40, the points represent late life phase. Negative geotactic ability declined more 
rapidly in the late life phase compared to the aging phase. 

 

Additional Experiments on the Hamiltonian Evolutionary Physiology of Late 

Life 

From a strictly logical point of view, the two types of data just supplied are key to the 

physiological interpretation of late life. It appears that neither character shows a continuation of aging-
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related deterioration, nor is there a general stabilization. But more studies of this kind are needed, with 

both Drosophila and other model organism populations, in order to ascertain the features of late-life 

physiology more widely. Humans, again, are probably a very poor system with which to address the 

issue of the physiological transitions from aging to late life, due to differential patterns of medical care 

and other lifestyle factors that can change as a function of chronological age independently of 

underlying physiology. But there is no reason why, in principle, the kind of study that Shahrestani has 

performed could not also be performed on medflies or nematodes, not to mention more arcane model 

species.  

Another type of experiment naturally suggests itself to experimental evolutionists like 

ourselves. Rose and colleagues have constructed an array of populations with very different ages of 

transition between aging and late life (e.g. Rose et al. 2002). On Hamiltonian principles, some of the 

physiological characters that underlie age-specific demographic characters should have undergone 

corresponding shifts in their transition ages from their ‘aging trajectory’ to their ‘late life trajectory.’ 

To use the preliminary Shahrestani results plotted above as a point of reference, populations that have 

undergone a shift in the average age at which the demographic transition from aging to late life occurs 

should show at least some corresponding shifts in the ages at which physiological transitions occur. 

Thus, for time spent in motion, shown in Figure 10-2, the age at which the rapid aging decline of this 

character effectively plateaus should occur at relatively later ages in replicate populations that have 

evolved much later mortality-rate plateaus. For negative geotaxis, shown in Figure 10-3, the age at 

which this character starts to decline more rapidly should undergo a parallel shift when comparing 

populations that have evolved different starting ages for their late-life mortality rate plateaus. It might 

be the case that not all such physiological characters will respond at comparable speeds and to 

comparable magnitudes in the experimental evolution of the age at which aging stops demographically, 

but at least some cases like this should be significant enough to be detectable experimentally. 
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Shahrestani has collected data of this kind from populations that have evolved somewhat 

different starting-ages for their late life plateaus, the CO and ACO populations of Rose et al. (2002). 

But the extensive data have not yet been analyzed. 

 

Provisional Conclusion: the Physiology of Late Life is Hamiltonian but 

Complex 

Limited data are available concerning the physiological transition from aging to late life. What 

we have so far has yet to be published in reviewed journals, and must be taken as only preliminary. 

However, it does suggest that the physiology of late life is broadly Hamiltonian. Functional aging does 

not merely continue on as if late life is not underlain by different evolutionary rules. On the other 

hand, Shahrestani et al. (in prep.) have apparently already found enough physiological complexity 

during late life to suggest that it is as functionally complex as development. Much interesting work 

remains to be done, and we invite our readers to proceed with it. 
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Chapter 11. Late Life in Human Populations 

 

Late life was first detected in human populations, despite the very late occurrence of late life 

in humans. Recent data from supercentenarians provide evidence for a late-life mortality rate plateau 

in human populations. An important evolutionary puzzle is why human populations reach late life so 

late. Several explanations are conceivable, and not necessarily incompatible with each other.  One of 

these is that a generally increased mortality level under evolutionarily novel conditions due to a lack 

of time for age-independent beneficial substitutions to increase in frequency. Another is that a recent 

expansion in effective population sizes, greatly prolonging the age-range over which the effective force 

of natural selection declines. Regardless of its evolutionary explanation, the cessation of aging in 

human populations suggests new possibilities for the extension of human healthspan. 

 

The Problematic Nature of Human Data 

We have already mentioned in Chapter 1 that the demography of humans late in adult life has 

been a common subject of study. It is a commonplace of such studies to note that Gompertzian 

models start to break down, in terms of their quantitative accuracy, at very late human ages (e.g. 

Greenwood and Irwin 1939; Gavrilov and Gavrilova 1991). We will be considering the case of the 

human species in more detail here, from the standpoint of the evolutionary biology of late life. 

But before doing so, it is important to understand what is and what is not appropriate in 

discussing the human case. Starting with what is not appropriate is the most important concern in this 

instance. Humans just are not appropriate experimental animals, for obvious ethical and practical 

reasons. No one should approach the manipulation of human patterns of survival and reproduction 

with anything but the greatest care and the greatest scruples. Precisely the kind of environmental 
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control and standardization that makes work with organisms like laboratory Drosophila and laboratory 

mice so useful should not be attempted in studies of human biology. Indeed, human biology is being 

continually shaped by economic, medical, and public health progress, which measurably improves 

standards of living, life expectancies, and basic human suffering from generation to generation since 

the 18th Century. People in 17th Century Europe still died in great plagues, suffered from unsanitary 

water, and had no recourse to antiseptic surgery. By every reasonable measure, the lives of Europeans 

and North Americans have steadily improved since then. And with such secular historical 

improvements have come rapid and extensive demographic changes. 

Madame Jeanne Calment, for example, was born in 1875. For her birth cohort, tuberculosis 

was still a major risk factor impinging on life expectancy, as were septicemia and any number of other 

incidental types of bacterial infection. Yet she survived, through two world wars conducted partly in 

her native France, through the pandemic Spanish influenza that followed WWI, through the invention 

and widespread adoption of antibiotics, and even through the AIDS pandemic. During that time, even 

the availability of food fluctuated, particularly with the privations and dislocations associated with the 

two world wars and the Great Depression. Thus, her individual life history over the course of 122 

years occurred in a context of extensive environmental change. Those people who lived more than 30 

or 40 years, in the course of the last two centuries, underwent substantial changes in the environmental 

hazards that they faced during their lifetimes.  

This scientifically inconvenient fact makes human demographic data extremely unsatisfactory 

from the standpoint of testing fundamental ideas concerning the evolution of life histories, including 

both the evolution of aging and the evolution of late life. For this reason, our view is that human data 

should not be used for the purpose of strong inference (Platt 1966) tests concerning the type of 

scientific theory that we discuss in this book. 
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On the other hand, the caveats just adduced do not mean that general findings concerning the 

evolutionary biology of late life cannot be applied to human demography. What these caveats mean is 

that, from the standpoint of scientific inference, there is a one-way street between the type of focused, 

well-controlled, and theoretically motivated scientific research that is our principal concern, in the first 

instance, and the type of scattered, uncontrolled, and ad hoc data that is supplied by human 

demography, in the second instance.  

There is nothing special about this stricture. Chemists are not fond of doing experiments out 

of doors during rainstorms, but that doesn’t mean that they can’t apply their understanding of 

chemistry to explain or interpret data concerning acid rain. We regard the application of our research 

findings to the case of human late life in the same way. We don’t regard human data as a useful way 

to evaluate alternative theories, whether Vaupelian or Hamiltonian, of late life. But we do regard the 

application of Hamiltonian research on late life to the interpretation of human demographic data as a 

legitimate enterprise. 

 

Do Human Demographic Data Show Signs of Late Life Mortality-Rate 

Plateaus? 

It can be conceded that human demographic data are inherently deficient, but one can still 

want to know whether, despite that, signs of late-life plateaus can still be detected. This doesn’t mean 

that the failure to detect such plateaus should be regarded as a threat to the scientific salience of late 

life as a life-historical phenomenon. There is a strict asymmetry here. If human data, with all their 

deficiencies, nonetheless still show evidence for late-life mortality plateaus, that would suggest the 

obduracy of phenomenon, its potential to penetrate the morass of confounds and obscurities that 

human demographic data are necessarily afflicted by. 
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Greenwood and Irwin (1939) supplied one of the earliest and most detailed studies of human 

demographic data from very late in life, working primarily with English actuarial data. Looking chiefly 

at the mortality records of those over 90 years of age, they were led to consider the possibility that 

“with advancing age the rate of mortality asymptotes to a finite value” (Figure 11-1). They then 

approached their human mortality rate data in light of this hypothesis, and found that the quantitative 

fit of late-life actuarial data to this hypothesis is at least reasonable. In particular, they proposed, as a 

bare possibility, that the rate of human mortality approaches a value of about 50% per year.  

It is also notable that Greenwood and Irwin (1939) proposed a crude version of the lifelong 

heterogeneity hypothesis, invoking Pearl’s earlier work on the demography of laboratory Drosophila 

mutants, particularly the contrasting demography of ‘wild-type’ and vestigial mutant flies. They offered, 

as a thought-experiment, a scenario in which a cohort of fruit flies consists of a mixture of wild-type 

and vestigial flies, the latter dying off entirely so that, at the end of the composite cohort’s period of 

observation, the mortality pattern is defined entirely by that of the wild-type flies. Under these 

conditions, they supposed that one would observe mortality rate deceleration without having to 

suppose that aging stops. 

Indeed, they assumed that, “In a labile, highly specialized metazoan, decay must surely 

continue.” Thus, while the data surveyed and modeled by Greenwood and Irwin (1939) seem to show 

an asymptotic approach to a constant mortality rate, and thus a cessation of aging, their reaction was 

to assume that some type of complication or artifact was responsible. In particular, like later authors 

(e.g. Maynard Smith et al. 1999), they proposed that individuals over the age of 90 years are likely to 

undergo a change in their circumstances and thus enjoy a mitigation in mortality. In these respects, 

Greenwood and Irwin’s analysis anticipates major protective maneuvers that have been used 

repeatedly over the last seventy years to safeguard the near-universal assumption among biologists, 
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gerontologists, and demographers that aging continues unabated at later ages, the demographic data 

from very old humans notwithstanding. 

 

Figure 11-1. Mortality from age 93 on for English women from 1900-1920. The mortality data are plotted only for those 
ages with at least 10 females at risk (from Greenwood and Irwin 1939). 

 

It is historically interesting that Comfort (1964, Fig. 18, p. 90) supplied a graphical plotting of 

one of Greenwood and Irwin’s (1939) data tables, showing how well the numbers fit a simple 

exponential decay pattern, a pattern that implies a lack of demographic aging after the age of 90 or so. 

Gavrilov and Gavrilova (1991) examined much more extensive European demographic data, and 

likewise found that Gompertzian models break down at sufficiently late ages.  
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Recently, Young et al. (2009) have supplied a graphical compendium of human global 

mortality rates after the age of 110, and an adaptation of their figure is shown here as our Figure 11-

2, focusing only on mortality rates up to 115 years of age. After this age, there are so few individuals 

that the observed mortality rates fluctuate wildly between 0 and 100%.  

 

Figure 11-2. Mortality from age 110 on for men and women with documented ages above 110 years as determined by 
the Gerontology Research Group (data from www.grg.org/Adams/I.HTM). The mortality rate is plotted only for those 
ages with at least 10 individuals at risk (Young et al. 2009). 

 

From this figure, it is evident that Greenwood and Irwin’s (1939) suggestion of an asymptotic 

human mortality rate of about 50% is well within the bounds of statistical plausibility. It should be 

noted, further, that 984 individual deaths contribute to the pattern shown in Figure 11-2, so this result 
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is likely to remain stable, at least qualitatively, as more deaths are recorded among individuals over the 

age of 110 years. 

Nonetheless, for the reasons already adduced, these data hardly have the scientific quality of 

laboratory animal cohort studies. In particular, these data are compiled from actuarial records from 

multiple countries, chiefly European, together with the United States, Canada, Australia, and Japan. 

Though all these countries are affluent, they have significant disparities in health care delivery and 

access. Therefore, some caution is warranted in viewing these data. Still, Greenwood and Irwin’s 

(1939) purely demographic conjecture seems to be sustained. Age-specific human mortality rates seem 

to asymptote to an approximately constant value. Thus, demographically, human aging too appears to 

cease. 

As difficult as it is to collect good human actuarial data, the likelihood of collecting good 

functional or physiological data on the transition from aging to late life in human populations is still 

less in magnitude. Our position going forward, then, is to accept provisionally the hypothesis that in 

humans, just as in well-studied fruit flies, aging does in fact cease at the level of the individual, and 

this cessation leads to the demographic pattern that have been noted for the last seventy years. With 

this provisional conclusion, we turn to a discussion of its interpretation and its possible practical 

implications. 

 

Why Does Human Late Life Begin so Late? 

It is significant for the history of science that late life begins so late in humans. If it started at 

age 35 or 40, then it would have become apparent at least as early as the 19th Century, when good 

actuarial tables became generally available, that demographic aging can cease. Human aging has long 

been the intuitive source of much reasoning, and certainly still more emotional concern, about aging 
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in general. As late life is not apparent in human actuarial records until the cohort-decade that begins 

at 90 years of age, the intuitive notion of unceasing aging took hold millennia ago, and still grips both 

popular and scientific imaginations.  

But in the demographic patterns of the medflies studied by Carey et al. (1992), as well as those 

of some of the fruit fly populations studied by both Curtsinger’s laboratory (e.g. Curtsinger et al. 1992) 

and the Rose laboratory (e.g. Rose et al. 2002), late life starts much earlier relative to the duration of 

development. In humans, development to first reproductive maturity takes about 12 to 14 years. Late 

life then starts at 90 to 105 years, about eight times later. In our B fruit flies, development to first 

reproductive maturity takes about 10 days, while the transition to late life then occurs at about 38 days 

from the egg stage of life (Rose et al. 2002). To scale this pattern to human data, this would put the 

transition to human late life in the decade between 40 and 50 years of age. Thus human late life begins 

about twice as late as that of some fruit fly populations, relative to the duration of development to the 

point of first reproduction. 

On the other hand, Rose et al. (2002) show that their O populations, which take only about a 

day longer to develop than the aforementioned B populations (Chippindale et al. 1994), start late life 

at ages of about 72 to 82 days, from egg. This is a pattern more like that of human populations. In the 

case of the B and O populations studied by Rose et al. (2002), we have a fairly good idea as to why 

late life starts at such different ages: the last ages of reproduction in their evolutionary culture histories 

were different for some hundreds of B generations. This raises the question: why have humans 

ostensibly evolved such late onset of late life? 

There are two broad types of evolutionary answers to this question, on first inspection: 

selection history and demographic history. Both of these types of answer must take into account an 

important feature of the cultural and evolutionary history of Homo sapiens: the recent adoption of an 

agricultural way of life by the majority of the species. It is generally agreed that humans widely adopted 
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agriculture as their primary mode of sustenance on the order of 10,000 years ago (Lindeberg 2010). If 

we assume an average generation length of about 25 years among human populations, then human 

populations have undergone selection under agricultural conditions for at most about 400 generations. 

And many human populations have adopted agricultural life much more recently, in some cases only 

in the last five to ten generations. The transition to agriculture necessarily generated selection for 

adaptation to a different diet, a different distribution of mortality risks, very different population 

densities, and very different patterns of migration between local breeding demes. This is the backdrop 

to any discussion of the selection and demographic histories which underlie the evolution of human 

life history. 

In this evolutionary and historical context for human aging and late life, there are several 

alternative, although not mutually exclusive, evolutionary genetic mechanisms that have come into 

play: 

1.  Humans have undergone a process of adaptation to the agricultural way of life with 

respect to the impact of diets based on grasses and dairy products on human health, 

function, reproduction, and chronic disease. This process of adaptation may or may not 

be complete, as a function of the total time since each human population shifted from a 

hunter-gatherer way of life to an agricultural way of life. 

2. Humans have undergone adaptation to altered demographic patterns of survival and 

reproduction, with changes to the first age of reproduction, the last age of reproduction, 

and the shape of Hamilton’s forces of natural selection between those two ages. [Note 

that all three of these features of the forces of natural selection could be different for the 

two sexes, both before the adoption of agriculture and since.] 
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3. Humans have undergone evolution in response to large-scale changes in effective 

population size brought on by agriculture, with the most likely pattern being a substantial 

increase in local deme size, relative to pre-agricultural population structure. 

We will now discuss each of these factors in order, although what follows should be taken as 

the start of a process of scientific evaluation, rather than a summative conclusion. 

 

The Effect of Dietary Change on Human Aging and Late Life 

Lindeberg (2010) has recently contributed an extensive discussion of the relationship between 

different types of human diet and chronic human diseases, particularly those that could be considered 

age-associated diseases. It is a key conclusion of his book that many features of the age-dependent 

pathophysiology of chronic human diseases, such as cardiovascular disease or metabolic syndrome, 

arise from the agricultural diet. Evidently, this mode of reasoning is based on the concept of 

inadequate adaptation to the agricultural diet, with significant benefits to be achieved by switching 

back to a diet that resembles that of a hunter-gatherer. Such arguments are founded on an assumption 

of incomplete adaptation to agricultural diets. 

Research on experimental evolution provides a useful perspective from which to evaluate 

arguments like those of Lindeberg (2010), which are not unique in the anthropological or 

epidemiological literature. Focused, sustained, and intense laboratory selection is sufficient to change 

functional characters rapidly (vid. Garland and Rose 2009). That is, when natural selection is very 

strong, experimental evolutionists would expect 200-400 generations of selection for adaptation to a 

particular environment to be sufficient to produce extensive and effective improvements to the level 

of fitness required to function in a novel selective environment. Data from the laboratories of Matos 

(e.g. Simões et al. 2009) and Rose (e.g. Rose et al. 2004), in particular, have shown a pattern of very 
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rapid adaptation to novel conditions. This type of result seemingly impinges on the view of Lindeberg 

(2010) and, for the present purpose, the relevance of the historical transition in human diet to the 

interpretation of human aging, including the transition from aging to late life. 

But there is an important omission in this line of reasoning. Given Hamilton’s forces of natural 

selection, adaptation to a novel environment will scale according to age, when there is age-specificity 

to at least some of the genetic variation that underlies such adaptation to the novel environment during 

adulthood. That is, Hamilton’s forces scale the intensity of natural selection such that, qualitatively, 

we can expect adaptation to agricultural diets to have proceeded very effectively at early ages, such as 

those ages before and just after the first age of reproduction. But at later adult ages, we should expect 

to see a quantitative and progressive reduction in the extent of adaptation to the agricultural diet. With 

this factor in mind, we should expect a failure of Lindeberg’s (2010) reasoning at juvenile and early-

adult ages, but much greater applicability at later adult ages, for populations that have long sustained 

themselves agriculturally. A crude but perhaps evocative way to convey this Hamiltonian effect on 

human health is to say that, as one chronologically ages during adulthood, one is proceeding backward 

in evolutionary time. As the human body undergoes this form of ‘evolutionary time-travel,’ the lack 

of adaptation to the agricultural diet will thus become steadily more important.  

This argument is particularly important when considering the transition from aging to late life. 

In effect, human aging is amplified, when human aging is viewed as the detuning of age-specific 

adaptation during the course of the first phase of adulthood. There is the basic pattern of aging 

generated by the Hamiltonian reduction in age-specific adaptation as adult age increases; this must 

produce numerous accelerating forms of pathophysiology as a function of age. And added to this is a 

pattern of detuned adaptation to the novel agricultural diet. This combination could have been a factor 

in producing our much later transition from aging to late life, particularly given the pleiotropic echoes 

of these two progressive detunings of adaptation acting in conjunction. However, this type of 
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hypothesis needs further study, using both explicit evolutionary genetic simulations and laboratory 

evolution experiments in which the age-dependent impact of adaptation to a novel environment can 

be studied explicitly. 

 

The Effect of Agricultural Life-History Change on Hamilton’s Forces of 

Natural Selection in Human Populations 

Regardless of the salience of views like those of Lindeberg (2010) and others (e.g. Eaton and 

Konner 1985) regarding the effects of qualitative human dietary change in human evolution, the 

adoption of an agricultural way of life must have radically changed the demographic patterns of human 

survival and reproduction. One way to explain the very late transition from aging to late life in human 

populations would be to propose that the demographic effects of agriculture were analogous to the 

transition from early-life reproduction to later-life reproduction, which has been such a staple of 

laboratory evolution experiments on aging in Drosophila (e.g. Rose et al. 2004). Thus, to give one 

scenario, it could be argued that the adoption of the agricultural way of life might have led to three 

consequential changes in human life histories: (i) postponed age of onset of reproduction, (ii) increased 

rate of survival during adulthood, and (iii) increased fertility of humans, perhaps particularly males, at 

later adult ages. All together, these effects would have been fully parallel to the life-historical regimes 

characteristically imposed on populations like the D. melanogaster O populations of Rose et al. (2002), 

populations that show a much later age of transition from aging to late life.  

The simulations that we have provided in Chapter 3 (Figures 3-2 and 3-5) or Rose et al. (2002) 

illustrate what happens during such evolutionary transitions as a result of altered life-histories: a 

progressive wave of age-specific adaptation at later and later adult ages that, in turn, postpones the 

transition from aging to late life. The advantage of this type of explanation is that it does not depend 
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on any feature of the evolutionary process which remains to be worked out. As we have shown here 

in this book, using both numerical simulations and data from experimental evolution, this evolutionary 

mechanism can readily generate a shift in the age at which aging stops. This isn’t to claim that this 

evolutionary scenario is in fact the best, or the only, scenario for explaining the very late transition 

from aging to late life in human populations; the present authors are not aware of anthropological 

data that could confirm this hypothesized transition, as the nature of pre-agricultural demography 

itself remains a point of some controversy (see Panter-Brick et al. 2001 for an interdisciplinary review 

of pre-agricultural society). 

 

Effect of Increased Effective Population Size on the Age of Transition to Late 

Life 

It was a surprising result of our explicit simulations of the evolution of the transition from 

aging to late life that this age depended critically on effective population size. In particular, it was 

initially counter-intuitive that a smaller effective population size produced an earlier transition to late 

life, as shown in Mueller and Rose (1996, Figure 2). In retrospect, this effect can be understood 

intuitively: reducing effective population size reduces the width of the range of adult ages over which 

selection has a differential impact among ages, bringing forward the first age at which age-specific 

characters are no longer differentiated with respect to the impact of natural selection. More formally, 

the strength of selection (β) of new mutants will become smaller with reduced population size. Thus, 

the frequency of strongly selected mutants (Figure A3-4) will be reduced. Mutants with small effects 

are more likely to have their phenotypic effects on fitness restricted at late ages and hence the range 

of ages not under the influence of selection increases. 
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In the context of the transition from hunter-gatherer life to agricultural life, there is little 

question that this produced broadly progressive increases in human population densities. This effect 

alone then, in view of the simulated effects just described, must have increased the ‘effective’ last age 

of reproduction in human populations. This population-size effect in turn is expected to lead to a 

delay in the transition from aging to late life in human populations. 

Thus we have three possible evolutionary mechanisms that can explain the relatively late 

transition from aging to late life in contemporary human populations:  (i) qualitative dietary and other 

lifestyle changes; (ii) a demographic shift to later ages of reproduction; and (iii) increased population 

sizes increasing the range of ages over which natural selection is effective. It is not our goal at this 

point to decide which of these mechanisms is predominant, but further research on these alternative 

mechanisms would be of great interest, in our opinion. 

 

The Prospects for Radical Human Life Extension 

It is a simple demographic point that greatly extending human functional lifespan, or 

“healthspan,” would be much more easily achieved by shifting the age at which human aging stops to 

much earlier ages. If the process of aging were stopped at the age of 40 years of age, for example, then 

the capacity of modern medicine to sustain survival and function of people over that age would be 

greatly increased. This does not mean that heart attacks, strokes, or cancer would no longer continue 

to occur in individuals whose aging has been arrested at that age. Rather, such individuals would 

continue to suffer from accidents impinging on their cardiovascular functioning, such as a wayward 

thrombotic plaque, or the somatic mutation of a few cells in their lymphatic system producing a 

lymphoma. But the rate at which such health ‘accidents’ occur would not continue its exponential rise. 

This raises the possibility of medical interventions ‘rescuing’ those individuals whose aging has been 



Mueller, Rauser & Rose      DOES AGING STOP? 

190 
 

arrested soon enough that they can be largely or entirely restored to the level of health they had before 

the onset of a particular cardiac disorder, malignant tumor, or other medical problem. In effect, this 

would allow indefinite survival, providing the aging process had been arrested at sufficiently early ages, 

relative to the restorative powers of the available medical treatments. 

The obvious puzzle that this scenario raises is, how could we arrest human aging at an earlier 

age than those ages at which it decelerates to a stop now, between 90 and 105 years of age? For an 

organism that has had a stable evolutionary regime for some time, there is no certain or obvious 

answer to that question, short of using experimental evolution.  

But humans present a different, and intriguing, possibility. We have only recently started to 

adapt to agricultural conditions. And that qualitative dietary transition has been associated with a 

demographic revolution in our effective population sizes, our population structure, and our forces of 

natural selection, as already discussed in this chapter. Is it possible that we could shift our aging pattern 

to one in which the incidence of chronic age-associated diseases would be greatly reduced if we adopt 

a lifestyle more like that of our hunter-gatherer ancestors? Lindeberg (2010), for one, evidently thinks 

so. From the evidence presented in this book, however, more than our aging might be affected by this 

lifestyle transition. It is worth at least mentioning that such a lifestyle transition might also change the 

age at which the process of aging stops, moving that age to an earlier point. If an effect like this were 

sufficiently great in magnitude, then the stabilization in underlying health achieved by a reversion to 

our ancestral way of life in most respects could be sufficient to, first, shift the age at which our aging 

stops to an earlier age, second, reduce our plateau mortality rate from then on, and third, thereby, 

extend human healthspan to a remarkable degree, following the scenario described in the previous 

paragraph. This bare possibility rests on several questionable conjectures, or at least conjectures 

concerning which some degree of doubt is reasonable. 
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But the existence of an age at which human aging stops is not a questionable conjecture, nor 

is its potential malleability. The cessation of aging is neither a mythological possibility nor an 

unchangeable feature of life history. Like most features of biological diversity, it is a tunable product 

of evolution. In principle, anything microevolution can readily change can be modified with the 

application of enough medical technology. This makes the idea of radically extending human lifespan 

by changing the age at which human aging stops of potentially great practical significance, even if we 

do not now know precisely how to achieve that objective. 
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Chapter 12. Aging Stops: Late Life, Evolutionary Biology, and 

Gerontology 

 

Most biologists have assumed that aging proceeds progressively and unrelentingly until all 

organisms in a cohort are dead. This has further given rise to the widespread view that the underlying 

physiology of aging is one of unremittingly cumulative damage and disharmony. With the 

demonstration that later adult life commonly does not have such features, the entire field of aging 

research now must be re-cast, both with respect to its characteristic physiological hypotheses and with 

respect to its relationship to evolutionary biology. Aging is the age-specific de-tuning of adaptation, 

not a cumulative physiological process.  

 

Yes, Aging Stops 

Our position is that the formal theory and the experimental data that have been presented to 

this point in this book amount to a case for the cessation of aging at the level of individuals, in turn 

generating the cessation of demographic aging among cohorts. That is, we conclude that there is 

reasonable support for the hypothesis that individuals who have reached demographic late life have 

in fact undergone a change in the processes of deterioration which, in their aggregate physiological 

effect, produce roughly stable average age-specific mortality and fecundity rates for each such 

individual. 

It might be useful if we reduce the fairly convoluted case that we have built to this point to a 

series of itemized inferences which, together, amount to the gravamen of our brief: 
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1.  In at least some cohorts that are kept under good conditions free of obvious contagious 

diseases, predators, and environmental extremes, both age-specific mortality and age-

specific fecundity can roughly stabilize, on average, at late adult ages. 

2. This pattern of stabilization in both age-specific mortality and age-specific fecundity at late 

ages can be explained theoretically by the eventual plateaus of Hamilton’s forces of natural 

selection, both in principle and in explicit numerical simulations.  

3. Critical evolutionary experiments which shift the points at which these plateaus in the 

forces of natural selection occur in turn lead to shifts in the ages at which demographic 

plateaus start as predicted by Hamiltonian theory.  

4. There is no direct empirical evidence showing that lifelong heterogeneity in robustness 

generates late-life demographic plateaus in naturally configured cohorts. 

5. Evolutionary theory suggests that the massive lifelong heterogeneity required to explain 

late life on purely demographic grounds is unlikely to exist in natural populations, because 

natural selection would act to eliminate it. 

6. There is empirical evidence showing that lifelong heterogeneity in robustness does not 

generate late-life demographic plateaus in naturally configured cohorts. 

7. Plateaus in late-life fecundity can be obscured by the process of dying. 

8. The physiology of late life is complex, but it can be distinctly different from the general 

pattern of deterioration that characterizes aging.  

9. Humans show demographic cessation of aging with respect to late-life age-specific 

mortality rates, although there are many uncertainties associated with the explanation and 

interpretation of these data. 
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Our conclusion is that we have answered our basic question: aging does indeed stop. Thus 

aging is followed by a third phase of life, which we call late life, a phase that is fundamentally different 

in its evolutionary foundations and its physiology. 

We now turn to the general implications of this conclusion. 

 

Parallels between the Cessation of Aging and the Speed of Light 

It is a cliché of the historiography of science to say that Einstein revolutionized physics, 

supplanting the essentially ‘Newtonian’ paradigm that had prevailed before 1905, the year Einstein 

published five groundbreaking papers. Of course, the Newtonian paradigm was initiated by Galileo 

and greatly improved by Newton’s successors, such as LaPlace. But the term Newtonian in physics is 

as fair as the term Darwinian is within biology, in that it honors the key figure who provided the first 

well-worked out foundations for physics, so that it could become the highly successful science that it 

has been over the last few centuries. Similarly, Einstein was not alone in undermining the prevailing 

Newtonian paradigm. Others, such as Minkowski, supplied better-developed versions of relativistic 

mechanics. And Einstein was not involved in the key experiments, such as those of Eddington, which 

supplied the ‘strong inference’ tests of Einstein’s ideas. But the ‘headline’ characterization of the 

revolutionary effect of Einstein’s work is essentially correct. 

What is less noticed in the headline version of Einstein’s revolution is that it started from 

empirical paradoxes that most physicists, before 1905, were generally ignoring. Among the most 

important of these paradoxes was that the speed of light was always c, never more or less, even if the 

object emitting light was not stationary. That is, one of the key assumptions of classical Newtonian 

mechanics, the additivity of velocities, was clearly violated by photons. Physicists knew this, but they 

weren’t doing anything about it, at least at the level of re-examining their fundamental assumptions 
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about mechanics, energy, space, and time. From this unraveling thread, Einstein disassembled the 

tapestry of Newtonian mechanics, replacing it with his relativistic mechanics. 

Our view, as we have argued before (Rose et al. 2006), is that the cessation of aging is as 

significant for the fields of gerontology and demography as the constancy of the speed of light was 

for physics. In this volume, we have mounted a case for the view that aging does indeed stop. 

Furthermore, we contend that we have reasonably falsified the attempts of those who do not accept 

our conclusion, and instead believe that the aggregate demographic cessation arises from lifelong 

heterogeneity producing a within-cohort shift toward predominance of individuals who are more 

robust throughout adult life. However, we concede that there is no limit to the range of novel 

demographic models that can be constructed to evade our attempts to falsify such lifelong 

heterogeneity theories. But until new arguments are mounted that reinstate the traditional view of 

unremitting aging, arguments that we cannot summarily dismiss on substantive or methodological 

grounds, we assume henceforth that conventional views of aging are as undermined as Newtonian 

mechanics, with the cessation of aging playing the role of the constancy of the speed of light in 

undermining the longstanding traditional view of unremitting aging (cf. Rose et al. 2006; Rose 2007). 

In this last chapter, we spell out what we see as the extensive consequences of this 

revolutionary situation. 

 

Significance for Evolutionary Biology 

In works like Evolutionary Biology of Aging (Rose 1991), evolutionary biologists were content to 

claim to have explained the commonplace observations of gerontology: the ubiquity of aging among 

strictly ovigerous species, the absence of aging among symmetrically fissile species, the phylogenetic 

diversity of demographic patterns and physiological mechanisms of aging, and so on. Up until that 
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very year of 1991, the intuition of evolutionists was that once Hamilton’s forces of natural selection 

had reached zero, death and sterility were inevitable and likely to occur very soon after that point. But 

the lengthy demographic plateaus in medflies published by Carey et al. in 1992 were a direct assault 

on that simple-minded interpretation. An interesting historical note is that the appearance of plateaus 

in demographic data were in fact described well before 1992 (Greenwood and Irwin 1939; Comfort 

1964), but were largely ignored, probably because those data primarily came from human populations.  

After some discomfiture in the face of the Carey et al. (1992) and Curtsinger et al. (1992) 

publications, Mueller and Rose (1996) and Charlesworth (2001) were able to right the overturned boat 

of Hamiltonian theory, as we have explained here in some detail, as well as developing this 

Hamiltonian theory further. Hamilton’s equations had always allowed the possibility of the evolution 

of demographic plateaus; evolutionary biologists just hadn’t done the numerical and mathematical 

work required to see this. We think that there are several lessons to be learned within evolutionary 

biology from this turn of events. These lessons revolve around why this failure of intuition occurred.  

At the most basic level, the failure of evolutionary biologists like ourselves to understand 

Hamilton’s equations properly is characteristic of scientists generally. Whenever we step away from 

the direct and formal corollaries of our theories, we are essentially guessing. A scientist who knows 

the formal theory that is proximal to their guess may do a better job than a person, be they scientist 

or not, who does not know that formal theory. But there is the possibility that the manner in which 

scientists use their formal theory tends to lead them astray. 

In the case of Hamiltonian theory, we think that the intuitions of evolutionists were blinded 

by two things: (i) simple-minded extrapolation; and (ii) simplified population genetics theory. During 

the period over which the forces of natural selection are steadily falling, at the start of the adult 

reproductive period, mortality rates are expected to rise consistently, providing one’s analysis is 

couched in terms of age-specific genetic effects on mortality rates. Similarly for the evolution of age-
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specific fecundities, they too are expected to fall. These theoretical assumptions give rise to an 

expected pattern of steadily falling age-specific survival and fecundity characters. It is thus intuitively 

natural to extend these falling curves to age-specific survival probability and fecundity both achieving 

zero values in a reasonable, finite, period of time.  

The intellectual sleight of hand in this intuitive inference is the implicit dismissal of 

interconnectedness between ages. Yet decades of work have revealed abundant evidence for 

pleiotropic interconnection between life-history characters at different ages, both antagonistic 

pleiotropy and non-antagonistic pleiotropy, or what de Grey (2007) has called ‘protagonistic 

pleiotropy.’ Both of these patterns of pleiotropy are in turn natural consequences of the 

interconnectedness of the genomic, proteomic, metabolomic, et cetera networks that have been 

detected in abundance over the last decade or so. That is to say, there are few things less plausible than 

the idea of strictly age-specific genetic effects, because genetic effects are generally not strictly focused. 

Rather, they radiate through large networks, and these effects will generically be dispersed in 

physiological time.  

Here we have presented experimental evidence for both types of pleiotropy. Late life is 

antagonistically connected to early adult life-history characters. Once selection for early reproduction 

is reintroduced in populations that have not been recently selected for early reproduction, like the 

reverse-selected derivatives of the O populations we have discussed in detail in Chapters 4 and 5, both 

late-life age-specific mortality and fecundity characters rapidly evolve (Rose et al. 2002; Rauser et al. 

2006). And on the other hand, the strictly positive values of average age-specific mortalities and 

fecundities during late life are evidence for protagonistic pleiotropy, that is, beneficial effects at later 

ages arising from selection acting at earlier ages. Otherwise, age-specific survival and fecundity would 

fall to zero at late ages. 
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This extensive pleiotropy in turn produced a situation in which the non-pleiotropic age-

specific intuitions of evolutionary biologists were systematically misleading. It required explicit 

calculations, such as those of Mueller and Rose (1996) or Charlesworth (2001), for evolutionary 

biologists to ‘get over’ their misleading intuitions.  

Furthermore, our own initial intuitions were that the transition from aging to late life might 

be an obdurate feature of life history. This intuition was first somewhat undermined by the obvious 

and extensive differentiation of breakdays among our long-standing Drosophila populations, as 

described in Chapter 4. Then this notion was definitively demolished by the speed with which reverse 

evolution of only 20 or so generations shifted the breakdays of our populations with respect to both 

mortality (Rose et al. 2002) and fecundity (Rauser et al. 2006), as described in Chapter 5.  

We detect two basic sources for the errors of interpretation that we committed. The first type 

of error is a commonplace one among scientists who work in fields with mathematical theories. In 

order to get analytical and general results, theoreticians in fields like physics, economics, and 

population genetics characteristically assume away potential complexities. They are forced to do so 

because otherwise they face a proliferation of higher-order terms in their equations that not only make 

the calculation of equilibria and trajectories difficult, they make the evaluation of local and, still worse, 

global convergence to attractors (which may be either equilibria or trajectories) still harder, at least for 

the human mind. Such simplification is not necessarily dangerous if the scientists who use such 

simplified theories realize that there are hazards that arise from such simplification. In particular, if 

numerical examples are generated computationally that explore the sensitivity of theory outcomes to 

structural variation in the equations, then scientists may have a fairly good sense of how well they can 

generalize from their simplified analytical theories. 

Problems can, and in the present case demonstrably did, arise when such numerical 

calculations are not performed. In effect, what the Mueller and Rose (1996) study did was explicitly 
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calculate what age-structured population genetics theory actually implies when the full life-history is 

considered, going well beyond the period when the forces of natural selection are falling rapidly with 

respect to age. That is, we moved beyond the ‘local’ or low adult-age cases to look at the more global 

pattern of the evolution of demography, as we present in some detail in Chapter 3. Doing so naturally 

generated Gompertzian mortality dynamics for the initial period of adulthood, with ‘bending’ or 

decelerating mortality dynamics thereafter. This broke-down our natural, but simplified and 

extrapolationist, intuitions with respect to the long-term trajectories of mortality as a function of age. 

This then led us on to perform similar calculations for the evolution of age-specific fecundity (Rauser 

et al. 2006b), with similar results. 

Having obtained these results theoretically, and then corroborated them experimentally, we 

have reached the point where we have still less trust in the hand-waving sort of extrapolations that 

evolutionists too often make based on highly simplified formal theory. This is not an argument in 

favor of merely verbal theorizing. We regard that as still less reliable than generalization from simplified 

mathematical theory. Instead, it indicates the need for still more use of computational tools, whether 

computer-generated algebra or simple numerical iteration of dynamical equations, in the interpretation 

of formal theories. In a sense, this suggests that evolutionary theory has reached a point like that of 

modern physics, in which the human mind can no longer generate predictions for experimental results, 

not even with the aid of analytical theory. Now we have to use explicit computation to lead us to our 

experimental predictions, not simple verbal formulations. 

A general expectation about the evolution of late-life was that there ought to be a wall of 

mortality where in fact survival goes to zero (vid. Pletcher and Curtsinger 1998). This expectation 

follows from the simple logic that if the fitness effects of changing survival at very late ages are 

essentially zero, then evolution by natural selection is free to allow these survival rates to decay to 

zero. However, as outlined in some detail in Chapter 3, the dynamics of these systems do not follow 



Mueller, Rauser & Rose      DOES AGING STOP? 

200 
 

these simple expectations. When mutants have pleiotropic effects on a range of age classes and 

random genetic drift is taken into account, mortality plateaus persist. In fact, populations will drift 

away from the evolutionary “optimum” (see Figure A3-5). 

 

Gerontology Based on Cumulative Damage or Programmed Aging is Defunct 

We have devoted a great deal of this book to the difficulties facing the major alternative theory 

that late life arises from lifelong heterogeneity, because we take that theory as the “last stand” of the 

ubiquitous assumption within gerontology that aging is a cumulative and unremitting process. Our 

view is that this conventional assumption is erroneous, and that the existence of a late-life phase in 

which individual organisms themselves undergo a stabilization in their capacity to survive and 

reproduce is a fatal refutation for this theory.  

The corollaries of this conclusion, if it is accepted, are extensive and profound. Conventional 

biochemical, molecular, and cellular theories of aging that presume some ineluctable process of 

breakdown, akin to rust or progressively increasing disorganization, are, in our opinion, defunct. This 

does not imply the absence of cumulative damage or disrepair. The declining forces of natural selection 

can lead to failures of repair as part of the deterioration of age-specific adaptation that arises with the 

falling forces of natural selection. Or they may not. In particular, the mere existence of a possible 

source of damage, or the demonstration that a particular form of damage or disrepair arises in a 

particular organism during a particular part of its life history, is not a warrant for inferring that this 

type of damage will be ubiquitous and continuing among all organisms. Thus free-radical damage, 

which undoubtedly does occur in some organisms at some points in their life histories, is not correctly 

generalized as a universal and ineluctable type of damage that ensures or determines aging. It is merely 

a biochemical processes that conditionally may, or may not, be part of the pattern of aging in a 
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particular species for a particular period. And this reasoning can be extended ad infinitum. The 

foundations of aging are not to be found in physics or chemistry, but in the patterns of the forces of 

natural selection. 

There is an alternative conventional, indeed long-standing, theory of gerontology in its classic 

20th Century form: the programmed theory of aging. According to this theory, in its original form, 

species have specific genetic programs that have evolved to cause aging in a predictable manner. This 

theory is true, in some sense, for the senescence of erythrocytes, flowers, and perhaps worker bees. 

That is, evolution can select for the deterioration or elimination of specific structures or individual 

organisms that are part of a larger evolutionary unit, be it a mammalian body, a plant, or a social insect 

colony. The notion that such programmed deterioration leading to death is a valid general explanation 

of aging has been rejected among virtually all evolutionary biologists and, to a lesser extent, among 

many gerontologists. Only when there is a strong type of group integration, such as that which subsists 

among the cells of a multicellular animal, is programmed aging likely to underlie the aging of a 

particular component cell, structure, or organism. 

There is a more recent insinuation that is common in the gerontological literature of today, 

which has some affinities with the programmed theory of aging. This insinuation is that aging is 

‘regulated.’ If this merely means that aging is affected by signaling pathways, then it is a relatively 

innocuous, if distracting, usage. Adaptation generally involves signaling pathways; thus its age-specific 

breakdown among adults as a function of age, meaning aging itself, may involve signaling pathways, 

just as aging can involve any aspect of adaptation, so long as that aspect of adaptation has some age-

dependence during adulthood. 

Thus to refer to the ‘regulation of aging’ is either a merely verbal flourish, of some comfort to 

those cell biologists who like to think in terms of the regulation of any biological process, or it is an 

illegitimate attempt to resurrect the programmed theory of aging, when such aging does not refer to 



Mueller, Rauser & Rose      DOES AGING STOP? 

202 
 

the selectively favored deterioration of a component part of a larger group or other type of 

supervenient unit undergoing natural selection. In either case, the usage is of little substantive value. 

The demise of both cogent ‘damage’ and ‘programmed’ theories of aging leaves the field of 

gerontology with little in the way of useful theory for aging outside of the Hamiltonian theory for 

aging that evolutionary biology can supply. Furthermore, and as a natural consequence of this 

situation, conducting gerontological experiments without the guidance of evolutionary biology is 

necessarily hazardous. On the Hamiltonian view articulated throughout this book, the study of aging 

is the study of the transient breakdown of age-specific adaptation, arising from declining forces of 

natural selection, a breakdown that can come to an end before the last member of an artificially 

protected cohort dies. As such, studying the aging phenomenon, including its rate and its cessation, 

without attention to the methods, strictures, and potential artifacts developed or discovered by 

evolutionary biologists over the last 150 years risks errors both systematic and incidental. And not 

least among these methodological issues are those that have arisen from Hamiltonian research within 

evolutionary biology, the research that is squarely founded on the consequences of Hamilton’s forces 

of natural selection (vid. Rose et al. 2007).  

Put another way, we believe that gerontology needs to be re-founded on Hamiltonian 

principles and discoveries. This re-founding does not imply that obdurate empirical discoveries that 

are now part of gerontology should be discarded. But the conceptual framework and experimental 

plans of gerontology should be appropriately re-cast in Hamiltonian terms.  

There is little in the historical, sociological, or psychological study of scientists which suggests 

that most gerontologists will find the perspective offered here the least bit congenial. Generally, their 

training is in biochemistry, molecular biology, or cell biology, because the common view among 

gerontologists since the 1960s is that these three fields supply the foundations for gerontology. In 

particular, the apparent non-Darwinian biases of the funding agencies that support a large fraction of 
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the gerontological research within biology will not be easily overcome. In any case, the present bias 

permeating the American biomedical establishment is that the foundations of medicine are to be found 

in cell and molecular biology. 

It often takes a long while for the academic and scientific community to transition from one 

prevailing way of thinking about a particular subject to another, even when all of the empirical 

evidence points in the other direction, as is the case in gerontology. And although good science does 

not always immediately prevail in the world of academic research, it eventually does. [The cliché is that 

it does so “one funeral at a time.”]  While the futilities of mainstream gerontology continue unabated, 

future generations of all types of biologists will see the errors of its present mainstream as clearly as 

evolutionary biologists do now.  

 

Implications for the Medical Control of Human Aging 

Part of the reason why gerontological research without Hamiltonian foundations will 

eventually wither is that it provides few useful leads concerning the medical control of human aging. 

Indeed, its common presumption that there is anything to be defined specifically as the ‘aging process’ 

only leads it to methodological paradoxes and problems. For example, it is often said that, “Rather 

than attempting to treat heart disease or cancer specifically, if we could just stop the underlying aging 

process itself then medical progress would be much faster.” Or, in the imaginatively articulated 

program of Aubrey de Grey’s SENS, all we have to do is reverse seven specific types of cell-molecular 

damage and we will completely recover our youthful health (e.g. de Grey and Rae 2007). Yet, on a 

Hamiltonian view, there is no physiological process of aging, only a lack of adaptive information built 

by natural selection at later ages (vid. Rose 2009). And in particular, this failure of adaptation is 
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expected to produce vastly more different kinds of pathophysiology than could conceivably be 

remedied by repairing just seven specific types of cumulative damage. 

Unlike cell-biological prescriptions such as those of SENS, which reflect the zombie-bank 

theories of conventional gerontology, Hamiltonian research on aging has some very promising insights 

and possibilities for technological intervention into the human aging process, as follows. 

1. As presented most completely in this book, aging is not necessarily an unremitting process 

that proceeds until all members of a cohort are dead and sterile. This implies that 

substantial improvements to the physiological machinery that underlies health do not 

require halting a devastating and accelerating process. Instead of bending down a curve of 

endlessly accelerating mortality, the control of aging requires instead that we slow 

processes of deterioration that, in some cases, come to an end on their own during late 

life. 

2. As shown repeatedly in the Hamiltonian research of the last few decades, it is trivially easy 

for biologists to produce much longer-lived organisms by altering the forces of natural 

selection. Both the rate of aging and the age at which aging stops can be altered by 

experimental evolution. And since experimental evolution works through perfectly 

ordinary changes in allele frequency, there is the prospect of emulating the biochemical 

effects of such allele frequency change by pharmaceutical and other medical interventions. 

In particular, when there are genomic tools available, the utilization of genomic, 

proteomic, metabolomic, and other types of ‘omic’ information derived from longer-lived 

model organisms will provide numerous leads and insights into the best choice of medical 

intervention, locus-by-locus, disease-by-disease, and molecule-by-molecule. For it is not 

molecular or cell technologies which are the problem in mainstream gerontology, only the 

conceptual equipment of that type of gerontology. 



Mueller, Rauser & Rose      DOES AGING STOP? 

205 
 

 

Envoi 

While our biomedical colleagues may find our perspective on aging chilling, if not perverse, 

there is nothing unusual about evolutionary biologists upsetting their colleagues in the rest of biology.  

One of Darwin’s key points in Origin of Species was the displacement of the, then entirely conventional, 

invocation of theistic special creation of adaptations as a key explanatory tool of biologists.  Evidently, 

he wanted to replace special creation with natural selection.  In the same way, we propose to replace 

the, now entirely conventional, conceptual edifice of gerontology with one founded on the formal 

analyses of Hamilton (1966), Charlesworth (1980, 1994), as well as Mueller and Rose (1996) and 

Charlesworth (2001), among others.  Specifically, we want to replace notions of relentlessly 

accumulating damage and disharmony with the age-dependent tuning of natural selection by 

Hamilton’s forces of natural selection.  The demonstration that aging stops is, for us, the final nail in 

the coffin of theories which assume that aging is a merely physiological process akin to rust.  We invite 

our gerontological colleagues to join us at the funeral of the 20th Century version of their field.  We 

think that the 21st Century Hamiltonian version will be much more promising, both scientifically and 

medically.  After all, science advances one funeral at a time. 
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Appendices 

 

Appendix – Chapter 3 

 

Baudisch’s Challenge to Hamiltonian Theory 

We need to address a recent challenge to the use of Hamilton’s forces of natural selection in 

evolutionary theory. Specifically, the generality of Hamilton’s results has been challenged by Baudisch 

(2005, 2008). In Hamilton’s derivation, the function s(x) was derived by implicitly differentiating the 

Euler-Lotka equation [∑ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑦𝑦)𝑚𝑚(𝑦𝑦) = 1∞
𝑦𝑦=0 ] and finding the partial derivative 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑎𝑎
 where pa is 

the survival from age a to age a+1. A new and different approach to the problem of aging was 

suggested by Baudisch (2008, pg. 22), who proposed that “Equally reasonable, alternative forms would 

have been dr/dpa, dr/dqa, dr/dln qa or dr/dln𝑢𝑢�𝑎𝑎”, where qa = 1-pa, and ln 𝑢𝑢�𝑎𝑎=-ln pa.  Here we address 

the cogency of this claim that these alternatives are equally reasonable. 

Consider a simple single locus genetic model with two alleles. The three genotypes A1A1, 

A1A2, and A2A2 differ in their probability of surviving from age a to a+1 according to P11(a), P12(a) 

and P22(a). All other survival probabilities and fecundities are the same. Then in a population nearly 

fixed for the A1 allele the allele frequency dynamics of the rare A2 allele is approximately 

 

𝛥𝛥𝑝𝑝2 ≅ 𝑝𝑝2(1 − 𝑝𝑝2)𝛼𝛼𝑝𝑝𝑠𝑠11(𝑎𝑎)𝑇𝑇11−1,    (A3-1) 
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where s11(a) is defined in Equation 3-1 using the genotypic survival values for genotype A1A1, T11 is 

the generation time produced by the genotypic survival values for genotype A1A1 and α(p) is p1ln P12(a) 

+ p2ln P22(a) – p1ln P11(a) – p2ln P12(a). So the sign of Equation A3-1 is determined by α(p) and the 

magnitude of the change in p2 is determined by the product α(p) s11(a).  

Explicit population genetics models for survival show that the fate of alleles at a single locus 

are dependent on the genotypic equivalent of s(x) (Charlesworth 1980, pgs. 207-208). We do not have 

equivalent results for the other proposed measures of Baudisch and therefore her proposed fitness 

measures do not have equal standing with Hamilton’s original measure. Put another way, in terms of 

explicit population genetics, Baudisch’s proposed indices have no well-founded basis. 

To make the problem with the theory proposed by Baudisch more concrete, consider the 

following example. The survival and fertility patterns shown in Figure A3-1a produce very different 

curves for Hamilton’s index of the strength of selection on mortality (s(x)/T) and one of Baudisch’s 

indices (dr/dln 

𝑢̄𝑢𝑎𝑎

,labeled Bx in Figure 3-2b). Hamilton’s index shows the expected pattern in the 

declining strength of selection with age (Figure 3-1b). Baudisch’s index shows a maximum impact of 

selection at age 2, not 1 (since Bx measures the effects of changing mortality on r it yields negative 

values, and the larger the negative value the greater the impact of selection at that age). 
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Figure A3-1. An example of two different indices of age-specific selection. (a) The survival (lx) and fertility (mx) 
functions; and (b) Hamiliton and Baudisch force of natural selection indices for the life-table in (a). 

 

To study the behavior of these indices we followed the change in allele frequencies for 10,000 

generations after introducing a mutant with increased survival at age 1, 2, 3, or 4. The expectation is 

that the greater the force of natural selection the greater the increase in allele frequency over this fixed 

period of time. In other words, this analysis does not rely on an index of selection, but rather on the 

observed dynamics of allele frequency change. We do not assume any particular force of natural 

selection; we let the simulated dynamics determine the outcome of selection. The shape of Hamilton’s 

function in Figure 3-1b suggests that the allele frequency change should be smaller with each 

increasing age. Baudisch’s index predicts that the strength of selection will be greater at ages 2, 3, and 

4 than at age 1. 

The outcome of natural selection shown in Figure A3-2 was calculated using Equations 3.14 

from Charlesworth (1980), which do not make any assumptions about the strength of selection, unlike 

Equation A3-1. The outcome of selection follows the qualitative predictions from Hamilton’s index 

and is contrary to Baudisch’s expectations (Figure A3-2). We conclude there is no reason to expect 

that Baudisch’s indices of selection will properly predict the actual effectiveness of natural selection. 
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Figure A3-2. The numbered lines show the change in allele frequencies for beneficial mutants that affect age-specific 
survival at ages 1, 2, 3, or 4 respectively. In each case the mutant started at a frequency of 0.01. 

 

Numerical Details for Calculations in Figure A3-2. 

We assumed a single locus with two alleles, A1 and A2. The resident population is assumed to 

be fixed initially for the A1 allele, and then a small frequency of the A2 allele is introduced and followed 

over time. The resident A1A1 life history consists of 35 age classes. The maternity function has mx = 

0.5 for x = 1…29, and mx = exp[0.978×(30-x)] for all other ages. The survival function is lx = 0.99x-1. 

The resident population was assumed to be at its stable age distribution.  
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The new mutant, A2, was assumed to affect survival for one age-class (px). In particular, the 

heterozygote was assumed to have a survival equal to 1.0025px, while the homozygote mutants had a 

survival equal to 1.005px. The simulation was started by making the frequency of the A2 allele 0.01 in 

all age classes. Allele frequency dynamics were predicted from Equations 3.14 from Charlesworth 

(1980). We also ran numerical calculations in which mutant survival was changed additively, e.g. 

heterozygote survival was px + 0.0025 and homozygote survival was px + 0.005. The results were very 

similar and are not shown here. 

Post publication Update 

Since publication of our book it has been suggested that a more appropriate test of the 

Baudisch theory would consist of multiplicative in the log of mortality rather than additive changes 

(we thank David Bahry for this suggestion). Accordingly we repeated the numerical calculations above 

by decreasing mortality at ages 1-4 and 6, creating mutant heterozygotes with log mortality decreased 

by 20% and mutant homozygotes by 40%. From Figure A3-1(b) the Baudisch prediction is that 

mutants at ages 2 and 3 should be under stronger selection than age class 1. In Figure A3-2.1 we see 

that indeed the mutants at ages 2 and 3 increase at a faster rate than at age class 1.  
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Figure A3-2.1. The numbered lines show the change in allele frequencies for beneficial mutants that affect age-specific 
survival at ages 1, 2, 3, 4 and 6. In each case the mutant started at a frequency of 0.01 and mutants log mortality was 
decreased relative to the mutant.by a factor of 0.8 (heterozygotes) and 0.6 (homozygotes). 

The multiplicative changes in log mortality result in relatively greater changes in mortality than do 

similar additive changes to log mortality. This combined with the very rapid increase in late-life fertility 

[Figure A3-1(a)] is responsible for the departure from the Hamilton predictions. Of course the 

experimental results of Rose (1984b) showed that selection could be changed to favor late-life genetic 

variation if fertility in late-life was sufficiently increased.  

Evolution of Late-Life Simulation Details 

The simulations were written in R (version 2.10). Fitness was determined from the single 

positive, real root of Equation (3-2) using the R function uniroot. Uniroot uses an enhancement of the 

bisection technique, and therefore does not require that the function be differentiable, but it does 
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require that it have a single maximum in the specified interval (Brent 1973). The solutions returned by 

uniroot had precisions of approximately 7×10-9. This leaves open the possibility that some fitness 

estimates may differ by less than the precision of our fitness estimates, and thus we would make 

erroneous conclusions about fitness differences if we used the entire number of machine-significant 

digits. To circumvent this, we multiplied our solution by 108 and converted this real number to an 

integer, thereby removing all the non-significant digits. Of course, mutants whose fitness was the same 

as the resident could only increase in the population by genetic drift. 

 

Relative Roles of Drift and Selection 

At each cycle we have three fitness values, resident, heterozygote mutant, homozygote mutant 

symbolized as r+/+, r+/m, and rm/m respectively. We then rescale these fitnesses to 1, 1+sh, and 1+s. 

Although the heterozygote survival is chosen to be exactly intermediate between the resident and 

mutant homozygote the fitness is not necessarily intermediate. In fact, we have occasionally found 

overdominance in fitness. If the initial frequency of the mutant is x0, then the probability that a new 

mutant will be fixed is given by, 

 

𝜋𝜋(𝑥𝑥0) = ∫ 𝑒𝑒𝑒𝑒𝑒𝑒[−𝛽𝛽𝛽𝛽{2ℎ+𝑦𝑦(1−2ℎ)}]𝑑𝑑𝑑𝑑𝑥𝑥0
0

∫ 𝑒𝑒𝑒𝑒𝑒𝑒[−𝛽𝛽𝛽𝛽{2ℎ+𝑦𝑦(1−2ℎ)}]𝑑𝑑𝑑𝑑1
0

    (A3-2) 

 

where β = 2Nes. In the simulations a uniform random number (𝑢𝑢𝑖𝑖 ∈ (0,1)) is generated and if 𝑢𝑢𝑖𝑖 ≤

𝜋𝜋(𝑥𝑥0) then the mutant is fixed by drift (Ewens 1979, Eq. 3.28, pg. 83).  

We first show the results of a simulation with no genetic drift, so that all beneficial mutants 

are established not matter how small their fitness advantage and all deleterious and neutral mutants 



Mueller, Rauser & Rose      DOES AGING STOP? 

213 
 

are eliminated (Figure A3-3). Although the results show a plateau in late life with very high mortality 

we stopped this simulation after generating 10,000 mutants and we know we were not at selection 

equilibrium. The primary point of interest here is the strength of selection on new mutants over the 

course of evolution. 

 

Figure A3-3. Evolution of mortality with no random genetic drift. The lines show the evolved mortality after 1,000, 
5,000 and 10,000 cycles of introduced mutants. Mutants were generated according to Equations 3-2 and 3-3 with δ=0.1 
and ω=10. 

Let’s define the selection coefficient of a new mutant as, 𝑠𝑠 = 𝑟𝑟𝑚𝑚/𝑚𝑚

𝑟𝑟+/+
− 1. The strength of 

selection relative to drift is then assessed by the parameter 𝛽𝛽 = 2𝑁𝑁𝑒𝑒𝑠𝑠, where Ne is the effective 

population size. Neutral genetic variation corresponds to β=0, although drift can has a strong affect 

on the fate of new genetic variation when β is small. The empirical density function of β’s after 1000, 
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introduced mutants and 10,000 introduced mutants is shown below (Figure A3-4). After 1000 

introduced mutants nearly 21% of all possible mutants have β>1 whereas after evolution has 

proceeded through 10,000 introduced mutants only 1.5% of all possible mutants have β>1.  

 

Figure A3-4. The strength of selection (b) after 1,000 and 10,000 cycles of evolution shown in Figure A3-3. β was 
calculated assuming an effective population size of 10,000 and used the fitness of all possible mutants at each of the two 
cycles. The selection coefficients were based on the resident phenotype’s fitness at each of the two cycles. 

Every 500 cycles in the simulation shown in Figure A3-3 the selection coefficients of all 

possible mutants was calculated and the largest saved. With these values the largest values of β are 

shown in Figure A3-5 over the 10,000 cycles of evolution. These results are consistent with Figure 

A3-4 in showing that as evolution proceeds the magnitude of selection weakens. By 4,000 cycles all 

mutants have β’s less than 10 and by 8,000 cycles they are all less than 5 (Figure A3-5).  
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Figure A3-5. The maximum possible strength of selection (β) among all mutants every 500 cycles of the simulation 
shown in Figure A3-3. These are not necessarily the actual strength of selection for the mutants that were introduced 
each cycle. As evolution progresses it is clear that the fitness range of positive mutants is getting closer to zero. 

The picture that these results suggest is that as evolution proceeds the impact of evolution on 

the evolution of mortality is increased steadily. Thus, by the time all β’s are less than 5 their chance of 

ultimate fixation is less than 50% even when they start at an initial frequency of 0.1 (Figure A3-6). If 

the initial frequency of mutants is even less than 0.1 then the role of drift expands over a much greater 

range of positive mutants (Figure A3-6).  
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Figure A3-6. The probability of fixation for beneficial mutants at two initial allele frequencies. The probabilities were 
calculated from Equation A3-3, assuming h=0.5. 

To illustrate the effect of drift we carried out a new simulation that started from the same 

initial conditions and the same set of parameters for new mutants as Figure A3-3. However, instead 

of randomly generating new mutants at each cycle we computed the fitness of every new possible 

mutant (8,372 total) at each cycle and then chose the mutant with the greatest fitness to be the new 

resident phenotype. If there was more than one mutant with the maximum fitness we chose the new 

resident at random from all the maximum fitness mutants. In this sense we did a hill climbing search 

up to the maximum fitness plateau of this evolutionary process. 

The search stopped when the fitness of all new mutants was less than or equal to the resident 

fitness. The final phenotype reached by this process is show in Figure A3-7 and labeled “Maximum 



Mueller, Rauser & Rose      DOES AGING STOP? 

217 
 

fitness phenotype”. At this equilibrium there were 4,102 mutants with the same fitness as the resident. 

Since the fitness was estimated to 8 significant digits it is possible that there would still be beneficial 

mutants had we computed fitness more accurately. However, the selection coefficient for these 

mutants would be on the order of 2×10-8. For β to be greater than 4 and selection to have even a small 

chance of influencing the fate of these mutants, we would need an effective population size greater 

than about 100,000,000. This calculation drives home the point that drift will dominate this 

evolutionary process well before a selection equilibrium is reached.  

 

Figure A3-7. The effects of drift on the evolution of late-life. The initial mortality schedule was set equal to the same 
schedule as shown in Figure A3-3. When then used the maximum fitness searching routine described in the text to find 
the “Maximum fitness phenotype”. The plateau mortality is close to but not equal to 1. We then started a new simulation 
using the “Maximum fitness phenotype” as the starting condition. We randomly generated mutants and allowed drift to 
influence their fate. The evolved phenotype from that simulation is labeled “Maximum fitness+drift”. The effective 
population size was 10,000 and the initial frequency of mutants was set to 0.1. 

To illustrate the effects of drift we have taken the “Maximum fitness phenotype” in Figure 

A3-7 as the starting point for evolution of random mutants with drift added. The effect is that many 
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neutral mutants and in fact some deleterious mutants now sweep through the population and result 

in a dramatic decline in the height of the plateau (Figure A3-7, Maximum fitness+drift curve).  

 

Other Models of Mortality Plateaus 

Optimality models: Abrams and Ludwig (1995) construct an optimality model based on the 

disposable soma theory of senescence. They take the reproductive schedule of the organism as fixed 

and assume the survival schedule is optimized by natural selection. Survival and reproduction are 

connected through resource allocation. When resources are allocated to reproduction, mortality 

increases. Thus, if mortality at age i is initially µi, after allocation it is µi +ai. Reproduction, mi(a), is an 

increasing function of ai, and mi(0)>0. Abrams and Ludwig look at a variety of functional forms for 

mi(a). Most of the models considered by Abrams and Ludwig do not produce plateaus. They interpret 

late life plateaus in medflies and fruitflies as consistent with this theory since “The disposable soma 

theory that we have modeled predicts that aging should cease at an age when reproductive 

contributions decline to zero. …the leveling of the mortality curve late in life for medflies and fruitflies 

… is consistent with aging ceasing after reproduction terminates” (Abrams and Ludwig 1995, pg. 

1064). However, as shown in this book, reproduction in Drosophila does not cease in late life, so 

optimality theory does not illuminate the cause of plateaus in fruit flies and, as Abrams and Ludwig 

themselves point out, is apparently contradicted by the very late onset of plateaus in humans. 

Directionality theory: This theory developed by Demetrius (1997) is designed for age-

structured populations. It assumes that the appropriate measure of fitness is entropy. If l(x) is the 

probability that an individual survives to age-x, m(x) is the mean number of offspring produced by an 

individual aged-x, and r is the intrinsic rate of population increase then we can define p(x) = exp(-rx) 

l(x) m(x), and entropy (H) is defined as, 
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∫ 𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑∞
0

∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑∞
0

.       

 

Demetrius (2001) uses an analytical technique also used in the classic paper by Hamilton (1966) 

to infer the effects of natural selection on survival. He determines the partial derivative of entropy 

with respect to age-specific survival. Under ecological conditions that limit growth, entropy is expected 

to increase by natural selection, thus positive partial derivatives favor the increase of survival while a 

negative partial derivative would favor a decline. 

The results of this theory are illustrated with an example used by Demetrius, human life table 

data from Sweden in 1835. Figure A3-8 displays the example used by Demetrius (circles) and a slightly 

altered example with constant mortality in the last three age-classes (triangles). We see that even when 

there is already a mortality plateau, directionality theory predicts that late-life survival is favored to 

increase (e.g. the strength of selection is positive in age classes 9 and 10). Increasing survival to age 

class 9 and 10, without increasing survival to age classes 7 and 8, can only be accomplished by 

decreases in late-life mortality. Such decreases would cause an actual drop in late-life mortality. 
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Figure A3-8. The strength of selection on age-specific survival for two life tables. The circles show results for the 
example given in Table 2 of Demetrius (2001). The triangles are the same data except the last three age-classes have a 
constant mortality, e.g. are at a plateau. To get the correct mortality for age class 4 the erroneous survival for age class 3 
must be changed from 0.94844 to 0.64844 (see Table 2, Demetrius 2001). 

Although there are occasional unreplicated examples of declines in late-life mortality, this does 

not seem to be a repeatable or pervasive feature of late-life mortality. For instance, compare the 

mortality of inbred Drosophila lines studied by Fukui et al. (1993) to the populations studied in the 

same lab in a later experiment (Fukui et al. 1996). The former experiment shows mortality declines at 

late life, while the latter study only display plateaus with no substantial dips in mortality late in life. 

Likewise, none of the studies of outbred populations of Drosophila by Rose et al. (2002) show declines 

in mortality in late life. Thus, this key prediction of directionality theory is not consistent with most 

empirical data. Under ecological conditions of exponential growth, directionality theory predicts 

exponential increases in mortality not plateaus. We conclude that this theory doesn’t appear to 

adequately account for late-life mortality plateaus. 

Wall of mortality: Several commentators have suggested that our simulation results must be 

flawed since mortality in late-life did not reach 100% (Charlesworth and Partridge 1997; Pletcher and 

Curtsinger 1998). We focus here on one such critique by Pletcher and Curtsinger (1998), since their 

comments are the most detailed. Pletcher and Curtsinger say that our observations of mortality less 

than 100% at advanced ages is “...inconsistent with the equilibrium predictions of both the 

antagonistic pleiotropy and mutation accumulation models of senescence, which, under a wide variety 

of assumptions, predict a ‘wall’ of mortality rates near 100% at postreproductive ages”. But none of 

the Mueller and Rose models had postreproductive ages. In addition, with respect to the mutation 

accumulation models developed by Mueller and Rose (1996), in which all ages reproduced, Mueller 

and Rose state that “One would also expect that if this process were the only important one 

determining mortality rates then the mortality rates in the plateau would eventually rise to 100%”.  
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Nevertheless, Pletcher and Curtsinger make some detailed comments concerning the mutation 

process and how they affect mortality in our antagonistic pleiotropy models that we will address. 

Equations 3-2 and 3-3 describe how new mutants affect age-specific survival in our simulations. With 

these methods, as survival approaches either 0 or 1, the incremental changes to mortality get smaller 

and smaller. For instance, with, δ=0.1 and ω=10 when Px is 0.5, a new beneficial mutant will have a 

survival value of 0.505. If the initial survival value had been 0.99, the new mutant survival would be 

only 0.9901. Now one could argue that on biological grounds that it is probably more likely for a new 

mutant to improve survival by a large amount when survival is low than when it is already very close 

to 1.  

Using our notation, the survival values of the mutants used in Pletcher and Curtsinger were 

changed to, 

 

𝑃𝑃�𝑥𝑥 = 𝑃𝑃𝑥𝑥 + 𝛿𝛿𝑏𝑏
𝜔𝜔

,      (A3-3) 

 

Deleterious effects were assumed to result in a new age-specific survival value, 

 

𝑃𝑃�𝑥𝑥 = 𝑃𝑃𝑥𝑥 −
𝛿𝛿𝑑𝑑
𝜔𝜔

.     (A3-4) 

 

Although Pletcher and Curtsinger set δd=δb =0.05 and ω=1, these equations allow the possibility that 

the quantitative effect of a beneficial mutation will not be the same as a deleterious mutation, e.g. 

δd≠δb. Equations A3-3 and A3-4 highlight another substantial difference between Pletcher and 

Curtsinger’s work and our own. By assuming ω=1, they have eliminated the possibility of mutants 

affecting multiple age classes. Clearly, an important biological phenomenon that may prevent late life 
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mortality from reaching a wall of 100% is that mutations affecting these ages also affect earlier ages. 

In fact, Mueller and Rose (1996, pgs. 15252-3) make this very point by suggesting that a wall of 

mortality may not occur because “mutations affecting very late survival also have effects early in life, 

where selection is still effective”.  

We illustrate the importance of the effect of mutations affecting multiple age-classes with a 

simple example. Using a simple life history with nine pre-reproductive age-classes and six reproductive 

age classes we have simulated the change in adult mortality using assuming mutants have effects across 

1, 2, 3 or 4 consecutive age classes (Figure A3-9) with effects on survival governed by Equations A3-

3 and A3-4.  

 

Figure A3-9. The evolution of mortality due to 5000 mutants with antagonistic effects modeled by Equations A3-3 and 
A3-4, with δd=δb=0.005. The mutants affected either 1, 2, 3, or 4 age classes (w). 



Mueller, Rauser & Rose      DOES AGING STOP? 

224 
 

When the window is just a single age-class, the first five age-classes have mortality reduced to 

zero and the last age-class approaches 1 (Figure A3-9). In these simulations, we did not generate 

sufficient mutations for mortality to reach 100% in the last age class, but mortality would have evolved 

to reach that value given enough time. Thus, these results are consistent with Pletcher and Curtsinger’s 

predictions. This result is qualitatively different from those we produce with our models. However, 

this wall of mortality does not occur when multiple age classes are affected by mutation. When ω=2, 

the first four age-classes have reached zero mortality before the last two have hit 1. At this point, no 

further improvements in fitness are possible, because any reductions in fitness at the last two age 

classes would have to be accompanied by increases in mortality at earlier age-classes, or at best at the 

last two age-classes, thus exactly cancelling the benefits. When ω=4, the simulations converge to a 

fitness maximum. We determined that evolution had stopped at a local fitness maximum by comparing 

the fitness of all possible new mutants to the resident fitness. The fitnesses of all six alternative mutants 

are lower than the final genotype illustrated in Figure A3-9.  

So even though the Pletcher and Curtsinger conclusion about wall of mortality are dependent 

upon their special assumption that mutants only affect single age classes, additive models of mutation 

still present problems for the evolution of plateaus. It is clear that the final mortality pattern in Figure 

A3-9 is not a mortality plateau.  

We next show results for the additive model in which Equations A3-3 and A3-4 determine 

the properties of new mutants. These simulations have assumed mutants affect a large number of 

adjacent age-classes, i.e. they have extensive pleiotropic effects. With the additive mutation scheme it 

is possible that mortality will hit 100%. When this happens, these simulations truncate the adult life 

span to the age before mortality hit 100%. Thus, in these evolutionary scenarios, maximum lifespan 

may decrease as mutations cause late life mortality to reach 100%. However, even with the much larger 

number of age classes in these simulations, it is still relatively simple to compute, at any point in the 
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evolution of these simulated populations, the fitness of every new possible mutant. These fitnesses 

can then be compared to the fitness of the resident to determine if the evolution is at a local fitness 

maximum. We have checked the fitness of all possible new mutants after every 1000 introduced 

mutants, in order to determine if the current age-specific survival schedule is at a local fitness 

maximum. 

 

Figure A3-10. Evolution of mortality to a local maximum fitness phenotype. The maximum was reached after 4,000 
introduced mutants. The parameters of the simulation were δd=0.1=δb =0.01 and ω=60, fecundity was 5 at all adult ages. 
There was no genetic drift and the number of initial age-classes was 100 and those were reduced to 64 by evolution. At 
the equilibrium the resident fitness was 0.1306774 and the best new mutant fitness was 0.1306627. 

In the example shown in Figure A3-10, the population eventually reached a local fitness 

maximum characterized by a plateau in late life. While we don’t show all our numerical results for the 

additive model, we note the following. With small ω, many late age-classes evolve to 100% mortality 
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until a maximum fitness is obtained. At these equilibria, early mortality is low and then mortality rises 

quickly to the maximum age, showing no plateau. With large ω, we also get equilibria with late age 

patterns that are largely shaped by initial conditions. Clearly, when initial mortality is relatively 

constant, late life will evolve plateaus. Finally, none of these results has accounted for the effects of 

random genetic drift. 

In summary, Pletcher and Curtsinger’s prediction of a wall of mortality in late life is only seen 

consistently if mutations do not have effects on multiple age-classes. In addition, their claim that 

plateaus were contingent on Mueller and Rose’s (1996) particular mutation model is not correct. As 

shown here, the completely additive model of mutation of Pletcher and Curtsinger (Equations A3-3 

and A3-4) can result in plateaus (Figure A3-10), albeit under a more limited set of conditions. 

Plateaus are transient states: Our primary tool for studying the evolution of late-life 

mortality has been computer simulations. In our initial paper (Mueller and Rose 1996), we did not 

check to see if the simulations had reached a loci fitness maximum. Consequently, it has been 

suggested that the plateaus we observed were in fact simply transient states of a process whose 

stationary states were not characterized by late-life plateaus. Wachter (1999) focused on the special 

case of one of our models. He analyzed the antagonistic pleiotropy model, with no genetic drift and 

mutations that affect a single age class, whereas Mueller and Rose (1996) consider this model and 

others in which mutations affected multiple ages. Interestingly, Yashin et al. (2000, pg. 322) mistakenly 

inferred that just the opposite was true when they asserted that “Charlesworth and Partridge (1997) 

and Pletcher and Curtsinger (1998) criticized the assumptions of Mueller and Rose's (1996) models. 

They argued that it is difficult to imagine any genetic mutation producing changes in the mortality rate 

at only one or two precise ages. More realistic models of mortality tradeoffs should include changes 

in survival over larger age intervals.”  
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Wachter shows that the limiting states of the single age-class model are unlikely to have long 

stretches of high mortality, only the last few age-classes having high mortality rates. In fact, he shows 

that, if there is a late-life plateau, it is more likely to be with mortality rates close to zero not 1. Wachter 

also demonstrates that, for this version of our model, the predicted equilibrium equations derived by 

Pletcher and Curtsinger (1998, eq. A5) are wrong. 

However, Wachter does not derive results for mutations that affect multiple age-classes. 

Rather he merely suggests that his results will apply to these models, “Similar arguments are believed 

to apply to all the Mueller–Rose models” (Wachter 1999, pgs. 10546-10547). In practice what appears 

to happen is that, long before any equilibrium of the sort Wachter refers to, the progress of selection 

is halted because the magnitude of the selection on the best possible mutants becomes too small 

relative to the effects of genetic drift. 
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Figure A3-11. Mutations generated by Equations 3-2 and 3-3, mx =1, ∀  x, δ=0.1, and ω=3. The equilibrium was 
reached after 821 mutants had been generated. The equilibrium is defined by the condition that the fitness of the final 
equilibrium mortality phenotype is greater than or equal to the fitness of all possible mutants that can be generated by 
Equations 3-2 and 3-3 from this equilibrium phenotype. 

Using a model with no drift, dominant mutants, and a window of 3 age classes, the simulation 

shown in Figure A3-11 quickly reaches a local maximum in fitness which is characterized by a plateau. 

In addition, the initial conditions had a linear increase in mortality. Thus this plateau is not an artifact 

of our initial conditions. At the calculated equilibrium, all possible mutants have lower fitness than 

that of the resident genotype except for a genotype which has equal fitness. The one mutant with 

equal fitness (equal to eight significant digits) results in small in reductions of mortality during the very 

last two age classes (e.g. from 0.5084763 to 0.5084762 and from 0.5084935 to 0.5084922). This 

happens because this mutant has both beneficial and deleterious effects hitting the last three age classes 
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and these effects exactly cancel in age class 4. However, the fitness benefit from this change is less 

than 10-8. This means that, unless the effective population size is substantially greater than about 10 

million, the fate of these mutants would be largely determined by genetic drift. Although it is 

technically difficult to find a true equilibrium for this model, recall in the previous section that such 

an equilibrium was found for the completely additive mutation model. 

Certainly, with the addition of drift to these models, equilibria of the sort reached in the 

simulation Figure A3-11 will not be attained. However, it remains for future theoretical work to derive 

a full analysis of the drift/selection balance stationary distributions. 

Plateaus are a natural consequence of quantitative genetics: Fox and Moya-Laraño 

(2003) suggest that an individual’s lifespan can be represented as a quantitative trait determined by the 

sum of a large number of genes with small additive effects. They then assert that if longevity has a 

normal distribution, this can be used to derive a new relationship for instantaneous mortality rates that 

is a function of the mean and distribution of the longevity. The interesting aspect of this model is that 

observed longevities can be used to estimate the phenotypic mean and variance and therefore the age-

specific mortality rates expected under this model. While it is true that the model does give rise to 

plateaus, they have not identified the mechanism for this.  

There are at least two major problems which erode our confidence in this model. The first is 

that the simple assertion that longevity will be determined by small additive effects of many genes 

does not make it true. Evidently, longevity can be affected by large-effect mutations, as we have already 

mentioned. Secondly, the data analyzed by Fox and Moya-Laraño (2003) do not generally conform to 

the model predictions. The three species whose demography they analyzed show fairly widespread 

departures from the model predictions, even at very early ages where there are large numbers of 

observations and hence reliable mortality estimates. This suggests that their model does not capture 

important features of age-specific mortality patterns.  
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Evolutionary string models: Pletcher and Neuhauser (2000) elaborate on a model 

introduced by Penna (1995) to study the evolution of age-specific mortality. This model shares features 

of reliability models, in that at each age there are believed to be several crucial components which may 

fail. Failure of all the components at any age leads to death. Genetics are introduced into the haploid 

model by assuming two genetic states at each locus. The more fit wild-type state has 40 components. 

A deleterious mutant has only two components. Mutations are allowed every generation although each 

individual gamete may gain only one mutation at one of the 32 age-classes per generation. In this 

respect, this model is a special case of the models considered by Wachter (1999). Simulations were run 

where the fate of all individuals in a population about 3100 individuals were followed.  

This is clearly a novel way to model the biology of an organism, although it should be noted 

that the model’s component assumptions are not readily testable. The model appears to produce 

plateaus in mortality at late life and to predict that, when a population is subjected to late life selection 

(by waiting until age 16 to reproduce rather than age 8), the mortality plateau shifts to later ages.  

For this model to be taken seriously, it must be able to reproduce simple patterns of selection 

that are well established. For instance, since there is no reproduction prior to age 8 in either the early 

or late reproducing population simulated by Pletcher and Neuhauser, there ought to be equally strong 

selection for high survival up to age 8. However, Pletcher and Neuhauser’s results clearly show that 

the mortality rates are higher in the early reproducing population at ages 1-7 compared to the late 

reproducing population. Since survival does not affect other fitness components, like fecundity, this 

result is unexpected. In addition, the equilibrium number of deleterious mutants increases from ages 

1 to 8, indicating age-specificity to selection prior to reproduction. This result is seemingly contrary to 

standard population genetic theory. Therefore, it seems difficult to interpret how their evolutionary 

model is functioning at reproductive ages, which raises questions about its relevance to patterns of 

mortality in real populations.  
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Markov mortality models: These are models based on Markov processes that are stopped, 

or killed, at random times. They can be applied to biological longevity by assuming that there is some, 

possibly unobserved, Markov process which determines an individual’s health, the most important 

features being whether the individual is alive or not. For example, Weitz and Fraser (2001) model what 

they call viability by assuming it is subject to a constant downward force and random variation with 

age. Thus at age-t an individual’s viability is given by, 

 

𝑣𝑣(𝑡𝑡 + 1) = 𝑣𝑣(𝑡𝑡) − 𝜀𝜀 + 𝜎𝜎𝜎𝜎(𝑡𝑡),      

 

Where ε measures the impact of aging to decrease viability, χ(t) is the effect of a random 

process on viability that has a mean of zero and unit variance, and finally the constant σ modulates 

the variance of the random process. When viability reaches zero, the individual dies. This type of 

model can be thought of as a dynamic heterogeneity model, as opposed to the static heterogeneity 

models we review in chapter 6. The random effects on longevity are not specifically defined by Weitz 

and Fraser, but they suggest these might be phenomena like competition for resources, phenotypic 

differences, local environmental changes, or even stochastic gene expression. While this list of factors 

could in principle affect longevity, there is nothing in the formulation of this model which would help 

us determine how, for instance, increasing or decreasing phenotypic differences will impact mortality. 

In any case, this very simple model can produce plateaus or even declining mortality at late ages, 

although as mentioned before there is little empirical support for declining mortality with age. 

Steinsaltz and Evans (2004) provide a comprehensive overview of these types of models. They 

refer to these Markov models as part of the evolving heterogeneity theory of mortality tapering. From 

these theories, Steinsaltz and Evans suggest these models give us an explanation for mortality plateaus: 

“As a Markov process progresses, the distribution of its state is being shaped by two forces: random 
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motion spreading the mass out, and shifting it in certain preassigned directions; and deaths lopping 

off mass at each point, at a fixed rate…if we wait long enough the distribution of those individuals 

who survive will approach a certain one of these quasistationary distributions. The mortality rate, of 

course, will also approach the mortality rate averaged over this distribution” (Steinsaltz and Evans 

2004, pg. 321). When this average mortality rate is reached, these rates will stop increasing with age 

and hence we have a plateau.  

While this may constitute an explanation of plateaus for a statistician, it is hardly a biological 

explanation. There have to be biological phenomena that determine the properties of these Markov 

chains, and thus a biological understanding of this phenomenon is not advanced by a thorough 

understanding of Markov chain-killing models. Steinsaltz and Evans do make the very useful 

observation, however, that since there are so many models that can apparently produce plateaus, 

simply producing a model that can mimic these patterns does not constitute strong support for the 

model. This viewpoint is very much in line with our own and is of course why our research program 

has focused on experiments that explicitly test our theory in a more stringent manner than merely 

predicting plateaus that have already been observed. 

Reliability theory: These theories are a subset of the Markov chain models discussed above, 

but attempt to develop a mechanistic view of an organism, albeit a non-genetic one. The theories of 

Gavrilov and Gavrilova (2001) are perhaps the most prominent. These models assume that organisms 

are constructed of many different critical components that have high levels of redundancy. Even if 

these components themselves don’t age, Gavrilov and Gavrilova show that the chance of a critical 

failure increase with age. They also suggest that mortality rates generated form their models follow the 

Gompertz pattern. Their models have a number of unrealistic biological assumptions (see Pletcher 

and Neuhauser 2001), in addition to some technical flaws that invalidate their claim of Gompertz 

mortality (Steinsaltz and Evans 2004).  However, models of this kind might have some use, if they are 
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used to model how physiological components of organismal function underlie the evolution of 

patterns of age-specific survival and fecundity, where the latter processes are supervenient.  At this 

point in time, the only work of this kind of which we are aware is that of Frank (2007), on the 

development of cancer. 
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Appendix – Chapter 4  

 

Estimation of Mortality-Rate Plateaus 

Mortality rate plateaus were estimated by allowing d* to be the age at which mortality rates 

become constant with age (the “breakday”). Then, at ages x less than d*, age-specific mortality rates 

were modeled by the continuous-time Gompertz equation and set equal to Aexp(αx), where A is the 

age-independent rate of mortality and α is the age-dependent rate of mortality increase. For x > d*, 

mortality rates were assumed to equal ~A . ~A  is independent of age, but different from A. For a 

particular value of d*, A, α, and ~A  were estimated by maximum likelihood. This was repeated for a 

range of d* values, and the value of d* that yielded the largest likelihood value was chosen as the best 

estimate of the breakday between early and late mortality. 

The likelihood function was constructed from ages at death of the N members of a cohort, 

following methods similar to those of Mueller et al. (1995). In the experiments of Rose et al. (2002), 

the raw data consisted of the number of dead flies recorded every two days, which might be zero. 

Therefore, we numbered the two-day checks sequentially and let the tN be the last check during which 

the last fly died. Then the number of dead flies in each two-day period is, 

 

𝑑𝑑1,𝑑𝑑2, . . . ,𝑑𝑑𝑡𝑡𝑁𝑁 .        

 

Likewise the number of flies alive at the start of each census period is N1 (=N), N2, …, 𝑁𝑁𝑡𝑡𝑁𝑁(= 𝑑𝑑𝑡𝑡𝑁𝑁). 

Let q(i) be the probability that an individual that lived to census period i, dies by census period i+1. 

Then the likelihood function is defined as, 
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𝐿𝐿 = ∏ �𝑁𝑁𝑖𝑖𝑑𝑑𝑖𝑖
� 𝑞𝑞(𝑞𝑞)𝑑𝑑𝑖𝑖𝑖𝑖=𝑁𝑁𝑡𝑡

𝑖𝑖=1 (1 − 𝑞𝑞(𝑖𝑖))(𝑁𝑁𝑖𝑖−𝑑𝑑𝑖𝑖).     

 

For a particular breakday, d*, q(i) is then estimated as,  

 

�
1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐴𝐴�exp(𝛼𝛼2𝑖𝑖)−exp�𝛼𝛼2(𝑖𝑖+1)��

𝛼𝛼
�  𝑖𝑖𝑖𝑖 2𝑖𝑖 < 𝑑𝑑 ∗

1 − exp�−2𝐴̃𝐴�                                   𝑖𝑖𝑖𝑖 2𝑖𝑖 ≥ 𝑑𝑑 ∗
   . 

 

Statistical Tests for the Existence and Evolution of Late-Life Fecundity 

Plateaus  

We tested whether fecundity plateaus at late ages by statistically testing the fit of a model 

with a late-life plateau to mid- and late-life fecundity data in the cohorts compared in the 

experiments of Rauser et al. Average population fecundity in Drosophila increases at early adult 

ages until it reaches a peak, and then starts to decline. Therefore, we defined mid-life as those ages 

where average population fecundity starts to decline, and late-life as those ages where the decline 

in average population fecundity stops or slows. The model we fit to the data was a 3-parameter 

two-stage linear model with the following relationship between age (t) and fecundity (f(t)), 

 

𝑓𝑓(𝑡𝑡) = �𝑐𝑐1 + 𝑐𝑐2𝑡𝑡   𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐1 + 𝑐𝑐2     𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑓𝑓𝑓𝑓𝑓𝑓.     
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This model was used since we did not have survival data for all the populations in this study and the 

techniques for inferring differences in breakdays are easier to apply with this model. A more detailed 

explanation of this model will be covered in Chapter 9. 

The model was fitted using all of the fecundity data at each age (100 observations), starting at 

an age in mid-life where the average fecundity for that population started to decline (age 30 days for 

all CO populations except CO3, where fecundity did not start to decline until age 46 days, and age 26 

days for all ACO populations). Each cohort was fitted to the model independently. This model was 

fit to the data using a nonlinear least-squares function in the R-project for statistical computing 

(www.R-project.org). We wrote a self-starting R-function for the two-stage linear model that provided 

initial estimates for the parameter values as well as the predicted fecundity from the equation. 

We tested whether fecundity plateaus evolve according to the last age of survival using the 

ACO and CO Drosophila populations described above. The replicate ACO populations have an earlier 

age of reproduction and shorter life spans compared to the CO populations. However, these average 

life span patterns and ages of reproduction by themselves do not indicate the timing or nature of 

fecundity plateaus for these populations. A pair-wise comparison between cohorts obtained from the 

ACO and CO populations allows us to properly test whether the onset of fecundity plateaus, or the 

breakday, would occur later in the CO populations relative to the ACO populations. 

This experimental design resulted in one ACOi cohort and one COi cohort that were matched 

by a common index being tested at one time. The common index indicates that the two populations 

had a common population of origin (Oi). Thus, the pairs of populations form blocks that have a 

common evolutionary origin and a common set of experimental conditions. Each population also has 

its own unique history of genetic change due to random genetic drift. Thus, there are three sources of 

random variation in this experiment: populations, blocks, and individual measurement errors.  

http://www.r-project.org/
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In this formulation we will let the index i indicate one of the 10 populations of origin, j be one 

of the five blocks or cohort pairs, and k a vial of four individuals, which is the smallest unit of 

observation within a population. If each cohort has a total of ni individuals, then the number of eggs 

per female in population-i, block-j, individual-k is yijk. The basic nonlinear model is given by, 

 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖,      

 

where ϕijk is the vector of parameters, vijk, is the covariate vector, and εijk is the within-cohort variation. 

The covariate vector contains the age of individual ijk, tijk, and the population code, δi, which is zero 

if the population is ACO (e.g. i = 1,2,3,4, or 5) and one if the population is CO (e.g. i = 6,7,8,9, or 

10). 

For the two-stage linear model the functional relationship is, 

 

𝑓𝑓�𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖� = �
𝜙𝜙1𝑖𝑖𝑖𝑖 + 𝜙𝜙2𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜙𝜙3𝑖𝑖𝑖𝑖
𝜙𝜙1𝑖𝑖𝑖𝑖 + 𝜙𝜙2𝑖𝑖𝑖𝑖𝜙𝜙3𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 > 𝜙𝜙3𝑖𝑖𝑖𝑖

.     

 

We assume that the values of the model parameters are affected by both fixed and random effects. 

The fixed effects can be examined to determine if the selection treatment has a significant effect. The 

parameters are also assumed to vary randomly between populations due to founder and drift types of 

effects and between blocks. The between block variation may be due to different experimental 

conditions or due to founder effects. These two sources of variation cannot be separated. These 

assumptions translate into the following system of equations: 
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 𝜙𝜙1𝑖𝑖𝑖𝑖 = 𝛽𝛽1 + 𝛾𝛾1𝛿𝛿𝑖𝑖 + 𝑏𝑏1𝑖𝑖 + 𝑐𝑐1𝑗𝑗      

𝜙𝜙2𝑖𝑖𝑖𝑖 = 𝛽𝛽2 + 𝛾𝛾2𝛿𝛿𝑖𝑖 + 𝑏𝑏2𝑖𝑖 + 𝑐𝑐2𝑗𝑗      

𝜙𝜙3𝑖𝑖𝑖𝑖 = 𝛽𝛽3 + 𝛾𝛾3𝛿𝛿𝑖𝑖 + 𝑏𝑏3𝑖𝑖 + 𝑐𝑐3𝑗𝑗,   (A4.1a-c) 

 

where the γk (k = 1-3) are the fixed effects due to selection, the bki are the random population effects 

and the ckj are the random block effects. An important statistical test will be to determine if the γk are 

significantly different from zero. If so, this will indicate that the selection treatment has a statistically 

significant effect on the regression model parameter. 

Fecundity decreases substantially with age in these populations, which suggests that we 

should model within population variance as a function of mean fecundity. The general formulation 

is, 

 

𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖� ≅ 𝜎𝜎2𝑔𝑔2�𝑢𝑢�𝑖𝑖𝑖𝑖𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 , 𝛿𝛿�,      

 

where 𝑢𝑢�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖|𝒃𝒃𝑖𝑖, 𝒄𝒄𝑗𝑗). In this analysis we used g(.) = | yikj|δ , where δ is estimated from the data. 

The bi were assumed to be distributed as, 

 

𝒃𝒃𝑖𝑖~𝑁𝑁�𝟎𝟎, �
Ψ11 0 0

0 Ψ22 0
0 0 Ψ33

��.      

 
The cj are assumed to be distributed as, 

 

𝒄𝒄𝑖𝑖~𝑁𝑁�𝟎𝟎, �
Z11 0 0
0 Z22 0
0 0 Z33

��.       
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The maximum likelihood techniques used to estimate the model parameters and test their significance 

are reviewed in Pinheiro and Bates (2000, Chapter 7). These techniques were implemented with the 

non-linear mixed effects package in R (version 1.6). 

Lastly, using the parameter estimates from the model, the height of the late-life fecundity 

plateau is 

 

𝜑𝜑�4 = 𝜑𝜑�1 + 𝜑𝜑�2𝜑𝜑�3.      (A4.2) 

 

Since  is a non-linear function of the three estimated parameters, its variance was estimated using 

the delta method (Mueller and Joshi 2000, pg. 83). The variance in plateau height is then, 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜑𝜑�4) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜑𝜑�1) + 𝜑𝜑�32𝑉𝑉𝑉𝑉𝑉𝑉(𝜑𝜑�2) + 𝜑𝜑�22𝑉𝑉𝑉𝑉𝑉𝑉(𝜑𝜑�3) + 2𝜑𝜑�3𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑�1𝜑𝜑�2) +

2𝜑𝜑�2𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑�1𝜑𝜑�3) + 2𝜑𝜑�2𝜑𝜑�3𝐶𝐶𝐶𝐶𝐶𝐶(𝜑𝜑�2𝜑𝜑�3). (A4.3) 

 

Asymptotic 95% confidence intervals on the plateau height, 𝜙𝜙�4 , are estimated as, 𝜙𝜙�4 ±

1.96�𝑉𝑉𝑉𝑉𝑉𝑉(𝜙𝜙�4). The variances and covariances in equation (A4.3) are estimated from the non-linear 

least squares procedures. 
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Appendix – Chapter 6 

 

Methods for the Simulations used in Figure 6-2. 

A single set of Gompertz parameters were used for all of these simulations, A (0.0725346) 

and α (0.22891005). Using these Gompertz parameters, 1,000 random ages-at-death, di, were 

generated using the inverse transform method (Fishman 1996), di =ln[1-αln(1-Ui)/A]α, where i = 

1..,1000 and Ui ~ uniform (0,1). To each di, experimental error εi was added where εi ~N(0,σ2) . The 

various values of σ2 are given in the figure.  

 

Methods for the Simulations used in Figure 6-3. 

The mean vector of the Gompertz parameters was µ = (A,α). We assumed these parameters 

had a multivariate normal distribution on a natural log scale, with Σ = Cov[ln(µ)]. We took N samples, 

Xi, (i = 1,..,N) such that ln[Xi] ~ MVN (ln(µ), Σ). These N samples constitute one cohort. If Σ = 0, 

then the population should obey the Gompertz equation, if Σ ≠ 0, then there is heterogeneity in the 

population and the possibility of a mortality plateau if the variation is sufficiently large. 

For each Xi we computed a random age-at-death using the inverse transform, ln[1-αiln(1-

Ui)/Ai]αi, where Ui ~ uniform (0,1). From these ages-at-death we computed two-day mortality rates. 

For the simulations with variation in both A and α we assumed Cov[ln(A),ln(α)] = 0. The parameter 

values used were µ = (0.0725346, 0.22891005), N = 1028. Σ varied as described in the text. The 

simulations were programmed in R, version 2.40.  
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Appendix – Chapter 7 

 

Population Genetic Model 

Suppose we have k-alleles, A1, …, Ak, with frequencies x1, …, xk. Each allele is associated 

with an age-specific survival phenotype, pi = (p1i, …, pdi), where the total number of adult age classes 

is d. The relationship between genotype and phenotype is for homozygotes, 

 

AiAi ⇒ pi      (A7-1) 

 

and for heterozygotes 

 

AiAj ⇒ pij ⇒ { psij } =max(psi,  psj).   (A7-2) 

 

In other words the heterozygotes were assigned the maximum survival exhibited by either of their 

constituent alleles. 

Fitness for genotype AiAj, wij, was determined by the largest root of the Lotka equation, 

 

∑ 𝑒𝑒𝑤𝑤𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 = 1𝑠𝑠 ,       

 

where lsij is the product of the age-specific survival probabilities. Allele frequency change was then 

determined by the standard theory. Thus, the frequency of allele-i in the next generation, 𝑥𝑥𝑖𝑖′ , is given 

by, 
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𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖
𝑤̄𝑤

,      (A7-3) 

 

where the marginal fitness of allele-i, wi, is defined as ∑ 𝑥𝑥𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗  and the mean fitness, 𝑤̄𝑤, is ∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 . 

 

Computer Simulations 

The life history of the simulated organism had nine pre-adult age-classes and 10 adult age 

classes. The initial adult mortality was given by the Gompertz equation (Equation 2-1) with A= 0.01 

and α = 0.4. All new mutants affected four adjacent age-classes. The first affected age, D, was selected 

at random. With probability 0.5 age-specific survival of the most common allele’s survival phenotype, 

pk, would be altered to create the mutant phenotype,  

 

𝑝𝑝𝑖𝑖𝑖𝑖 + (1 − 𝑝𝑝𝑖𝑖𝑖𝑖) � 𝑐𝑐1+(𝑐𝑐2−𝑐𝑐1)

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑐𝑐3−𝑖𝑖𝑐𝑐4
�
�    (A7-4) 

 

otherwise, 

 

𝑝𝑝𝑖𝑖𝑖𝑖 �
𝑐𝑐1+(𝑐𝑐2−𝑐𝑐1)

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑐𝑐3−𝑖𝑖𝑐𝑐4
�
�     (A7-5) 

 

where c3 = D+2, c4 = -2, and i = D, D+1, .., D+3. If the correlation in changes was positive then c1= 

0.1 and c2 = 0, otherwise c1= 0.05 and c2 = -0.025. Equations A7-4 and A7-5 were used to generate 

Figures 7-1 and 7-2. The initial frequency of these mutants was set to 10-6.  
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After each mutant was created, allele frequencies were iterated over 50,000 generations by 

Equation A7-3 or until the stopping condition was satisfied. The stopping condition was, 
∑ �𝑥𝑥𝑖𝑖

′−𝑥𝑥𝑖𝑖�𝑖𝑖=𝑘𝑘
𝑖𝑖=1

𝑘𝑘
<

10−12. At the end of this process, any allele with a frequency of less than 10-6 was considered lost.  
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Appendix – Chapter 8 

 

Heterogeneity-in-α Parameter Estimation 

The observations consist of recorded deaths at times, t1, t2, …, tk. The deaths observed on day 

tm , 𝑑𝑑𝑡𝑡𝑚𝑚 , are presumed to have occurred between times tm-1 and tm. If the initial number of adults in the 

cohort is N, then the observed mortality between times tm-1 and tm is, 

 

 𝜇𝜇(𝑡𝑡𝑚𝑚) = 𝑑𝑑𝑡𝑡𝑚𝑚/�𝑁𝑁 − ∑ 𝑑𝑑𝑡𝑡𝑖𝑖
𝑖𝑖=𝑚𝑚−1
𝑖𝑖=1 �      

 

The model estimate of mortality for the same time interval is, 

 

𝜇̂𝜇(𝑡𝑡𝑚𝑚,𝐴𝐴,𝛼𝛼,𝑘𝑘) = 1 − 𝑝𝑝𝑡𝑡𝑚𝑚
𝑝𝑝𝑡𝑡𝑚𝑚−1

,      

 

where pt is calculated from Equation 8-2. The least squares estimates are simply the values of A, α, 

and k that minimize the function, 

 

∑ �[𝜇𝜇(𝑡𝑡𝑖𝑖)−𝜇𝜇�(𝑡𝑡𝑖𝑖,𝐴𝐴,𝛼𝛼,𝑘𝑘)]2

𝑉𝑉𝑉𝑉𝑉𝑉[𝜇𝜇(𝑡𝑡𝑖𝑖)] �𝑖𝑖=𝑘𝑘
𝑖𝑖=1 .      

 

The minimization was carried out with the optim R function, which implements a Nelder-Mead 

procedure that doesn’t require function gradients. Numerical integration of Equation 8-1 utilized the 

distrExIntegrate R function found in the distrEx R package (Ruckdeschel et al. 2006).  
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Distribution of Age-at-Death 

Each population was characterized by three parameters from the heterogeneity-in-α model, 

A, 𝛼𝛼�, and k (see Equation 8-1) and the sample size N. One sample consisted of N ages at death. For 

each of the N individuals in the sample an age dependent Gompertz parameter, 𝜉𝜉𝛼𝛼�, was generated 

using the rgamma R-function (with shape=k and scale =1/k) to generate the gamma random variable 

ξ. The age at death was generated from generated using the inverse transform method (Fishman 1996), 

ln[1-𝜉𝜉𝛼𝛼�ln(1-U)/A]/𝜉𝜉𝛼𝛼�, U ~ uniform (0,1). A total of 100 samples were generated for each Drosophila 

population. Only one sample was generated for the Medfly populations. 

 

Heterogeneity-in-α Model Fit to Drosophila Data 

The data for the heterogeneity-in-a model fit to Drosophila are presented in figures A8-1 to A8-4. 
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Figure A8-1. The line is the least-squares non-linear fit of the heterogeneity-in-α model to the observed O population 
mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% confidence 
limits. 
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Figure A8-2. The line is the least-squares non-linear fit of the heterogeneity-in-α model to the observed B population 
mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% confidence 
limits. 
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Figure A8-3. The line is the least-squares non-linear fit of the heterogeneity-in-α model to the observed CO population 
mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% confidence 
limits. 
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Figure A8-4. The line is the least-squares non-linear fit of the heterogeneity-in-α model to the observed ACO 
population mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% 
confidence limits. 
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Appendix – Chapter 9 

 

Application of the EHF Model to Drosophila 

Results from individual fecundity and survival records. The four parameter EHF model 

(Equation 9-7) was fit to individual data as well as the five, six and seven parameter variants of 

Equation 9-7 (data from Rauser et al. 2005a). The success of the four models was then compared 

using the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and a cross-

validation index. We looked for the model that consistently had the smallest value of AIC, BIC and 

the cross-validation index. To compute the cross-validation index we divided the raw data in half. One 

half was used to estimate the model parameters. We then computed the mean predicted sum of squares 

with the second half of the data set. This process was repeated 100 times with different random 

partitions of the raw data. The average values of the cross-validation index are reported in Table A9-

1. 

Table A9-1 The model fitting results for three different data sets that included individual fecundity 
and survival records and four different EHF models. The lowest (best) value for each criterion is bold. 
Model Criteria CO1-1 CO1-2 CO1-3 

4-par AIC 4.14 4.55 5.17 

 BIC 4.67 5.12 5.67 

 Cross-validation 3.93 6.33 9.92 

5-par AIC 4.32 4.28 5.05 

 BIC 4.98 4.99 5.68 

 Cross-validation 5.01 5.20 11.48 

6-par AIC 4.34 4.37 4.83 
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 BIC 5.14 5.22 5.58 

 Cross-validation 5.12 6.63 10.57 

7-par AIC 4.29 4.95 4.33 

 BIC 5.23 5.94 5.21 

 Cross-validation 4.59 6.10 10.23 

 

 

Results from individual survival records and group fecundity records. Except for one 

case out of the ten examined, the four-parameter model (Equation 9-7) had the smallest values of 

both AIC and BIC, as shown in Table A9-2. Accordingly, we focused on this model in our detailed 

analysis of the CO data. 

Table A9-2. Summary of the stochastic fecundity model statistics. The four- (“4-par”) and five-
parameter (“5-par”) models use fixed widths of 10 days. The lowest values of AIC and BIC are shown 
in bold face for each cohort. 
Model parameter CO1 CO2 CO3 CO4 CO5 

4-par AIC 100.1 80.55 76.19 63.72 97.10 

 BIC 100.8 81.16 76.64 64.20 97.85 

5-par AIC 100.6 81.20 82.49 63.64 102.23 

 BIC 101.5 81.96 83.21 64.25 103.17 

6-par AIC 100.1 81.02 76.78 63.49 98.38 

 BIC 101.2 82.10 77.65 64.22 99.50 

7-par AIC 101.1 80.76 76.54 63.97 98.84 

 BIC 102.4 81.83 77.55 64.82 100.15 
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