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Chapter 1. Introduction: A Third Phase of Life

There is a third phase of life, following development and aging, which we call late life. Late
life requires different evolutionary, demographic, and physiological principles from those that

characterize the first two phases of life.

The First Two Phases of Life

Life histories have traditionally been organized into two phases: development and adulthood. The
dividing line between these two phases is the onset of reproductive maturity, an event that is usually
easily discerned.

A major qualification to this categorization arises in organisms that reproduce by symmetrical
fission. Among the organisms that reproduce this way are unicellular species, such as many bacteria,
some protozoa, and some algae. Some species of both multicellular plants and multicellular animals
reproduce by approximately symmetrical fission, as well. Fissile reproduction occurs in free-living
coelenterates, for example, particularly sea anemones and some Hydra species. It is also common
among clonally spreading plants, such as grasses, some herbs, and even trees. Among species that
reproduce by symmetrical fission, there is no adult phase of appreciable duration. Juveniles effectively
reproduce two more juveniles, if they survive to reach reproductive competence. Simply put, there is
no true adulthood.

Most multicellular species, however, do attain an adulthood during which they reproduce with
a soma left behind, a structure that does not itself join the next generation as an immature organism.

Such asymmetrical reproduction is empirically associated with the occurrence of aging, in which the
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soma progressively deteriorates with time, even under good conditions, regardless of excellent
provisioning and protection from predators or obvious contagious disease. That is, adulthood is
empirically associated with endogenous deterioration under good conditions. When adult mortality
rates in species with asymmetrical reproduction are studied carefully under protected conditions,
particularly in laboratories, their mortality rates typically accelerate rapidly after the onset of
reproduction.

There is a paradoxical element to this pattern. Multicellular organisms typically undergo a
complex process of cell proliferation and differentiation during development, before the onset of
adulthood. Then, shortly after the organism is fully developed, with all of its specialized tissues
available for use, it proceeds to deteriorate. This deterioration is slow at first, but it progressively
accelerates over a long period of time, reducing the likelithood of continued survival to much lower
levels than are observed at the start of adulthood. It is seemingly a contradiction of adaptive evolution,
given that the life-cycle of a complex organism evolves to proceed successfully through a complex
process of development, which often takes place under conditions of uncertain access to energy as
well as threats of predation or mechanical destruction. Yet the reproductive adult that has survived
this process of development soon begins a process of pervasive deterioration even under the most
benign conditions that experimenters can contrive.

Irrespective of how these two phases of life are explained, they are striking in their distinctness.
As a result, two very different scientific fields have focused on the two widely-recognized phases of
life: developmental biology and gerontology. The former has been one of the most successful of 20"
Century biological disciplines. The latter discipline, gerontology, hasn’t been quite as successful,
though perhaps primarily for institutional and historical reasons more than scientific deficiencies, as

we will discuss.
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Within these two disciplines, a wide spectrum of research strategies have been used, from
biochemistry to molecular biology to cell biology to organismal physiology to population genetics to
evolutionary theory. However, it is fairly natural to separate this research into two capacious bins: (i)
molecular, cellular, or reductionist research; versus (i) comparative, demographic, or evolutionary

research. We discuss each in turn.

The Scientific Study of the Fitst Two Phases of Life: Molecular and Cell
Biology

The study of the molecular and cell biology of development has been extremely successful.
Piece by piece, the machinery by which adult organisms are produced has been detailed, deconstructed,
and manipulated. This is such a well-attested success story in biology that we will devote no further
attention to it here.

By contrast, it has been extremely difficult to work out the molecular and cell biology of aging,
leaving aside the mere documentation of its numerous changes. The most interesting result has been
that lifespan can be ‘stretched’ in organisms with artificially lower metabolic or reproductive rates
(Weindruch and Walford 1988; Finch 1990), although this result had already been demonstrated as
early as 1916 and 1917 (Loeb and Northrop 1916; Loeb and Northrop 1917). There has been some
recent excitement over ‘longevity mutants’ (reviewed by Kenyon 2005), mutants which also appear to
exemplify the ‘stretching’ pattern, in that they suffer reduced metabolic rates (Van Voorhies and Ward
1999; Van Voorhies 2002) or diminished reproductive and competitive capacities (Van Voorhies 1992;
Marden et al. 2003; Jenkins et al. 2004). The insulin-like signaling pathway, in particular, appears to
modulate the allocation of nutrients between maintenance of the adult soma and reproduction

(Kenyon et al. 1993; Chen et al. 1996; Bohni et al. 1999; Tatar et al. 2001; Clancy et al. 2001; Bartke
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2005). A lot of attention has been focused on this pathway because it is conserved across distantly

related species, from nematodes to fruit flies to mammals (Fontana et al. 2010).

The Scientific Study of the First Two Phases of Life: Demogtraphy and
Evolutionary Biology

From the standpoint of demographically-focused evolutionary biology (e.g. Charlesworth
1980, 1994; Rose 1991; Stearns 1992; Roff 1992), the first two phases of life have quite distinct
evolutionary properties. Development takes place during a period of intense natural selection, which
is how evolutionary biologists characteristically explain the relative perfection of developmental
processes. Alleles that have deleterious effects on fitness-related characters early in life are not favored
by natural selection unless those same alleles have beneficial effects on other parts of the life cycle.
This can occur in cases of antagonistic pleiotropy between components of life-history during
development (Rose 1982), one scenario being genetic trade-offs between growth rate and viability.
The ways in which such trade-offs arise, and their evolutionary consequences, will often involve
specific aspects of the ecology and developmental biology that affect selection in each species. As
such, they are not amenable to general theoretical characterization or analysis, although some attempts
were made in the older ‘optimal life-history’ literature (reviewed in Charlesworth 1980).

The situation is quite different with respect to aging during adulthood. When demographic
information is incorporated into evolutionary genetic theory, as in Charlesworth’s (1980) classic
monograph, then it is possible to derive predictions concerning the evolution of age-specific life-
history characters. At the core of this type of theory are Hamilton’s (1966) twin forces of natural
selection, with one force acting on age-specific survival and the other force acting on age-specific

fecundity. Both of these forces suggest that adulthood should be marked by persistent declines in age-
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specific survival probabilities and average fecundity. The use of this theory has led to an outbreak of
interesting research on the evolution of aging and kindred topics in life-history (Rose 1991; Roff 1992;

Stearns 1992; Rose et al. 2007). But that is not our main focus here.

The Demography and Evolutionaty Biology of Late Life

Our concern in this volume is to elucidate the fundamental demographic and evolutionary
properties of late life, concentrating on data collected from well-defined laboratory experiments. There
are ongoing studies of late life using data from human cohorts. However, we do not consider such
data of sufficient quality to be useful in deciding basic scientific questions. Most of these human cohort
studies are demographic in nature and only provide a post hoc analysis of death and the incidence of
diseases. We will turn to a discussion of these problematic data in Chapter 11, as well as applying our
general conclusions to the human case.

For the time being, let us just mention that the observation that mortality rates follow distinctly
different trajectories in late life in humans, and do not continue to exponentially increase at very late
ages, is not a new finding for demographers and actuaries studying human data (Greenwood and Irwin
1939; Comfort 1964; Finch 1990; Gavrilov and Gavrilova 1991). Much of the work being done on
late ages in humans is focused on constructing and analyzing life tables and describing trends in age-
specific mortality patterns (e.g. Kannisto 1994; Christensen and Vaupel 1996). What this data has
revealed is that there is a slowing in the acceleration of mortality rates around age 80, followed by a
plateau after age 105 (Vaupel et al. 1998; Young et al. 2009). This slowing in mortality at late ages has
been more pronounced since 1950 in developed countries (Kannisto et al., 1994; Vaupel 1997) and
contributes to the increase observed in maximum lifespan (Wilmoth et al. 2000). Other work is

comparative in nature, using autopsies of the ‘oldest old” (e.g. Bernstein et al. 2004), or comparing
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cohorts of young or middle age humans with older individuals. Perhaps the most revealing studies on
late life in humans are longitudinal studies that consider social, behavioral, biological, and
environmental factors across the lifespan of many individuals. One such study is the Chinese
Longitudinal Healthy Longevity Survey, which has produced over 60 peer-reviewed articles from the
data that have already been collected (see Yi 2004).

But for the present purpose, data collected from other animal species are of much greater
interest. There has been a recent increase in studies of late life using a variety of laboratory animal
species, especially after the definitive discovery of the leveling of age-specific dipteran mortality rates
at late ages by the Carey and Curtsinger labs in 1992 (Carey et al. 1992; Curtsinger et al. 1992). Since
their reports of late-life mortality-rate plateaus in large cohorts of medflies and fruit flies, several labs
have investigated the late-life demographic properties of a variety of organisms (reviewed by
Charlesworth and Partridge 1997; Vaupel et al. 1998; Carey 2003). To our knowledge, late-life
investigations have revealed similar late-life plateauing in mortality rates in all organisms that have
sufficiently large cohort numbers surviving into the aging period. Among the species that have been
studied are the medfly Ceratitis capitata (Carey et al. 1992; Carey 2003), the commonly-studied
laboratory fruit fly Drosophila melanogaster (Curtsinger et al. 1992; Fukui et al. 1993; Clark and Guadalupe
1995; Fukui et al. 1996; Promislow et al. 1996; Vaupel et al. 1998; Drapeau et al. 2000; Rose et al. 2002;
Miyo and Chatrlesworth 2004), the Mexican fruit fly Anastrephan ludens (Vaupel et al. 1998; Carey et al.
2005), a parasitoid wasp Diachasmimorpha longiacandtis (NVaupel et al. 1998), the nematode Caenorhabditis
elegans (Brooks et al. 1994; Vaupel et al. 1994; Vaupel et al. 1998; Johnson et al. 2001), baket’s yeast
Saccharomyces cerevisiea (Vaupel et al. 1998), and the beetle Callosobruchus maculates (Tatar et al. 1993).

The key to studying late life is cohort size. Investigators must employ enough individuals in a
study so that a significant number of individuals from a particular cohort are alive at late ages. One

reason that late-life mortality-rate plateaus had not been definitively observed before 1992 in the many
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laboratory studies of aging may have been because almost all of these studies used cohort sizes of only
100-200 individuals, or less, per population. Thus, the chance of enough individuals surviving to late
enough ages for a plateau in age-specific mortality rates to be clearly defined was quite low.

The studies cited above collectively have demonstrated that late-life plateaus in mortality rates
are thus far widely observed among experimental cohorts in which enough individuals survive well
into the aging phase and the environment is maintained with stable conditions. Interestingly, late-life
mortality-rate plateaus are also observable under a variety of environmental and genetic conditions.
They have been observed in cohorts of inbred and outbred individuals, in genetic mutants having
extended lifespans, and in cohorts kept at varying densities (see above citations). These results
collectively suggest that mortality-rate plateaus are a robust finding, and that late life is a phase of life
very different from both development and aging, but a phase of life requiring careful study, especially
large cohorts maintained under good conditions.

However, some of these data are probably subject to artifacts of inbreeding and genotype-by-
environment interaction, which complicate the interpretation of any study of demography or life-
history evolution. For instance, it has long been known that subtle environmental effects, such as past
density history, can affect age-specific mortality (Pearl et al. 1927). Genetic correlations will also
change in different environments (Service and Rose 1985). Inbreeding has been shown to affect life
history traits in a variety of ways. Inbreeding may change genetic correlations between life history traits
(Rose 1984a), accelerate senescence (Mueller 1987), and alter population dynamics if it causes
reductions in female fecundity (Prasad et al. 2003). Therefore, we will be concentrating primarily on
our own experimental research, which has used Drosgphila populations that are well-adapted to our
laboratory environment, while being kept relatively free of inbreeding (Rose et al. 2004).

A further limitation on the present discussion is that we are not going to consider the

physiological or mechanistic foundations of late life in any great detail. We feel that this is a
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tremendously important subject, but too little is known about it at present to offer more than the
preliminary findings that we will describe in Chapter 10. But we will return to this topic in future
publications, once we have analyzed sufficient physiological data from late life.

Thus, the present volume constitutes an intensive analysis of the demographic and
evolutionary foundations of late life in theory and in well-defined laboratory cohorts, primarily from
our own Drosophila laboratories. In this sense, then, we are covering specifically the evolutionary biology
of late life. Given the novelty of this research area, and its surprising features, we are confident that the
limited scientific terrain that we survey nonetheless will be of great interest for students and scholars

of evolutionary biology, demography, ecology, and gerontology.
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Chapter 2. Discovery of Late Life

Human demographers have long noticed and documented a reduction in the acceleration of
human mortality rates with age. But this pattern in human data was not considered of general scientific
importance until the virtual cessation of aging was documented quantitatively in two insect species in
1992. Since then, post-aging late life has been documented in a variety of experiments. These plateaus
are not artifacts arising from inbreeding, density, etc. In the early 2000’s, it was also discovered that

late-life fecundity plateaus as well.

Intimations of Human Late Life

Demographers have traditionally characterized adult age-specific mortality rates in terms of
the Gompertz equation, first intuited in the 19" Century (Gompertz 1825). This equation is usually

presented in the following form,

u(x) = Aexp(ax), 2-1)

where A is the age-independent mortality parameter and o is the age-dependent parameter. The
parameter o is often interpreted as reflecting the rate of aging. It is interesting that in populations of

Drosophila selected for postponed aging, the magnitude of o has declined relative to controls, as has
the magnitude of .4 (Nusbaum et al. 1996). On the other hand, A reflects background sources of

mortality, which don’t change fundamentally with age. Environmental factors, like caloric restriction
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or exposure to urea, increase longevity in Drosophila by decreasing the value of .4 (Nusbaum et al.
1996; Joshi et al. 1996).

There are a number of variants of this model, like the Gompertz-Makeham model,

u(x) =R + Aexp(ax). (2-2)

Equation 2-2 was later revised by Makeham to include both linear and exponential components (see

Gavrilov and Gavrilova 1991),

u(x) =R + Sx + Aexp(ax). (2-3)

None of these variants of the Gompertz equation have profound biological motivations. However, all
of these models have in common the assumption that age-specific mortality rates increase with
positive acceleration, assuming positive parameter values, as is conventional. For example, the
mortality rate of humans between ages 50 and 60 years will be underestimated if it is taken as a simple
continuation of the mortality rate between 40 and 50 years of age.

“Gompertzian models,” a term that we use to refer to the entire class of models under one
rubric, often fit mortality rate data extremely well (e.g. numerous plots in Finch 1990). However, there
was no profound scientific justification for Benjamin Gompertz’s (1825) original proposal of models
of this kind. It was merely the simplest of an entire class of models that might be fit to actual
experiment data.

The post hoc nature of this model for human aging was revealed by the indifference shown by
scientists to the discovery of substantial slowing in human age-specific mortality rates at later ages.

Patterns of this kind were casually noticed in the 19" Century, but it wasn’t until 1939 that Greenwood
13
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and Irwin analyzed abundant human European data to show that human mortality rates essentially
plateau late in life, as we discuss in detail in Chapter 11. Because there was no particular theory
underlying the Gompertz equation, and its Gompertzian congeners, this anomaly in human
demographic data did not provoke any direct scientific examination of the departure of late life from
the Gompertzian pattern of the aging phase of human demography. Some scientists were willing to
attribute the apparent slowing, if not cessation, of demographic aging to recondite and incidental
factors, such as improved care in nursing homes, among other changes of behavior and environment
in patients who are extremely old (e.g. Olshansky et al. 1993; Maynard Smith et al. 1999, p. 269).
Although a better standard of living, public health measures, and medical developments can all
contribute to the slowing of mortality rates in the oldest old humans, these factors should also slow
mortality rates at all other ages.

The fundamental problems with human data concerning age-specific mortality are several-
fold. Humans as individuals are aware of their aging, both immediately and longitudinally, which may
cause them to change their behavior with time. Humans as social animals are subject to age-dependent
social interactions. Young humans are treated one way, mature reproductive adults another, and post-
reproductive adults yet another. This is unquestionable. Humans are very long lived, which makes full
longitudinal studies of our lives hard to arrange and carry out. Humans have lived through remarkably
different epochs over the last few centuries, as the pace of global change has been striking, affecting
our nutrition, exposure to disease, and medical treatment. In general, a worse experimental system for
distinguishing among demographic epochs within a life-cycle is hard to imagine, despite the vast

amounts of data concerning human age-specific mortality patterns.
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The Revolution of 1992: Definitive Evidence for a Third Phase of Life

Scientific studies of age-specific survival rates in non-human species have suffered in other
respects. The problems with inferring underlying endogenous patterns of mortality from wild
populations are obvious. Most wild animals move around, making the accurate estimation of their
mortality extremely difficult, because missing animals might have left the study area or be
unrecoverable or undetectable for other reasons, without having died. Wild plants do not move
around, but like animals they are subject to environmental vagaries, from weather to grazing to disease
to wildfires.

The problems with studies of laboratory populations are somewhat more recondite, but
equally substantial. Most studies of mortality in laboratory cohorts use small numbers. While human
mortality data from Europe may involve millions of individuals and studies of wild populations of
other species may involve thousands of individuals, laboratory studies of mortality in animals or plants
are more likely to involve only dozens to hundreds of individuals. Furthermore, many standard
laboratory stocks are either recently introduced to the laboratory or highly inbred. Genotype-by-
environment interaction makes the properties of newly introduced organisms highly unpredictable
(vid. Matos et al. 2004; Teotonio et al. 2004; Rose et al. 2005), and such data are not useful for the
interpretation of the survival rates of organisms in their normal habitats. Highly inbred organisms
from species that do not usually self-fertilize are subject to inbreeding depression, which can produce
highly anomalous life-history data (Rose 1984a; Rose 1991).

The combined effects of these problems afflicting human, wild, and laboratory studies of age-
specific mortality are fairly devastating. The amount of appropriate data on the /felong pattern of age-
specific mortality is very limited. Furthermore, the data degrades with age in all finite cohorts, simply
because there are fewer individuals alive at later ages, making the sampling variation of age-specific

mortality increase rapidly with age at very late ages.
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Figure 2-1 The log of mortality rate as a function of age in the Mediterranean fruit fly, Ceratitis capitata (from Carey et al.
1992).
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Given all these difficulties, it can’t be considered surprising that it was not until 1992 that the
first scientifically definitive data on late life were published by Carey et al. and Curtsinger et al. The
scientific importance of these papers is hard to understate. Though many quibbled over their
significance, including some of the present authors (e.g. Nusbaum et al. 1993; Graves and Mueller
1993), in retrospect, they can be seen as two of the most revolutionary scientific papers published in
the 20" Century.

The key to their value was scale, standardization, and replication. Millions of flies were used
to estimate age-specific mortality rates among adults. Great care was taken to handle these organisms
in standardized ways, as opposed to the haphazard nature of the data from human or wild population
studies of similar size. Handling methods were varied between experiments, and some of the
experiments were replicated internally as well, with multiple cohorts handled in parallel at the same
time.

Carey’s lab collected data for three different kinds of cohorts of medflies (Carey et al. 1992).
In two of these experiments, cohorts of more than 20,000 individuals were housed individually in
either cups or tissue cells, the flies having more room in the former type of housing compared to the
latter, but still relatively little opportunity for much activity in either case (Figure 2-1). Thus, many of
the normal environmental hazards associated with aging, like mating, egg laying, activity, and density
effects, were limited. The third cohort study by Carey et al. comprised over 1.2 million medflies that
were housed in cages containing approximately 7,200 flies each. This cohort, unlike the other two,
experienced mating, egg laying, activity, and decreases in density with age. Despite these differences,
all three cohorts demonstrated a similar plateauing of age-specific mortality rates at later ages (Figure

2-1).

17



Mueller, Rauser & Rose DOES AGING STOP?

1.0
)
)
© 0.1+t
>
=
©
yu
o
= 0.01}
0.001 ! | | | |

10 30 50
Age (days)

Figure 2-2. Age-specific mortality in a population of inbred Drosgphila (after Curtsinger et al. 1992).

Curtsinget’s lab observed a similar leveling of age-specific mortality rates at late ages in a single
genotype of male Drosophila (Figure 2-2, data from Curtsinger et al. 1992). Their experiment employed
an inbred cohort of 5,751 male fruit flies to better understand the details of mortality rates at very late
ages. They found that a Gompertz-type mortality model fit the data quite well until 30 days, after
which mortality rates were better fit to a constant mortality rate (Figure 2-2).

Mortality plateaus have been documented in several other species, including houseflies
(Rockstein and Lieberman 1959), bruchiid beetles (Tatar et al. 1993, Tatar and Carey 1994a,b, 1995),
two different species of seed feeding beetles (Fox et al. 20006), and butterflies (Gotthard et al. 2000).

To summarize the forgoing studies, these data show that the process of exponentially
increasing age-specific death rates can come to an end under well-defined laboratory conditions, given

cohort sizes large enough to allow accurate estimation of age-specific mortality rates late into adult
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life. After the point of detectable mortality-rate deceleration, mortality rates seem to roughly stabilize,
with some cohorts even showing declining age-specific mortality rates. However, in principle, a stable
average mortality-rate is expected to lead to some “sample paths” with declining mortality rates, so
individual instances of such declining mortality rates are not necessarily important. In other words, in
well-defined laboratory cohorts, the human late-life pattern of decelerating aging was found again.

The initial publications revealing decelerating aging in laboratory animal species were met with
some skepticism and scrutiny. Many critics offered explanations for the observed late-life plateaus in
mortality, explanations such as the reliability theory of aging (Gavrilov and Gavrilova 1993),
heterogeneity effects (Kowald and Kirkwood 1993), population density effects (Nusbaum et al. 1993),
age-related changes in activity and sample size (Olshansky et al. 1993). Although Carey et al.’s
experiments certainly addressed the problem of small sample size and Curtsinger et al.’s study
addressed the effect of genetic heterogeneity on the leveling of late-life mortality rates, it was clear
that further experiments were necessary.

Curtsinger’s lab addressed a number of these concerns in the years following the 1992
publications. The first of these studies examined mortality-rate patterns at late ages in four inbred lines
of Drosophila, using both males and females (Fukui et al. 1993), and thus addressed the concern that
genetic heterogeneity resulted in the slowing of mortality rates at late ages. Approximately 1,000
individuals were housed in each of 18 population cages and mortality was monitored daily until all
flies had died. Flies were not recombined between cages as death occurred, so the effects of decreasing
density with age were not controlled. However, this experiment further demonstrated that the leveling
of mortality rates at late ages was not due to genetic heterogeneity and that a two-stage Gompertz
model with a second-stage “plateau” best fit age-specific mortality data from large cohorts.

The next experiments to come out of the Curtsinger lab studied the effects of density on age-

specific mortality rates, also using four inbred lines of Drosophila (Khazaeli et al. 19952). Many critics
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of the original studies thought it possible that the slowing of mortality rates was at least partially due
to declining adult density with age (e.g. Graves and Mueller 1993, 1995; but see Curtsinger 1995a,
1995b for caveats). To address this concern, Khazaeli et al. (1995a) started three fruit fly cohorts with
initial densities that varied 10-fold and then followed the mortality of approximately 70,000 flies of
both sexes in total. Mortality leveled off at late ages, just as it had before, regardless of cohort density.
Vaupel and Carey (1993) performed a similar test using medflies and obtained the same qualitative
results.

Varying initial cohort density did not rule out the possibility that mortality rates were slowing
at later ages because of a declining age-specific cohort density with age. Addressing this concern would
require that the individuals within a cohort be kept at constant densities at all ages. Khazaeli et al.
(1996) did just that. They observed age-specific mortality rates for two adult densities, constant at all
ages, in four inbred lines of Drosophila. Mortality rates decelerated and plateaued at late ages even when
density was held constant at all ages. Note, however, that this study did not rule out the effects of
density on mortality rates or lifespan. It just showed that density effects clearly were not the cause of
the mortality-rate stabilization that characterizes late life in large cohorts.

Although studies using inbred lines of Drosophila and outbred cohorts of medflies suggested
that genetic heterogeneity was not the cause of late-life mortality-rate plateaus, environmental
heterogeneity was still a possible contributing factor. Khazaeli et al. (1995b) addressed this possibility
by applying an environmental stress to Drosophila cohorts at early ages that did not incapacitate the
flies, a study referred to here as a ‘stress experiment’. The response of the cohort to this stress was an
initial spike in mortality rates, followed by a decrease in mortality rates for the experimental cohorts
compared to controls. The results of this stress experiment suggested that there is heterogeneity in
mortality rates even in genetically homogenous cohorts, and that this heterogeneity may be

environmentally based. However, further analysis of the data from this experiment by the authors
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required them to retract these conclusions (Curtsinger and Khazaeli 1997). The theoretical and
experimental work surrounding the effects of such heterogeneity effects on late-life mortality rates
will be addressed in full in later chapters of this book.

One of the last experiments to come out of the Curtsinger lab in response to the initial
skepticism surrounding late-life mortality-rate plateaus again addressed the issue of inbred lines (Fukui
et al. 1996). Curtsinger et al.’s original experiment with Drosgphila used inbred lines and only male
mortality rates were observed. Although Carey et al.’s experiment with medflies used outbred cohorts
of flies, there was some concern with the design of the fruit fly experiment. Consequently, Fukui et
al. (1996) studied mortality rates in both inbred and outbred cohorts of Drosophila for both males and
females. They found that late-life mortality rate deceleration was not unique to inbred cohorts of fruit
flies, nor to males kept separately from females, when a large number of individuals are used.

Collectively these experiments eliminated a number of possible artifactual reasons for the
observation of late-life plateaus in mortality rates. They demonstrated that the leveling in mortality
rates observed late in adult life was not a result of genetic heterogeneity, that this phenomenon was
not specific to inbred lines, and that neither initial cohort density nor age-specific density decline
within a cohort affected the existence of late-life mortality-rate plateaus. Plateaus in mortality rates
were well-established as a robust finding needing much more theoretical and experimental attention

by the later 1990s.

The Revolution Continued with Fecundity

Rauser et al. (2003) intuited that late-life fecundity would also show a cessation of aging similar
to mortality and tested whether this was in fact true. In evolutionary biology, aging is defined as a

sustained endogenous decline in age-specific fitness-components (Rose 1991). These fitness
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components include characters other than age-specific mortality. Most importantly, they include such
characters as age-specific female fecundity, age-specific male mating success, and the like. Thus, if
aging generally ceases at late ages, then it should cease for these characters as well, leaving aside
organisms that undergo such distinct reproductive terminations as human menopause.

As predicted, female fecundity in Drosophila shows a gradual decline with adult age, with some
degree of deceleration in the rate of decline toward the end of adult life. To illustrate this deceleration,
we have displayed the age-specific fecundity from replicated measurements of five outbred D.
melanogaster populations called CO; to COs (Figure 2-3). These populations are cultured with moderate
selection for late-life fitness (reproduction is at four weeks of life, about 16-18 days from the onset of
adulthood). The results shown in Figure 2-3 are taken from six different experiments: a comparison
of the five CO populations with a set of five populations called the ACO (Rauser et al. 2000), a test
of life-long heterogeneity on female fecundity plateaus (Rauser et al. 2005a), a test of the effects of
male age on fecundity plateaus (Rauser et al. 2005b), a test of nutrition level on fecundity plateaus
(Rauser et al. 2005b), a comparison of the CO populations and a set of five reverse-selected
populations, the NRCO’s (Rauser et al. 2000), and a comparison of fecundity and mortality plateaus
(Mueller et al. 2007). This is the largest set of lifelong age-specific fecundity data collected under good
laboratory conditions known to us. While there is significant variation in the specific patterns of
individual experiments, as a group these fecundity trajectories show a clear deceleration in the rate of
decline in age-specific fecundity. Furthermore, the average plateau heights that we have found are at
levels statistically greater than zero. That is, fecundity levels do not merely plateau by achieving a
value of zero.

It is important to note here that when we are discussing plateaus in fecundity, we are referring

to the fecundity patterns of a population, and not the fecundity patterns of individual females. Note
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also that there is a significant complication facing fecundity due to the effects of the process of dying.
We analyze the effects of this ‘death spiral’ later in this book, in Chapters 3 and 9.

Despite the consistency of fecundity-decline deceleration in data like these, we were concerned
about several possible artifacts, specifically whether male age or high nutrition cause the cessation of
reproductive aging in females (Rauser et al. 2005b). That is to say, upon our initial discovery of late-
life fecundity plateaus, we were as concerned as the Curtsinger lab was about possible artifacts that
might have generated a misleading appearance of a distinct late-life phase, following aging. As our
tests for these possible artifacts have not been as widely-communicated as the earlier work of the
Curtsinger laboratory vindicating late-life mortality rate plateaus, we review this Drosgphila fecundity

research in some detail here.
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Figure 2-3. Average female fecundity in 19 CO populations from six different experiments, where the numerical
subscripts refer to individual replicate CO populations. The additional coding for the graphs refer to the type of
experiment from which CO cohort fecundity data were obtained, as follows: “CO/ACO” refers to an expetiment
comparing cohorts from CO and ACO populations; “hetero” refers to an experiment studying lifelong heterogeneity;
“old males” refers to an experiment testing the environmental effect of male mate on female fecundity; “yeast” refers to
an experiment testing the environmental effect of yeast level on female fecundity; “NRCO” refers to a reverse-selection
experiment.

Are Fecundity Plateaus Caused by Inadequacy of Older Males

The first of these possible artifacts is diminished male sexual function. The idea is that a slower
rate of egg-depletion, and thus a stabilization of later-life fecundity, might have arisen from reduced
availability of sperm among our experimental Drosophila Ocohorts. We tested this artifact hypothesis
by supplying females with young males before their fecundity declined to plateau levels. In our first
late-life fecundity study that suggested the existence of late-life fecundity plateaus, male and female
cohorts were handled in parallel, without replacement, throughout life (Rauser et al. 2003). This design
resulted in a supply of older mates for the older females, raising the prospect that older males may
have limited female fecundity at later ages, generating an artifactual plateau in their fecundity. [We
should be clear that we do not believe this hypothesis; we merely conducted a test of it.] Certainly
one simple, if far-fetched, explanation of our experimental results might be that late-life female
fecundity plateaus may have arisen from diminished male sexual function associated with male aging,
which in turn could reduce female reproduction, causing both a decline in female fecundity before the
plateau and the plateau itself.

Various components of male sexual function in Drosophila have been shown to decline with
age. Among these functions are overall mating success or ability (Aigaki and Ohba 1984; Kosuda 1985;
Service 1993; Hughes 1995), which may be related to decreases in the production of both sperm and
accessory gland proteins that function to elevate egg laying and increase female death rate, among
other things (reviewed by Wolfner 1997). Furthermore, Prowse and Partridge (1996) found that males

always exposed to virgin females were sterile when at least 80% of their cohort was still alive. Thus, it
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is easy to imagine that the decline in fecundity with female age, and even the plateau itself, may be a
result of an age-related decline in the sexual physiology of males.

This idea was tested by supplying females with young males before their fecundity declined to
plateau levels. We reasoned that if older males artifactually created late-life fecundity plateaus, then
supplying younger mates to older females should either delay the onset of the fecundity plateau until
the new mates become old or obliterate the plateau altogether, because few females would survive to
late enough ages for the fecundity plateau to be observable. Therefore, a supply of young males to
mid-life females should have caused the fecundity plateau at late ages to disappear, but only if male
reproductive inadequacy established the timing and existence of fecundity plateaus. On the other hand,
if male age did not cause fecundity plateaus, then we still should have observed a plateau in the
fecundity of older females given young males. Note, however, that this plateau could have occurred
earlier or later, because of the physiological effects of supplying older females with younger mates.

To assess the effects of male age, and subsequently nutrition, on the late-life fecundity
dynamics of Drosgphila, we developed a simple model of age-specific fecundity. This model was a
3-parameter, two-stage linear model, with a second-stage slope of zero, analogous to the two-stage
models previously used by us to fit both adult mortality (Drapeau et al. 2000) and fecundity data
(Rauser et al. 2003). Under such a two-stage model, the fecundity of a female aged #days can be

given as

{¢1+¢2t if t<¢s

b1+ a3 if > P35 S
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where @ is the y-intercept, @2 is the slope and @s is the fecundity ‘breakday.” This term breakday refers
to a hypothetical transition to a stable late-life condition. Note that this model does not force the data
to conform to a two-stage pattern; all the data can conform to a one-stage pattern of sustained decline,
given by the linear model fit to the first stage.

We also determined the height of the late-life fecundity plateau for both treatments (young
and old males), along with 95% confidence intervals for these plateau heights, using the parameter
estimates obtained from the two-stage linear model (Table 2-1, Rauser et al. 2005b). For both the
young and old male treatments, the height of the plateau, or the number of eggs per female per day
after the breakday, was significantly greater than zero (Rauser et al. 2005b). These results demonstrated
that aging males were not artifactually causing the occurrence of the fecundity plateaus that we observed
at very late ages in our previous experiment (Rauser et al. 2003), although the supply of younger males
did affect the overall timing and shape of the plateaus.

Our test indicated that the addition of young males resulted in a more rapid onset of the
fecundity plateau, as well as a plateau with an increased height (Rauser et al. 2005b). However, the
earlier onset of the fecundity plateau in the young-male treatment may explain the increased height of
the plateau. That is, young males caused fecundity to stop declining at an earlier age than older males,
resulting in a greater number of eggs per female per day at later ages. The important conclusion from

this study, however, is that female fecundity plateaued at late ages regardless of the age of their mates.

Table 2-1. Parameter estimates from the two-stage linear model that was fit to mid- and late-life
fecundity data from each type of CO population, those having either males of the same age as the
females (old males) or young males, added when the females were age 40 days (from egg). The model
was fit by non-linear least squares regression. The height of the fecundity plateau was computed from
Equation (2-4) and the estimated height was significantly different from zero (p < 0.05 for each
population).
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Population 1%-stage  1%-stage Breakday Plateau height + 95% c.i.

y-int (¢1) slope (¢2) (93) (eggs/female/day)

Old Males 3.24 +£0.64

COy 92.16 -1.94 45.23

CO2 77.23 -1.60 46.17

COs 70.41 -1.42 48.09
Young Males 6.89 +£3.33

CO, 88.61 -1.86 43.23

CO2 101.21 -2.34 39.67

COs 76.79 -1.61 46.12

Parameter estimates for ¢, ¢, and @; were all significantly different from zero; p < 0.0001 for each

of the three populations under both treatments.

Are Fecundity Plateaus Caused by High Nuttition?

The second artifact hypothesis that we tested is that fecundity plateaus arose in our
experiments from a change in the calories available for reproduction. That is, it is possible that the
late-life fecundity plateaus observed by Rauser et al. (e.g. 2003) simply reflected an incidental side-
effect of a shift in resource allocation. The potential for such shifts in resource allocation involving
fecundity is well-established in the Drosophila populations that we used to study lifelong fecundity, with
decreased food strongly associated with reduced fecundity and increased longevity (Chippindale et al.
1993, 1997).

In particular, it is conceivable, although somewhat implausible, that the fecundity plateau

phenomenon may have been generated by artifacts arising from environmental factors that modulate
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female reproduction that arose specifically in the study of Rauser et al. (2003), but are not general. In
our first experiments that established the existence of late-life plateaus in fecundity (Rauser et al. 2003),
females were provided high levels of yeast, following the protocols of Chippindale et al. (1993),
throughout the duration of the assays. Female fecundity may have plateaued later in life only because
of such sustained high nutrition at all earlier ages. Therefore, we were concerned that females
maintained at a lower level of nutrition might not exhibit a late-life plateau in fecundity levels.

Furthermore, fecundity is generally known to be highly responsive to nutrition in Drosophila.
Specifically, egg laying, utilization of sperm, mating frequency, and vitellogenesis all increase with
increasing nutrition (Chippindale et al. 1993; Chapman et al. 1994; Chapman and Partridge 1996; Good
and Tatar 2001). However, this increase in overall female reproduction does not come without a cost
(cf. Partridge 1987; Reznick et al. 2000), and may even be coupled with a decrease in survival (Fowler
and Partridge 1989; Chapman et al. 1993; Chippindale et al. 1993; Chapman et al. 1994; Chapman et
al. 1995; Chapman and Partridge 1990).

Such plateau-disappearance and resource-diversion hypotheses were tested by comparing the
effects of high and low nutrition levels on female fecundity at later ages. Specifically, we supplied
cohorts derived from each experimental population with either high nutrition or low nutrition and
measured fecundity throughout their adult lives. If high nutrition artifactually allows fecundity to
plateau at late ages, but plateaus do not otherwise occur, then supplying flies with low nutrition should
eliminate the plateau altogether. On the other hand, if nutrition does not affect the existence of fecundity
plateaus, then we should still observe a plateau in the fecundity of females given low nutrition. Note,
however, that we were not testing whether or not nutrition affects fecundity at all. That point is well-
established in the experimental literature. Instead, we were testing whether late-life fecundity plateaus

continue to arise as nutrition is experimentally varied.
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As with the previously described artifact test, we also determined the height of the late-life
fecundity plateau for both treatments (high and low nutrition), along with the 95% confidence
intervals for those heights, using the parameter estimates obtained from the two-stage linear model
described above (Table 2-2, Rauser et al. 2005b). We found that the height of the fecundity plateau
was significantly greater than zero in the presence of both high and low nutrition. Like in the young
males experiment, fecundity plateaus arose regardless of nutrition level at some number of eggs greater

than zero (Rauser et al. 2005b).

Table 2-2. Parameter estimates from the two-stage linear model that was fit to mid- and late-life
fecundity data from each experimental cohort having either high nutrition (5.0 mg/vial) or low
nutrition (0.2 mg/vial) throughout each assay. The model was fit by non-linear least squares regression.
The height of the fecundity plateau was computed from Equation (2-4) and the estimated height was
significantly different from zero (p < 0.05 for each population).

Population 1%-stage  1°-stage Breakday Plateau height + 95% c.i.
y-int (¢1) slope (¢2) (p) (eggs/female/day)

High Nutrition 3.43+2.38

COq 106.24 -2.11 48.39

CO; 113.00 -2.30 46.90

COs 91.35 -1.80 48.57
Low Nutrition 0.82 £0.56

CO1 46.17 -0.64 70.98

COz 39.63 -0.55 70.42

COs 29.25 -0.38 72.65

Parameter estimates for ¢, ¢, and ¢; were all significantly different than zero; p < 0.0001 for each of
the three populations under both treatments.
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Although the existence of fecundity plateaus was not affected by varying nutrition levels,
fecundity was lower under low nutrition compared to high nutrition at all ages, including those ages
after the onset of the plateau. Furthermore, fecundity declined at a much slower rate under low
nutrition compared to high nutrition (see ¢, Table 2-2). These results are consistent with dietary
restriction and other nutrition studies, which have demonstrated that low nutrition levels result in
decreased daily and lifetime fecundity in Drosophila (David et al. 1971; Trevitt et al. 1988; Chippindale
et al. 1993; Chapman and Partridge 1996; Good and Tatar 2001). However, the result that the plateau
height was significantly different from zero regardless of nutrition level allowed us to reject the artifact

hypothesis that late-life fecundity plateaus were caused merely by high nutrition in the experiment of

Rauser et al. (2003).

Conclusion: A Third Phase of Life has been Experimentally Established

From the standpoint of the demography of aging, in particular its eventual cessation, our
fecundity results are comparable to the finding that mortality rates plateau. Both findings have now
been tested for possible artifacts, and somewhat replicated, especially in Drosgphila. Together, they
suggest that aging is demographically a transition between two periods of relatively stable mortality
and fecundity levels, which may render it more amenable to eventual control than a process which is
an endless and exponential rise in age-specific mortality, debility, and sterility.

Is late life a period in which all age-specific life-history characters stabilize? We are not aware
of comparable data for male age-specific fitness components, the third major type of adult life-history
character. However, it is now reasonable to propose the bare hypothesis that aging generally ceases in
cohorts of organisms that live long enongh as adult somata, under benign and stable conditions. But without doubt,

after a period of persistently increasing age-specific mortality and decreasing age-specific reproductive
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output, a third phase of life caz occur, a phase that is clearly unlike aging demographically. It is this
stunning finding that animates our work on late life, whether or not this cessation of aging is indeed
universal. In particular, we have sought not merely to document this fact. We have also tried to explain

it in terms of basic biological theory, this explanation being the chief topic of the present book.
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Chapter 3. Late Life is Predicted by Hamiltonian Evolutionary

Theory

Hamilton’s forces of natural selection acting on age-specific survival and fecundity imply
strong selection during development and weakening selection during the first part of adulthood. After
the last ages of survival and reproduction in a population’s evolutionary history, Hamiltonian theory
predicts endless plateaus in the forces of natural selection. Explicit models of life-history evolution
show that these plateaus allow the evolution of late-life plateaus in both age-specific survival and

fecundity.

The Force of Natural Selection Acting on Mortality: from Aging to Late Life

Haldane (1941) and Medawar (1946, 1952) were the first to describe aging as a consequence
of the weakening force of natural selection with age. However, it was Hamilton (1966) who actually
derived a quantitative formula for this force for the first time. According to Hamilton, the force of
natural selection acting on mortality is given by s(x)/ T, where x is chronological age and T'is a measure

of generation length. The function s at age x is given by

s(x) = Xy=x+1” 2 1(Y)M), (3-1)

where ris the Malthusian parameter, or the growth rate of the population, associated with the specified
[y) survivorship and #(y) fecundity functions. The variable y is used to sum up the net expected

reproduction over all ages after age x. Ultimately, the s(x) function represents the immediate fitness

33



Mueller, Rauser & Rose DOES AGING STOP?

impact of an individual’s future reproduction. Note that, before the first age of reproduction (b), s is
always equal to 1 (one), once reproduction has ended, s is equal to zero, and during the reproductive
period, s(x) progressively falls. Figure 3-1 shows an example of an s(x) function that depicts how the
force of natural selection acting on mortality declines with adult age, throughout the reproductive

phase, and converges on zero at very late ages.
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Figure 3-1. The force of natural selection (s(x)) as a function of age where 4 is the first age of reproduction.

From 1966, when Hamilton first published his analysis, until 1996, it was generally assumed
by evolutionary biologists that the decline toward zero values of Hamilton’s force of natural selection
acting on age-specific mortality rates implied unremitting increases in age-specific mortality rates (e.g.
Rose 1991). This was historically significant, because it was thus assumed that evolutionary theory

provided a fairly direct warrant of the practically universal intuition among biologists that they could
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interpret aging as effectively a collapse in the working of a biochemical machine that had worked
efficiently at an early age. In effect, this intuition led many gerontologists to the view that they could
largely ignore evolutionary issues in their research, and just focus on patterns of cumulative breakdown
(vid. de Grey and Rae 2008).

The research that we will now present supplies an argument that the intuitive interpretations
of all biologists prior to 1996 were incorrect, from the intuitions of evolutionary biologists to those of
gerontologists. Consider the following possibility. What if the roughly exponential rise in age-specific
mortality rates with adult age might instead be a direct reflection of the pattern of change in the force
of natural selection acting age-specific mortality, and not just its decline to lower average values? If
this intuition is correct, then it implies that later plateaus in age-specific mortality could arise from the
plateauing of the force of natural selection acting on mortality.

In order to test the formal cogency of this alternative interpretation of this alternative
interpretation of Hamilton’s forces, Mueller and Rose (1996) set about simulating the evolution of
age-specific mortality using standard equations for the evolution of allele frequencies in age-structured
populations. The results of those simulations corroborated the alternative interpretation: in every case
that they examined, regardless of the pattern of pleiotropy or mutation that they employed, late life
plateaus evolved in the simulated populations of Mueller and Rose (1996).

Put simply, implicit within Hamilton’s (1966) original theory for the force of natural selection
is an evolutionary theory of late life. Recall that s is equal to zero for all ages after reproduction has
ceased. Therefore, it is intuitive that age-specific mortality rates should mimic the plateau in the force
of natural selection, because natural selection is unable to distinguish fitness differences in survival at
different ages after the cessation of reproduction in the course of a population’s evolution. Survival
rates do not necessarily have to reach zero as soon as reproduction ceases, because beneficial effects

that are not age-dependent will continue to benefit individuals who remain alive after the force of
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natural selection has converged on zero. Any age-independent genetic benefits will be favored by

natural selection acting at early ages and will have positive pleiotropic benefits at all later ages.

A Simple Analytical Explanation of Late-Life Mortality Plateaus

Before we turn to examples of simulation results for the evolution of late life, we will try to
provide a simple mathematical sketch that might help some readers understand the qualitative features
of late-life evolution. Suppose that age-specific survival in a particular environment is an exponentially

—dX)

decreasing function of age (I, = e and fecundity is an exponentially increasing function of age

(m, = e/¥). Then for a population at stable age-distribution where,

Zx e_rxlxmx =1, (3-2)

one can show that f —r—d <0, and so the magnitude of the terms in Equation 3-2 are
exponentially decreasing to 0. In fact, this result should hold for any schedule of / and . since we
can always find a 4 such that /* > m, V x and likewise we can find an fsuch that e/* >m, V x

and thus, e 77*L,;m, < e*U "D - (0 as x > 0. Consequently, there should always be an age at
which the force of selection is so small that it has a trivial impact on allele frequency dynamics, relative
to forces like random genetic drift. And for all ages after that, the force of natural selection will remain
negligible. This implies that natural selection should be entirely unresponsive to differences in the age(s)
at which alleles affect either age-specific survival or reproduction during this later part of life, making
such alleles adaptively equivalent. Thus, our first-order expectation is that forces of natural selection
will generally plateau in such a way as to produce a “plateau’” of adaptation at sufficiently late adult

ages.
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Numerical Simulations of the Evolution of Late-Life Mortality

Now we will present some basic numerical results that quantitatively show the patterns that
the Hamiltonian theory of age-specific selection can produce for age-specific survival. To develop
these quantitative results, we have carried out extensive numerical simulations. But before presenting
the results of these simulations, it is important to address the types of inferences that we believe are
possible from this type of theoretical work.

All computer simulations suffer from the problem that they can only produce a finite number
of specific results. Given these results, it is generally hoped that through induction we can infer some
general patterns that hold beyond the specific cases examined. The advantage of simulations is often
that complicated problems that are not easily amenable to standard mathematical analysis can be
examined without the need for making the many simplifying assumptions that such analysis requires,
assumptions that are typically unrealistic and chosen strictly for their mathematical convenience.
Mathematically tractable theory will often have limited generality, due to these simplifying
assumptions.

One standard pattern of mortality that characterizes many well studied organisms is a pattern
of exponentially increasing mortality with age that is sometimes described by the Gompertz equation.
In this chapter, we develop evolutionary outcomes in populations that are initially assumed to have a
Gompertz mortality pattern. By allowing mutations with small effects to alter the basic mortality
pattern we develop numerical examples that help reveal the stability over short-term evolution of the
Gompertz mortality pattern.

These simulations share in common many of the attributes of a modeling approach called

“adaptive dynamics” (Waxman and Gavrilets 2005). We assume that a population is initially
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monomorphic for a life history characterized by a survival (4) schedule and a fertility () schedule. A
mutant with an altered survival schedule (Iy) is then introduced into the population. The initial increase
and ultimate fixation of this mutant is determined by comparing the fitness of the mutant (¥) to the
fitness of the resident (7) genotype, where ris determined from Equation 3-2 and 7 is determined from

a similar equation with [ substituted for 4. As discussed by Waxman and Gavrilets (2005), the
conditions required for the initial increase of a mutant may not be the same as the conditions for
fixation. For instance, this procedure ignores genetic complications like stable polymorphisms.

Perhaps of greater concern is the manner in which new mutants are generated. There are three
basic models of mutation used in many evolutionary models. (1) A continuum of possible phenotypes
that are measured as departures from the resident phenotype, with larger departures being less likely
(Crow and Kimura 1964). (2) The house of cards model in which the distribution of mutant effects is
statistically independent of the resident phenotypes (Kingman 1978). (3) The regression model of
mutation, which is intermediate between the house of cards model and the continuum model (Zeng
and Cockerham 1993).

The house of cards model is based on the logic that most mutations are deleterious and thus
produce a phenotype unlike that of the resident. While this is generally a reasonable assumption, in
these adaptive dynamic models widely deleterious mutants would be eliminated quickly, making them
impediments to the simulation of adaptive evolution. The successful mutants that actually improve
fitness are more likely to be only small changes from the resident phenotype. Accordingly, we have
used the continuum of mutation model in these simulations.

Generation of mutants. We assumed a fixed maximum lifespan of 109 days and a 9-day
development time, giving 100 discrete adult age-classes and nine juvenile age-classes. [This is a dipteran

kind of life-cycle; formally, it can be made into a human-scale life-cycle by converting all age-classes

38



Mueller, Rauser & Rose DOES AGING STOP?

and genetic effects into approximately one year time units, with the development period somewhat
lengthened.] We considered a target period or window for mutational effects of fixed duration. Here
we show simulations using a period of 10 age days. These periods correspond to the pleiotropic effects
of these mutations. Many critiques of our original theory (Mueller and Rose 1996) have focused on
the special case of mutants that affect only a single age-class and thus were lacking these pleiotropic
effects (Pletcher and Curtsinger 1998; Wachter 1999).

The ages at which these effects were imposed were chosen at random. Each mutation had a
window of beneficial effects and a window of deleterious effects. The first day of action was chosen
independently for the beneficial window and the deleterious window. Windows that would exceed the
oldest age-class were truncated to have their last effect at adult age 100 days. For each age-class in the
window of beneficial effects, the new probability () of surviving from the current (x) to the next (x

+ 1) age-class is given by,
= é
Px:Px+(1_Px);, (3-3)

where 8 is a constant (set to 0.1 in these simulations), ® is the number of days in the window (set to
10 in these simulations), and P. is the age-specific survival of the current resident genotype.

Deleterious effects were assumed to result in a new age-specific survival value,

P, =P, (1 — —). (3-4)

We initially chose 10,000 pairs of random days for the onset of the beneficial and deleterious
days of each mutant. The order of the 10,000 pairs was then randomly shuffled into 100 different
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vectors. Each vector constituted a different ordering of these mutations. To some extent, the outcome
of evolution may be affected by the order that these mutants are introduced into the population. Thus,
the results that we give here consist of 100 realizations of evolution from the same ancestral
populations. We used these 100 realizations to construct 96% confidence intervals on the changes in
age-specific mortality. Descriptions of additional properties of these simulations can be found in the
Appendix for this chapter. This Appendix also reviews results from alternative models for generating
mutants. These alternative models also yield plateaus according to our calculations, and thus we believe
that the basic results in the next section are not artifacts of special assumptions made here.

Relative roles of drift and selection. Our approach is to study the evolution of life histories
in the vicinity of a reasonable starting life-history. However, there is some interest among theoreticians
in understanding the long-term behavior of models, which is sometimes difficult to determine from
computer simulations, because simulated dynamics can be too slow to provide an adequate guide to
asymptotic behavior. Nevertheless, at the end of this chapter we give some examples with short life
spans where in fact we can demonstrate that the populations have converged to a locally stable
equilibrium. We do this by simply computing the fitness of all possible new mutants as evolution
proceeds, such that when it is impossible to generate a mutant with greater fitness then the current
resident genotype we consider the resident the equilibrium phenotype.

While it seems reasonable to suppose that, if equilibria can be identified for short life cycles,
they should also exist for longer life cycles. However, these equilibria will certainly take longer to reach
in the latter case. Perhaps more importantly, we have found that, well before a selection equilibrium
has been reached, the fitness advantages of new mutants become so small that their fate is primarily
determined by drift even when such mutants have higher fitness than that of the current resident. [We
provide more details on this phenomenon in the Appendix for this chapter.] As evolution proceeds,

there are fewer mutants with positive fitness generated and more mutants with neutral fitness
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generated. Since the fitness advantage of favored mutants is also becoming smaller as evolution
proceeds, we see evolution dominated by drift with some type of drift-selection balance over very
large time spans. The further characterization of this selection-drift balance awaits future research.
Mortality evolution under different demographic selection. The outcome of repeated
introductions of new mutants on the evolution of mortality from an initially Gompertz pattern is
shown in Figure 3-2. Over evolutionary time, early mortality declines and late mortality increases,
although the exponential pattern of mortality increase is lost at advanced ages and the simulated
patterns resemble a plateau. This plateau sets in at ages just beyond the peak age of reproduction,

which in this example is 30 days.
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Figure 3-2. The evolution of mortality over a period of 10,000 introduced mutants. The arrow shows the direction of
change in the mortality curve from the initial Gompertz pattern to a pattern with a pronounced plateau. The numbers 1
and 10 are next to curves that show the progress of evolution after 1,000 and 10,000 introduced mutants, respectively.
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The dashed curve represents the age-specific fertility pattern, which is assumed constant during the course of this
simulation. Fecundity is 1 at all adult ages except 21-30 where it is set to 100.

The plotted lines in Figure 3-2 show the progression of mortality evolution averaged over the
100 different mutant orders. The average final evolved state and a 96% confidence interval about it
are shown in Figure 3-3. As one might expect, the confidence interval is rather narrow around the
averages at early ages, but it gets larger at late ages. This reflects the weakening of natural selection at

late ages and the increasing influence of random genetic drift.
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Figure 3-3. The average final mortality (circles) from the simulation shown in Figure 3-2 along with a 96% confidence
interval (lines).
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We kept track of the fitness of the resident population and show its change over time in Figure
3-4. Over the evolutionary time period of these simulations, there is a neatly monotonic increase in

fitness, with the largest changes happening during the first 2,000-3,000 mutant introductions.
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Figure 3-4. The average change in fitness (circles) for the simulation shown in Figure 3-2 along with a 96% confidence
interval (lines).

If the peak fecundity is moved to later ages, then the evolution of mortality should show a
postponement of the age of the onset of the plateau. This simple prediction follows from the point

that the delay in peak reproduction will make changes in survival relatively more important than they
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are when reproduction peaks at very young ages. We explored this prediction by altering the conditions
of the simulation in Figure 3-2. We kept everything the same, except the peak fertility, which was
shifted from age 41-50 rather than 21-30. The results of this case of simulated evolution depicted in
Figure 3-5 are similar to those seen in Figure 3-2, except that the plateau is delayed about 20 days —
corresponding to the delay in peak reproduction. Thus our simple, if you will ‘intuitive,” prediction is

confirmed.
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Figure 3-5. The evolution of mortality over a period of 10,000 introduced mutants. The arrow shows the direction of
change in the mortality curve from the initial Gompertz to a pattern with a pronounced plateau. The numbers 1 and 10
are next to curves that show the progress of evolution after 1,000 and 10,000 introduced mutants, respectively. The
dashed curve represents the age-specific fertility pattern, which is assumed constant. Fecundity is 1 at all ages except 41-
50 where it is set to 100.
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Fecundity Evolution in Hamiltonian Theoty

The evolutionary theory of late life based on the force of natural selection can also be applied
to the evolution of age-specific fecundity. Like mortality, the age-specific force of natural selection

acting on fecundity, s'(x), has a scaling effect

s'(x) = e *I(x). (3-5)

All the variables in Equation 3-5 have the same definitions as those in Equation 3-1. The force
of natural selection acting on fecundity declines with age if population growth is not negative
(Hamilton 1966; Charlesworth 1980, 1994). The probability of survival to age x directly affects the
force of natural selection on fecundity at that age. According to this theory, s (x) will converge on zero
after the last age of survival in the population’s evolutionary history.

Hamilton’s forces of natural selection acting on mortality and fecundity are similar in their
effects, and thus will shape both age-specific mortality and fecundity within populations in a
comparable manner. Therefore, the evolutionary theory of late life also predicts that late-life fecundity
will roughly plateau at ages greater than the age at which s'(x) declines to zero.

We can again illustrate this evolutionary inference using numerical simulations based on
conventional age-structured population genetics. Our computer simulations had populations evolving
with recurrent mutations to explore how age-specific fecundity is molded by natural selection. We
assumed that survival followed the Gompertz equation and that environmental variation affected
female fecundity such that a female age-7 would have fecundity equal to F; = f; + cf;Z, where,

Z~N(0,1). In a constant environment, fitness in an age-structured population is found from the

solution, 7, to the Lotka equation, 1 = ?:1 e "0 f;, where d is the total number of age-classes
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(Charlesworth 1994). Fitness of new mutant genotypes in a variable environment were determined

2

. c
from a stochastic growth rate parameter, W = 1y — —,
2T¢

where To is the mean generation time
(Tuljapurkar 1990, Eq. 15.2.1).

Random genetic drift can affect the fate of weakly beneficial or deleterious mutants. We
modeled this by using the fitness of the resident and novel mutant genotype to determine the

probability of fixation from Ewens (1979, Eq. 3.28). A uniform random number was then chosen to

simulate this fixation event.

In these particular simulations, the mutant fecundity schedules all exhibit antagonistic
pleiotropy. Thus, a mutant was assumed to produce a stretch of ten consecutive days of elevated
fecundity and ten consecutive days of depressed fecundity, relative to the resident. The onset of
elevated fecundity was chosen at random from the 100 possible age-classes, and similarly, but
independently, for depressed fecundity. If the current resident’s fecundity at day-/ was f, then a
mutant’s fecundity would be elevated to f; + (fjnax — fi)U, where f,.. is the maximum allowable
fecundity set to 100 in these simulations, and U is a uniform random number between 0 and 1.
Fecundity was depressed by f; — f;U. Each simulation run required the generation of 10,000 mutants.

Their order was also shuffled, as was done previously with the mortality mutants.

The average results of 100 simulations show that fecundity evolves to a maximum level at
young ages (Figure 3-6), but then declines rapidly and reaches a more or less constant value at about
age 25-30 and thereafter. Thus, the force of natural selection becomes so weak at later ages that these

ages eventually evolve an absence of differences, making fecundity plateau.
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Figure 3-6. The evolution of age-specific fecundity in populations exposed to 10,000 mutants with antagonistic effects
on age-specific fecundity characters. Initial survival probabilities were obtained from the same Gompertz mortality

function used in Figures 3-5 and 3-2. Initial fecundity was assumed to increase with age. Similar results are obtained if
fecundity is simply constant with age. The arrows show the direction of change in the fecundity curve. The numbers 1
and 10 are next to curves that show the progress of evolution after 1,000 and 10,000 introduced mutants, respectively.

In Chapter 9, we discuss in more detail the catastrophic decline in fecundity that precedes
death, which we call the ‘death spiral.” The death spiral will obscure the type of pattern predicted in
Figure 3-6. To illustrate this effect, we have simulated the death process in cohorts of 2,000 females
and computed the age-specific fecundity when it is genetically determined by the final curve in Figure
3-6. In addition, we have added the effects of a death spiral on to these mean values using parameter
estimates for this phenomenon taken from our work with Drosgphila (Mueller et al. 2007). The results
of applying these modifications to the results of Figure 3-6, as shown in Figure 3-7, show that even

though the underlying age-specific fecundity curve is flat in late-life, the overall pattern suggests a
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continual decline with age due to the effects of an ever-increasing fraction of the population in the

death spiral.
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Figure 3-7. The effects of the death spiral on female fecundity. The curve labeled “Genotype” is the final fecundity
schedule reached in the simulation shown in Figure 3-6. One hundred cohorts of 2000 females were created. For each
cohort the ages of death were simulated using the Gompertz survival schedule used in the simulation in Figure 3-6. The
mean fecundity at each age for each cohort was computed using the “Genotype” fecundity curve shown above and the
model of female fecundity developed in chapter 9. The slope of female fecundity in death spiral was set to -0.2, which
similar to estimates for Drosophila estimated in Mueller et al. (2007). The “Genotype plus death spiral” curve is the mean
of the 100 simulated cohorts that incorporated the death spiral.

As with mortality evolution, we can also take the 100 different simulations and compute a
mean age-specific fecundity at the end of the evolutionary cycle and a 96% confidence interval. Thus,
while the small details vary with the order in which these mutants are introduced, the overall pattern

of an early peak in fecundity and broad late-life plateau are always seen (Figure 3-8). The width of the
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confidence interval increases substantially at ages where fecundity has leveled off, which is consistent

with the declining strength of selection.
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Figure 3-8. The average final fecundity (circles) from the simulation in Figure 3-6 along with a 96% confidence interval
(lines).

Finally, we show the mean fitness trajectory over these simulations with a 96% confidence

interval (Figure 3-9). The greatest fitness gains are made by the first 2000 introduced mutants.
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Figure 3-9. The average change in fitness (circles) for the simulation of Figure 3-6 along with a 96% confidence interval
(lines).

Joint Evolution of Mortality and Fecundity

It may be more realistic to let new mutants have effects on both survival and fecundity. We
have followed the simulated evolution of both traits under a model of antagonistic pleiotropy. That
is, each mutant had a beneficial effect on either mortality or fecundity and a deleterious effect on the
alternative trait. Both fecundity and mortality respond as they had previously (Figure 3-10), as did the

population mean fitness (Figure 3-11).
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Figure 3-10. The evolution of age-specific fecundity and mortality in populations exposed to 10,000 mutants with
antagonistic effects on fecundity and mortality. Initial survival was the same Gompertz mortality used in Figures 3-5 and
3-2. Initial fecundity was assumed to increase with age as in Figure 3-6. Each line shows the progression of evolution
after the introduction of 1000 mutants as in Figures 3-5 and 3-6.
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Figure 3-11. The average change in fitness (circles) for the simulation in Figure 3-10 along with a 96% confidence
interval (lines).

Other Models of Late-Life Plateaus

Over the past 15 years there have been a number of additional models proposed to explain
the observations of late-life mortality plateaus. Some have supported our general proposition that
natural selection is the primary force in this evolution (e.g. Charlesworth 2001). Many other theories
are non-genetic, or in some cases suggest novel schemes for the evolution of late-life plateaus. We
review many of these additional theories in the Appendix for this chapter.

We do not regard the simple numerical examples that we have given here as the last word on

the subject of the evolutionary theory of late life. We expect our colleagues to produce a wide variety
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of interesting theories for the evolution of late life, together with instantiating analytical or simulation
models. Indeed, we hope that they will do so.

But the ultimate arbiter of the validity of mathematical theories in all fields of science is
whether or not they are corroborated or refuted by well-designed experiments. We are not naive
about the relationship between experiments and theory. As experimentalists, we know that bad
experimental design or execution can give results that may be incorrectly interpreted as supporting or
falsifying particular theories. But over the course of sustained and careful experimentation, particularly
using powerful tools like experimental evolution (vid. Garland and Rose 2009), we believe that the
relative value of biological theories can be evaluated empirically. Thus, while a mathematical theory
may be beautiful to contemplate, in the end its fate should depend more on a collection of ugly, but
obdurate, experimental facts.

Our chief point here is to show that simple population genetic models caz generate plateaus
in later adult life, plateaus in both age-specific mortality and age-specific fecundity. Furthermore, we
contend, these plateaus arise naturally from basic features of the sensitivity of natural selection to age-
specific genetic effects. And the broad features of such sensitivity are captured reasonably well by

Hamilton’s twin forces of natural selection.

Conclusion: Hamilton’s Theory Predicts the Existence of Mortality and
Fecundity Plateaus.

Although Hamilton’s original insights were used to deduce a link between aging and natural
selection, we have shown in this chapter that they also can be used to predict plateaued mortality and
fecundity patterns during late life. At such advanced ages, selection may no longer distinguish between

genetic effects among late ages and thus later life history can evolve toward plateaus with high
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mortality rates and low fecundity at these later ages. This theory is amenable to experimentation. In
particular it has the corollary that when the strength of age-specific selection is manipulated, the age
at which plateaus are observed to start should evolve. We describe tests of this theory in the next

chapter.
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Chapter 4. Late-Life Mortality and Fecundity Plateaus Evolve

In Drosophila laboratory evolution, mortality and fecundity plateaus evolve in the manner
predicted by Hamiltonian theory. These ‘strong inference’ experiments provide corroboration for the

Hamiltonian interpretation of late life.

Experimental Evolution as a Technique for Testing Hamiltonian Aging
Theory

Experimental evolution is a powerful technique for testing evolutionary theories of all types
(vid. Garland and Rose 2009). Indeed, one of its earlier and most successful applications was in tests
of Hamilton’s original use of the forces of natural selection to explain the evolution of aging (Rose
and Charlesworth 1980; Rose et al. 2007). Compared to the use of genetic variances and covariances,
experimental evolution has been a consistently more reliable technique for the purpose of strong-
inference tests of Hamiltonian theory (Platt 1966; Rauser et al. 2009). Genetic variances and
covariances among life-history characters are subject to tricky inbreeding and genotype-by-
environment interactions (Rose 1991). While it has been found that experimental evolution is also
subject to these problems, it has been possible to sort these artifacts out with further experiments (e.g.
Leroi et al. 1994a, b). Similar progress with experimental tests focused on variance components has

proven considerably more difficult (vid. Shaw et al. 1999).

The key experimental trick used to test the Hamiltonian explanation of aging is to postpone
the first day of reproduction in outbred laboratory populations, and then to sustain that regime for

multiple generations of experimental evolution. This is done by keeping adult flies alive for some time
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before they are allowed to contribute offspring to the next generation. This can be achieved by
discarding any eggs that they lay until they have reached the age allowed for reproduction, which can
be as late as 10 weeks from emergence of the larva. Note that this procedure does not require that the
fruit flies be kept virgin; mating can be allowed, just not suecessful reproduction. This regime is expected
to lead to the evolution of relatively later aging. Wattiaux (1968) and Rose and Charlesworth (1980,
1981) found evidence of enhanced later-age fertility and longevity in Drosophila populations cultured
with later ages of first reproduction without replication of selected or control populations.

Properly replicated experiments using this experimental approach were not performed until
the 1980's, particulatly by Rose (1984b) and Luckinbill et al. (1984). Rose (1984b) analyzed longevity
and fecundity differences between three populations selected for earlier reproduction and three
populations selected for increasingly later first ages of reproduction. These early and late reproducing
populations were derived from the same outbred laboratory population of D. melanogaster, but had
been separated and selected for their relative ages of reproduction for more than 15 generations at the
time they were employed in the first assays. Significant differences were observed in longevity between
the early and late reproducers, with the late reproducers having an increased mean longevity (Figure
4-1). Luckinbill et al. (1984) found essentially the same results, further demonstrating that selection on
first age of reproduction can alter longevity in ways consistent with the Hamiltonian explanation of
the evolution of aging. Experiments using the method of delayed first reproduction are now routine,
often using fruit fly species of the genus Drosophila, but sometimes other species are used (e.g. Nagai

et al. 1995; Reed and Bryant 2000).
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Figure 4-1. The number of adult females alive at each age for the three early-reproduced populations (dashed lines) and
the three later-reproduced populations (solid lines). Later-reproduced populations demonstrated an increase in mean
longevity (42.81 days) compared to the early-reproduced populations (33.28 days) after just 50 generations of selection
for progressively postponed reproduction. [from Rose 1984b, page 10006, Fig. 1].

Experimental Strategy of Controlling the Last Age of Reproduction and
Survival

In Chapter 3, mortality-rate patterns were predicted to follow the pattern of the force of

natural selection, and plateau sometime after the force of natural selection plateaus in late life (see
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also Mueller and Rose 1996; Rose and Mueller 2000; Charlesworth 2001). The correspondence
between the start of the plateau in the force of natural selection and the onset of mortality-rate
plateaus is not expected to be exact, however, because beneficial gene effects that continue from
early to late ages will sustain survival somewhat longer than the last age of reproduction in the
evolutionary history of the population. Nevertheless, the age when mortality-rate acceleration
stops, or slows, should evolve in accordance with large changes in the age at which the force of
natural selection hits zero. Therefore, the mortality-rate pattern in late life is predicted to
evolutionarily follow the pattern of prior selection on the population’s last age of reproduction. If
experimental populations with abundant genetic variation, whose last age of reproduction has
been controlled in a consistent manner for numerous generations, do not conform to this pattern,
then the evolutionary theory for late-life mortality based on the force of natural selection would

be falsified. We will now review experimental studies that were designed to test these predictions.

All stocks used in the experiments to be discussed in this chapter were ultimately derived from
a sample of the Amherst, Massachusetts, Ives population (e.g. Ives 1970) that was collected in 1975
and cultured at moderate to large population sizes ever since. Individual populations have been
subjected to a series of selection regimes, as indicated in Figure 4-2 (Rose 1984b; Chippindale et al.
1994). Each of four distinct types of stocks differs in their age of last reproduction, and each stock in
turn consists of five outbred replicate populations. What we mean by ‘age of last reproduction’ in
these stocks is that individuals in these populations are allowed to freely mate and lay eggs at all days
leading up to their last age of reproduction; however, the way in which these populations are cultured
only allows eggs that are laid shortly before the last age of reproduction to contribute to the next
generation. Therefore, the last age of reproduction marks end of a brief window of successful
reproduction. The four stocks are Bis, O15, CO1s, and ACOys (subscripts 1-5 indicate the 5 replicated

populations within each stock). The ACO and B populations have an early age of last reproduction (9
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and 14 days from egg, respectively), the CO populations have an intermediate last age of reproduction
(28 days) and the O populations have a late last age of reproduction (70 days). These populations have
each been maintained for more than 100 generations under their distinctive demographic regime at
effective population sizes > 1,000, and they are known to be highly polymorphic genetically (Rose et
al. 2004). Together, these populations define a spectrum of selection on the age of reproduction, and

thus a spectrum of patterns for the age-specific force of natural selection.
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Figure 4-2. Selection histories of the experimental populations. The ancestral population was the IV population, sampled
from nature in 1975, which was used as the ancestor of the five B and five O populations in 1980. In 1989, the five CO
populations were derived from the five individual O populations, and the five ACO populations were in turn derived
from each of the CO populations in 1991.

Testing whether Mortality Plateaus Shift with the Last Age of Reproduction

We tested the Hamiltonian mortality-plateau prediction that the onset of mortality plateaus
should evolve in accordance with the last age of reproduction in the population’s evolutionary history,

using the B, O, ACO and CO Drosophila populations described above (see Figure 4-2). Survivorship
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assays employing these stocks already indicated that the last age of reproduction was positively
correlated to life span. That is, the populations with the earliest last ages of reproduction (B and ACO
populations) had shorter life spans compared to populations with later last ages of reproduction (CO
and O populations) [data on the lifespans of these laboratory populations are compiled in Rose et al.
(2002, 2004)]. However, these average life span patterns by themselves do not indicate the timing or
nature of the mortality-rate plateaus of these populations.

In order to determine whether the timing of mortality-rate plateaus evolves according to the
last age of reproduction in a population’s evolutionary history, mortality-rate comparisons between
populations that were evolutionary distinct with respect to their ages of last reproduction had to be
done. Therefore, we performed two mortality-rate comparisons using the populations described above
to provide independent tests of the evolutionary theory for late-life mortality plateaus. These were the
comparisons of the B with the O populations and the ACO with the CO populations. Specifically,
these comparisons allowed us to test the prediction concerning the effects of last age of reproduction

on the start of mortality-rate plateaus.

The B and O populations share a common ancestor, but have long had a 56-day difference in
their last age of reproduction. That is, they had evolved separately for more than 17 years (450 B-
generations) at the time that we estimated the age-specific mortality rates presented here. The mortality
data of the B and O populations were fit to two-stage Gompertz equations by maximum likelithood
techniques, allowing, but not assuming, a late-life mortality rate plateau (see Estimation of Mortality
Rate Plateaus in the Appendix). This model fitting was not performed in order to support the

Gompertz model, but rather merely to infer mortality-rate patterns by an objective procedure.

The ACO populations were derived directly from the CO populations, as shown in Figure 4-

2. The ACO populations had a last age of reproduction of 9 days, while the CO populations had a last
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age of reproduction averaging about 28 days, in the period before the present experiments. These
populations were compared using a paired-comparison test because each ACO population was derived
from the CO population having the same numeric subscript.

In these two large-scale and independent comparisons, we collected mortality data for each
replicate population for both males and females starting at the ninth or tenth day of age from egg until
all flies in the cohort had died (see Rose et al. 2002, for experimental details). We tried to avert
problems in interpreting the mortality data by controlling for effects arising from varying density and
small population sizes. For example, males and females were housed together, density was kept
roughly constant throughout each assay (cf. Nusbaum et al. 1993; Carey et. al. 1993; Graves and
Mueller 1993, 1995; Curtsinger 1995a, 1995b; Khazaeli et al. 1995, 1996), and high cohort sizes (at
least 2000 individuals per replicate) were used to reduce sampling variance in our estimations of
mortality rates (cf. Promislow et al. 1999; Pletcher 1999) (see Tables 4-1, 4-2 for sample sizes).

Mortality data from the B - O and ACO - CO populations were fit to a two-stage Gompertz
model using maximum likelihood techniques, as described in the Appendix. This model allows, but
does not assume, a late-life mortality rate plateau, although we observed plateaus in mortality rates in
all of our replicate populations at later ages. The importance of this two-stage model is that it allowed
us to estimate the approximate age at which mortality rates started to plateau, or the ‘breakday’
between the two stages of the model, within each population. This in turn permitted us to test the
Hamiltonian mortality-plateau prediction that the onset of mortality plateaus should evolve in

accordance with the last age of reproduction in the population’s evolutionary history.
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Morttality Plateaus Evolutionatily Shift with the Last Age of Reproduction

These two independent comparisons between laboratory-evolved populations selected for
different last ages of reproduction tested the predictions made by the Hamiltonian evolutionary theory
for late-life mortality and our computer simulations described in Chapter 3. Specifically, we predicted
that the five later-reproducing O populations would have a later onset of mortality-rate plateaus
compared to the early-reproducing B populations. Similarly, in the pair-wise comparison between the
CO and ACO populations, we predicted a later onset of mortality-rate plateaus in the five later-
reproducing CO’s compared to the five ACO’s. This is exactly what we found (see Figures 4-3, 4-4
and Table 4-1). Our experimental predictions were confirmed and our results fully corroborated the

Hamiltonian mortality-plateau prediction.
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Figure 4-3. Two-day mortality rates for ten cohorts sampled from the B and O populations. B populations (early last
reproduction) are shown as gray lines and O populations (late last reproduction) are shown as black lines. Occasional
regions are missing because mortality rates of zero cannot be propetly interpreted on a logarithmic scale. The ages at
which late-life mortality plateaued in the O populations (male: 58.0; female: 68.4) were significantly greater than the age
at which mortality plateaus in the B populations (male: 23.6; female: 24.0). a. Male mortality. b. Female mortality.
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Figure 4-4. Two-day mortality rates for ten cohorts sampled from CO and ACO populations. In each case, ACO
populations (selected for early-life fecundity) are shown by gray lines and CO populations (selected for mid-life
fecundity) are shown by black lines. Occasional regions are missing because mortality rates of zero cannot be propetly
interpreted on a logarithmic scale, except for one case, which was a result of experimental error. Late-life mortality
plateaued later in the CO populations (male: 58.6; female: 57.0) compared to the ACO populations (male: 42.6; female:
40.6). The ACO-CO comparison is a completely independent test of Hamiltonian evolutionary theory from the B-O
comparison in Figure 4-3. a. Male mortality. b. Female mortality.
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Notably, both experiments described above could have refuted the evolutionary theory if there
had been no difference between populations in the breakday of their mortality-rate plateaus, after long
maintenance of very different terminal ages for reproduction, or if the difference between these

breakdays had been in the opposite direction from the difference in the last day of reproduction.

Table 4-1. Results from a test of the evolutionary theory for late-life mortality using comparison
between the early reproducing B populations and the late reproducing O populations with respect to

onset of mortality-rate plateaus; A and o are from the Gompertz equation.

Males Females

B O B O
Sample size 4,867 8,855 5143 10,037
Breakday 23.6 58.0 k240 68.4 *oAk*x
Plateau mortality rate 0.338 0.161 ko 0.240 0.195 koHk
A 0.00339 0.00124 * 0.00542  0.00307
o 0.198 0.0711 Rk 0.173 0.0577  ***
Mean longevity 20.6 52.3 **k%  2(.8 482 Rk

* p<0.1; *** p<0.01

Table 4-2. Results from an independent test of the evolutionary theory for late-life mortality using a
comparison between the early reproducing ACO populations and the later reproducing CO
populations with respect to onset of mortality-rate plateau. Because each ACO population derives
from a single CO population, paired-difference #tests were used to test for significant differences
between characters.

Males Females

ACO CoO ACO CO
Sample size 12,444 11,987 14,084 12,361
Breakday 42.6 58.6 ook 40.6 57.0 *oxk
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Plateau mortality rate 0.363 0.286 o 0.520 0.330 ok
4 0.00500 0.00156  *** 0.00710 0.00465  **

o 0.106 0.0813  **x* 0.105 0.0644  **x*
Mean longevity 26.2 44.2 ok 23.5 37.2 ok

% n<0.05; *** p<0.01

Determining whether Fecundity Plateaus at Late Ages

In Chapter 3, we discussed how the Hamiltonian theory based on the declining force of natural
selection with age can just as easily be applied to fecundity as mortality. The greatest difference
between these two characters is that the force of natural selection acting on fecundity should decline
with age until the last age of s#rvivalin the environment in which a population has evolved, rather than
the last age of reproduction which is the case with the evolution of mortality (Hamilton 1966). The
force of natural selection acting on age-specific fecundity scales according to s'(x) = ¢™ A, where x is
the age of a genetic effect on fecundity, is the Malthusian parameter for the population, and / is
survivorship to age x (Figure 4-5). After the last age at which individuals survive in the population's
evolutionary history (say 4, which is not necessarily the last age of cohort survival under protected

conditions) §'(x) converges on and remains at zero thereafter.
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Figure 4-5. An example of the age-specific force of natural selection acting on fecundity. Even in organisms that
reproduce indefinitely, the strength of selection may be so weak in late life that random genetic drift is the primary
determinant of the frequency dynamics of alleles that differ only with respect to their effects sufficiently late in adult life.

According to this evolutionary theory, the evolution of fecundity should echo its age-specific
force of natural selection. That is, fecundity should decline in mid-life and plateau at very late ages, in
a fashion analogous to mortality rates. However, as with mortality, it may not be possible to detect
these plateaus in female fecundity unless very large cohorts are examined. If we examine age-specific
fecundity in a variety of organisms, there are some general patterns that emerge (Figure 4-6). It is
important to note here that when we are referring to fecundity, we are talking about the average age-

specific fecundity within a population, not individual female fecundity patterns. As we will describe
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in detail in Chapter 9, the relationship between the average fecundity and individual fecundity is greatly

complicated by the effect of dying on each type of fecundity.
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Figure 4-6. Age-specific fecundity in U.S. females, the flowering plant, Phlox drummondi, the flatworm Dugesia
lugubris, and the Mediterranean fruitfly Ceratitis capitata.

Only the data from the flatworm, Dugesia lugubris, suggest a fecundity plateau in late life.
However, all four species show an increase in fecundity following sexual maturity until it peaks
sometime in early or mid-life, followed by a decline at later ages. Broadly speaking, we would suggest
that many organisms show a unimodal age-specific fecundity curve that may either decline steadily to

a low value or show some type of plateau at late ages, leaving aside seasonal reproduction patterns.
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Our simulations (Chapter 3) of the evolution of fecundity support a general pattern of decline from a

peak in early life to a plateau at later ages (Figure 4-7).

empirical data

Fecundity

model prediction

Age

Figure 4-7. The expected shape of age-specific fecundity within a population. The evolutionary model developed in
Chapter 3 predicts the curve labeled “model prediction.” The general pattern from many organisms is labeled “empirical
data.” The question as to whether data collected sufficiently late in adult life will exhibit a plateau pattern in late life is
indicated by the question mark.

To our knowledge, we were the first laboratory to empirically demonstrate that fecundity
within a population peaks during mid-life and then declines to a low level and plateaus at late ages, as
predicted by the fecundity model in Figure 4-7. We described in Chapter 2 our observations that
fecundity indeed plateaus at late ages in several independent Drosophila populations (Rauser et al. 2003,
20006). Although the late-life plateau in fecundity was not always distinct, we always observed a
significant slowing in the decline in fecundity at late ages and used a variety of different statistical tests
to determine whether fecundity at late ages was significantly different from zero (see Rauser et al.
2003, 20006). It is likely that previous experimental examinations of population fecundity did not reveal
plateaus in fecundity at late ages because of small starting sample sizes. Our experiments consistently

employed thousands of flies per cohort.
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Testing whether Fecundity Plateaus Evolutionarily Shift with the Last Age of
Survival

Analogously to the experimental tests of the Hamiltonian theory that we performed with
regards to mortality described above, we tested the Hamiltonian fecundity-plateau prediction that the
onset of fecundity plateaus in a population should evolve in accordance with the last age of survival
in the population’s evolutionary history. This prediction was tested in the ACO and CO Drosophila
populations described above (see Figure 4-2), which are evolutionary distinct with respect to their last
ages of survival.

The difference in age of reproduction between the ACO and CO populations resulted in late-
life mortality-rate plateaus that started at a significantly greater age in the CO populations, relative to
the ACO populations (Rose et al. 2002), as was predicted by the Hamiltonian theory. The difference
in the age of reproduction between these populations is positively correlated with the age of last
survival because of the way these populations are maintained and cultured. That is, once these
populations have been allowed their successful day of reproduction (age 9 days in the ACO and 28
days in the CO populations), they are discarded, which hence also defines their last age of survival.
Therefore, this difference in age of reproduction corresponds to the ages at which the force of natural
selection acting on fecundity declines to zero and plateaus eatlier in the ACO populations, relative to
the CO populations. Together, these 10 populations provide a platform with which to test the
evolutionary theory of late-life, based on the force of natural selection, as it applies to fecundity.

During the pairwise comparisons between each replicate ACO population and the
corresponding CO population, four adult females were housed with four adult males in vials
containing enough yeast so that mating and nutrition were not limiting factors for fecundity. Flies

were also recombined between vials as flies died to forestall any age-specific density effects. The
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fecundity within these cohorts was determined daily until all flies had died. All assays started with
3,200 females per replicate population, and as many males (see Rauser et al. 2006 for experimental
details).

Fecundity data from each of the five ACO and five CO populations in the pairwise
comparison were independently fit to a two-stage linear model, analogous to the two-stage model fit
to our mortality data and described in detail in the appendix, to test whether fecundity plateaus evolve
according to Hamiltonian evolutionary theory. Specifically, the age of onset of the late-life fecundity
plateau for a population, or the breakday, was estimated from the two-stage model and then used to
test whether late-life fecundity plateaus evolve according to the age at which the force of natural
selection acting on fecundity plateaus.

Population estimates of age-specific fecundity are complicated by the existence of flies that
are about to die and those that are not. We have shown that females about to die show a rapid decline
in fecundity no matter how old they are (Rauser et al. 2005b; Mueller et al. 2007). Nevertheless, the
techniques used here can still reliably infer the onset of the fecundity plateau (see Mueller et al. 2007

for more details; also further discussions below, particularly in Chapter 9).

Fecundity Plateaus Evolutionarily Shift with the Last Age of Survival

This pairwise comparison between laboratory-evolved populations selected for different last
ages of reproduction, and consequently different last ages of survival, tested the predictions made by
the Hamiltonian evolutionary theory for late-life fecundity. We specifically predicted that the later-
reproducing CO populations would have a later onset of fecundity-rate plateaus compared to the
early-reproducing ACO populations. This is exactly what we observed (see Figure 4-8 and Table 4-3).

We found an average pairwise difference in the onset of the late-life fecundity plateaus of 13.80 days
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between the two selection regimes (Figure 4-9 and Table 4-4). As with mortality, our results for
fecundity fully corroborated the Hamiltonian late-life prediction. The plateaus in fecundity evolved

according to the age at which the force of natural selection acting on fecundity declined to zero.
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Figure 4-8. Mean mid- and late-life fecundity as a function of age for each of the ACO1-5 (eatly reproducing) and CO1-
5 (late reproducing) populations. Fecundity was measured during the ACO7 and CO7 pairwise comparisons. A two-stage
linear model was fit to each population independently (see appendix for details). For all 10 populations, plateau height
was significantly greater than zero. Late-life fecundity plateaued later in the CO populations (49.86 days) compared to
the ACO populations (36.06 days) as predicted by Hamiltonian theory (p < 0.0001). The arrows indicate the start of the
fecundity plateau.
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Table 4-3. Parameter estimates from the two-stage linear model fitted to mid- and late-life fecundity
data from the early-reproducing ACO populations and the later-reproducing CO populations. The
height of the fecundity plateau was computed from eq. (A4-2) and the estimated height was
significantly different from zero (p < 0.05 for each population).

Population 1%-stage 1%-stage Breakday  Plateau height

y-int (¢1) slope (c2) (fbd) (eggs/female/day)

ACO; 48.11 -1.49 30.52 2.50
ACO2 30.61 -0.75 39.44 1.22
ACOs3 22.97 -0.69 31.62 1.21
ACO4 67.44 -1.66 38.24 3.98
ACOs 63.99 -1.61 38.44 2.16
CO, 40.54 -0.80 48.55 1.80
CO2 137.41 -3.26 40.67 4.86
COs 55.74 -0.90 60.43 1.32
COq4 121.26 -2.51 46.30 5.27
COs 101.66 -1.89 51.66 3.81

Parameter estimates for a, o, & fbd were all significantly different from zero; p < 0.001.
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Figure 4-9. Late-life fecundity plateau age of onset (breakday) for all five pair-wise comparisons of CO and ACO
populations. The fecundity plateau started significantly later in the later-reproducing CO populations compared to the
eatly-reproducing ACO populations (p < 0.0001). The break day and 95% confidence intervals were estimated for each
population from the two-stage linear model using a non-linear least squares regression function.

Table 4-4. Results from the test comparing the fecundity-model parameters of the eatly-reproducing
ACO populations and the later-reproducing CO populations. Plateau height was computed from Eq.
(A4-2). The x,y-values used in the regression were from 100 vials (400 females) randomly sampled
daily from an initial population size of 4,000 vials (16,000 females).

Population

ACO CO

Sample size (x,y-values) 6,540 12,873
1%t-stage y-int 43.58 88.31 *

1%t-stage slope -1.14  -1.80
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Fecundity break day 36.06 49.86 ***
Plateau height 2.21 3.41

(eggs/female/day)

#k% 5 <0.0001; * p < 0.05

The pairwise comparison between the two replicated sets of populations long having different
last ages of survival in their evolutionary histories would not have supported the evolutionary theory
for late life as described by Hamilton if there had been no difference between the populations in the
onset of their fecundity plateaus (breakday). Furthermore, the theory would not have been supported
if the onset of these fecundity plateaus had been in the opposite direction from the difference in the
last age of survival in their respective evolutionary histories. However, that was not the case.

Most evolutionary theories suggest a rapid rise in age-specific fecundity at early ages
followed by a long decline after some peak value. Our interpretation of the evolutionary theory of
late life, based on the decline in the force of natural selection, was that population fecundity will
plateau at very late ages, like age-specific mortality rates (Rauser et al. 2003). We made this
prediction because the force of natural selection acting on age-specific fecundity asymptotically
falls to such a low level that it can no longer distinguish fitness differences in fecundity at different
ages. Our experimental work supports this interpretation. We found that the decline in fecundity
greatly slows, or plateaus, in 10 independent populations at some number of eggs laid per day
greater than zero. Furthermore, we found that fecundity plateaus evolve according to the age of
last survival in these populations’ evolutionary histories. These results corroborate the basic
evolutionary theory of late life and its prediction that fecundity, just like mortality rates, should

plateau sometime after the age-specific force of natural selection acting on fecundity itself plateaus.
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Experimental Evolution Supports the Hamiltonian Theory of Late Life

Opver the past decades our laboratory has tested the predictions of Hamilton’s evolutionary
theory based on the age-specific decline in the forces of natural selection with respect to both mortality
and fecundity using experimental evolution techniques in numerous Drosophila cohorts. Hamilton’s
classic theory (19606) predicts that the force of natural selection acting on these characters should
decline to zero at late ages, or to levels so insignificant that age-specific natural selection is essentially
nonexistent at such late ages. The timing in the decline in the force of natural selection to zero is
dependent on the last age of reproduction and survival in the population’s evolutionary history for
mortality and fecundity, respectively.

Therefore, by employing populations of flies that have long undergone selection for specific
and different ages of last reproduction and survival, we were able to test the specific predictions of
the Hamiltonian theory that apply to late life. For our experiments, our numerical calculations led us
to the hypothesis that the onset of mortality rate plateaus at late ages should evolve, or shift, in
accordance with the last age of reproduction in that population’s evolutionary history. Similarly, the
onset of fecundity plateaus at late ages should evolve according to the last age of survival in that
population’s evolutionary history. This is precisely what we observed. In sum, all of our experiments
have corroborated Hamiltonian theory, as we have observed the evolution of both mortality rate
plateaus and fecundity plateaus at late ages as predicted by that theory. Next, we turn to the genetic

mechanisms that might underlie these experimental evolutionary results.
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Chapter 5. Genetics of Late Life involve Antagonistic Pleiotropy

Reverse evolution experiments implicate antagonistic pleiotropy in the evolution of both
mortality and fecundity during late life. Hybridization experiments do not implicate mutation

accumulation in the evolution of late life, but do not necessarily preclude its involvement.

Population Genetics of Aging and Late Life

The population genetics of aging without regard to late life have been theoretically developed
and empirically tested, starting around the midpoint of the 20" century. There are two main population
genetic mechanisms that can explain aging: mutation accumulation and antagonistic pleiotropy (see
Rose 1991). These two mechanisms can function separately or in concert, which means that they are
not mutually exclusive. Furthermore, these same population genetic mechanisms can explain plateaus
in age-specific mortality rates and the evolution of late life in general (Mueller and Rose 1996;
Charlesworth 2001).

The ways in which mutation accumulation and antagonistic pleiotropy function in the
evolution of aging and late life, and how these mechanisms can be empirically tested, will be described
in turn. Mutation accumulation affects the evolution of aging and late life when alleles that are
deleterious at later ages, but neutral at all earlier ages, accumulate by mutation pressure and genetic
drift (Medawar 1952; Rose 1991; Charlesworth 1994, 2001). Such mutations are expected to be unique
to each evolving population. They are also expected to be somewhat recessive on average, since that
is usually the heterozygous effect of deleterious mutations (Simmons et al. 1978). Despite their
deleterious effects, these mutations are able to persist in populations because they only increase

mortality rates later in life, when the force of natural selection is relatively weak. These features of
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mutation accumulation are expected to produce hybrid vigor in experimental crosses of populations
subject to mutation accumulation. However, it is important to note that not all alleles are expected to
foster hybrid vigor with mutation accumulation, and mutation accumulation is not the only possible
cause of hybrid vigor (Charlesworth and Hughes 1996). Nevertheless, the demonstration of hybrid
vigor in crosses between populations influenced by mutation accumulation provides at least indirect
supportt for the hypothesis of mutation accumulation as a genetic mechanism in the evolution aging
and late life, as argued by Mueller (1987) and Rose et al. (2002).

Another genetic mechanism that may explain the evolution of aging and late life is antagonistic
pleiotropy, specifically when alleles that are beneficial early in life are deleterious later in life (Williams
1957; Rose 1985; Charlesworth 1994). With mortality, for example, alleles that are deleterious and
cause increased mortality rates late in life can persist within a population because these same alleles
enhance another fitness-related trait, such as reproduction, earlier in life when the force of natural
selection is much stronger. For life-history evolution, this genetic mechanism can be experimentally
distinguished from mutation accumulation and genetic drift by subjecting long-established late-
reproducing populations to an evolutionary reversion to much eatlier ages of reproduction, an
experimental protocol that has been of value in the study of the evolution of aging (e.g. Service et al.
1988). So long as this reverse selection (cf. Teoténio and Rose 2001) is imposed on large populations
for a small number of generations, there is too little evolutionary time for mutation accumulation or
genetic drift to act significantly. For mortality, switching to a selection regime with an earlier last age
of reproduction for a short amount of time should lead to an earlier onset age for late-life mortality
rate plateaus, if this genetic mechanism is active in the evolution of late life. This experimental design
tests whether antagonistic pleiotropy is operating in the evolution of late life because selection for
early reproduction will increase the frequency of alleles enhancing early-fitness characters, and those

alleles with antagonistic pleiotropy between early and late ages will in turn increase mortality rates
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before the start of the plateau, causing an earlier plateau onset. Therefore, if a shift in the age of onset
of mortality plateaus to earlier ages is observable in the populations reverted to eatlier ages of
reproduction for a small number of generations, then antagonistic pleiotropy can be inferred as a

genetic mechanism underlying late-life mortality patterns.

Populations Employed in Our Tests of Genetic Mechanisms

The stocks used in the experimental tests of the population genetics of late life described in
this chapter were ultimately derived from a sample of the Amherst, Massachusetts, Ives population
(e.g. Ives 1970) described in Chapter 4 (see Figure 4-2 and Figure 5-1). Recall that each of the stocks
differs in their age of last reproduction, which is controlled in the laboratory by the way in which the
stocks are cultured. Furthermore, each of these stocks in turn consists of five outbred replicate
populations (Rose 1984b; Chippindale et al. 1994). The four stocks described before are the Bis, O
5, CO1s, and ACOys. The ACO and B populations have an eatly age of last reproduction (9 and 14
days from egg, respectively), the CO populations have an intermediate last age of reproduction (28
days), while the O populations have a late last age of reproduction (70 days). These populations had
been maintained for more than 100 generations at population sizes > 1,000 at the time of the
experiments described here. Together, these populations define a spectrum of selection on the age of
reproduction, and thus a spectrum of patterns for the age-specific force of natural selection acting on
mortality. As described in Chapter 4, the timing of the onset of mortality-rate plateaus in these
populations positively corresponds with the last age of reproduction in the evolutionary history of the
populations. That is, late-age plateaus in mortality occurred earliest in the ACO populations, followed
by the B, CO and O populations. For testing the population genetic theories of aging and late life, the

B populations were employed in an experiment to test whether mutation accumulation contributes to
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the evolution of late-life mortality rate plateaus, and the O and CO populations were used to test the
theory of antagonistic pleiotropy in the evolution of late-life mortality and late-life fecundity,

respectively.

To propetly test the role of antagonistic pleiotropy in the evolution of aging and late life, new
stocks were created that originated from the O and CO stocks. To specifically test whether
antagonistic pleiotropy influences the evolution of late-life mortality, the O populations were reverted
to an earlier last age of reproduction (14 days) for only 24 generations prior to the experimental assays.
This new stock was named NROis and each of the five NRO populations was derived from its
respective O population (Figure 5-1). The NRO culture procedure was like that of the O populations,
except that flies were placed in cages at about 10 days from egg, followed by egg collection at 14 days,

after feeding with yeast.

In order to test whether antagonistic pleiotropy contributes to the evolution of late-life
fecundity, four NRCO populations were derived from their corresponding CO populations and
subjected to selection for earlier reproduction using procedures similar to those routinely used with
the ACO populations (see Figure 5-1). This reverse selection was only imposed for 24 generations, as

with the NRO populations described above, after which time the experimental assays were performed.

81



Mueller, Rauser & Rose DOES AGING STOP?

*N RCO A

2000

A
| NRO
ACO
1990 0o
@0)
B

0 14 28 42 56 70

Last age of reproduction
(days from egq)

Figure 5-1. Selection histories of the reverse-selected populations. The five NRO populations were derived from the
individual O populations in 1998 and four NRCO populations were derived from the corresponding CO populations in
2003 to test whether the population genetic mechanism antagonistic pleiotropy operates in the evolution of late life.

Testing whether Mutation Accumulation Acts as a Genetic Mechanism in the
Evolution of Late-Life Mortality

In order to test whether late-life mortality does indeed reproducibly undergo some type of
mutation accumulation, we generated 25 distinct outbred populations of Drosophila melanogaster by
making all possible crosses of the five B populations, described in Chapter 4 (see Figure 4-2 and Figure
5-1). These populations were derived from a common ancestral population in February 1980, and
since then have been kept on a two-week culture regime with population sizes of approximately 1,000
individuals (Rose 1984b; Leroi et al. 1994a). Therefore, at the time the experiments described here

were performed, about 18 years, or 465 generations, had elapsed since their founding. It is unlikely
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that a substantial number of new mutations affecting survival have arisen in these replicate B
populations since their founding. Rather, it is more likely that each B population started with a large
number of rare alleles that were deleterious in their effects on late-life survival while in nature, but
were subsequently made neutral by laboratory culture. A fraction of these neutral alleles are expected
to increase in frequency by random genetic drift. Furthermore, molecular studies of the five
independent B populations have shown that they are genetically differentiated (Fleming et al. 1993).
The way in which the B populations are cultured actually creates conditions for mutation
accumulation. Such an accumulation of mutations, however, depends on several factors, such as (i)
the elimination of selection in late life, (ii) a finite population size, and (iii) the existence of late acting
deleterious alleles for the life history characters we examine. The first two factors are part of the
experimental design developed to culture these populations in the laboratory, while the third factor
constitutes the biological hypothesis of mutation accumulation. The dynamic aspects of the process
of mutation accumulation in the B-populations are shown in Figure 5-2. This process presumes that
multiple loci affect the trait of interest. It further assumes that some existing deleterious alleles will
rise to high frequency in each population and others will not. Furthermore, the particular alleles that
rise to high frequency in one population are different then those alleles that rise to high frequency in

the other populations.

83



Mueller, Rauser & Rose DOES AGING STOP?

Accelerated Senescence Due to Mutation Accumulation

Genotypes at Fitness-
416 generations of drift related Loci
Fm2+ + +

N ~ 1000

E reproduction at day 1- 5 of adult life

Deleterious alleles (mj)
reduce fithess-related
trait late in life.

Hybrids e h A It
+ my + + + TheFqhasrestored late-life
By X By —— TTT ms +  fithess

Figure 5-2. Alleles in the five independent B populations undergo independent rounds of genetic drift that can ultimately
result in different sets of initially rare deleterious alleles rising to high frequency. When the different lines are crossed, the
resulting hybrids are expected to be heterozygous and hence show improved late life characters.

We assume that most deleterious alleles that rise to high frequency by drift will be recessive or
partially recessive. This conclusion follows from the simple population genetic considerations that
suggest that in the ancestral population recessive deleterious alleles will be at a much higher
equilibrium frequency than dominant alleles. Consequently, in the simplest case, which involves
fixation of the deleterious alleles, the parental populations would show a depression in the same late-
life characters that would be elevated in the Iy hybrids created from crosses between any of the

independent B populations (Figure 5-2). If on the other hand, fitness-characters early and late in life
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are determined wholly by alleles with antagonistic effects, there should be little difference between the

hybrids and parental populations for their late-life fitness characters when simultaneously compared.

However, it is important to note that there is nothing about the design of this experiment that
guarantees or assumes that these deleterious alleles would be fixed after only 465 generations of drift.
This is because for neutral alleles at an initial frequency of p, and with an effective population size of

N, it will take on average —4N(1-p)In(1-p)/p generations to fix the allele (assuming it is fixed, which

will occur with probability p, Ewens 1979, pg. 77). Therefore, in the B populations where N, = 1000,

and assuming that p = 0.05, the average time to fixation would be 3,898 generations.

While 465 generations is not a sufficient amount of time for most initially rare neutral alleles
to be fixed, there may be some that have risen to sufficiently high frequencies that late-life characters
would be depressed. For instance, using the stationary distribution of neutral alleles we can calculate
the chance of finding neutral alleles in certain frequency ranges (Crow and Kimura 1970, pg. 383). In
the B populations 4-9% of the neutral alleles are expected to be at a frequency of 0.4, or greater
(assuming N,=1000, and the initial frequencies are between 0.01 and 0.1). At final frequencies above
0.4, there would be sufficient numbers of homozygotes with deleterious effects at late ages, yet still
neutral under B conditions, to reduce late-life fitness-characters.

As a test of mutation accumulation underlying late-life mortality plateaus, we estimated the
amount of hybrid vigor between the genetically divergent B laboratory selection lines. That is, every
pair-wise combination of the cross B; X B;(both 7 and ; varying from 1 to 5) was performed, which
resulted in 25 total crosses that included five parental (non-hybrid) and 20 hybrid fly cultures. The
progeny from these crosses were assayed for mortality (for experimental details see Rose et al. 2002),
similar to the mortality assays described in Chapter 4. Over 800 males and an equal number of females

were assayed from each of the 25 resulting fly cultures, and mortality-rate estimations were done in
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the same manner for both the hybrid and non-hybrid populations. Due to missing observations when
collecting survival data, only 14 of the 20 hybrid crosses produced were included in the final analysis.

We found that the late-life mortality of the hybrids created from crosses between the five B
populations exhibited no detectable difference, or superiority, to the uncrossed cohorts sampled from
the parental B populations for (i) overall longevity (Figure 5-3), (ii) onset of mortality-rate plateaus at
late ages (Figure 5-4), or (iii) mean estimated mortality rate on the plateau (males: ~test, p = 0.14;
females: ~test, p = 0.46). While this empirical test did not support mutation accumulation as a genetic
mechanism contributing to the evolution of late-life mortality rate plateaus, it was not necessarily
refuted, because different patterns of dominance among alleles with effects specific to late life could
eliminate hybrid vigor (cf. Charlesworth and Hughes 1996). In any case, the absence of hybrid vigor

is interesting in itself, because it suggests an absence of inbreeding depression in these populations.
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Figure 5-3. Mean longevity of male and female B flies derived from 14 hybrid and five non-hybrid crosses of the B
populations.
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Figure 5-4. Test for hybrid vigor between the B populations. This figure shows the mean estimated mortality-rate plateau
breakday for males and females from the nonhybrid (parental) and hybrid crosses, or the day on which a slope of zero
better describes the mortality rate data than a nonzero slope. There was no significant difference between the breakdays
of the hybridized and non-hybridized B cohorts (males: ~test, p = 0.67; females: ~test, p = 0.46). Error bars are standard
errors.

While these five B populations experienced independent evolution for 18 years before this
experiment was performed, their demographic selection regimes were identical. Our expectation was
that, while the B populations evolved under the aegis of the same demographic selection, mutation
accumulation might have produced enough divergence among the five populations to give hybrid

vigor upon crossing. However, this is not what we found.
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Results from Testing whether Antagonistic Pleiotropy Acts as a Genetic

Mechanism in the Evolution of Late-Life Mortality by Reverse Evolution

To test antagonistic pleiotropy as a genetic mechanism involved in late-life mortality, we
derived the five NRO populations from the corresponding O populations by reverse evolution and
cultured them with an age of reproduction of 14 days from egg. The NRO populations were subjected
to selection for early reproduction for only 24 generations after derivation from the O populations
(see Figure 5-1) prior to their employment in the experimental assays described here. As we explained
before, 24 generations is not enough time for either mutation accumulation or genetic drift to have a
significant effect within populations of this size. After the 24 generations of selection for an earlier
last age of reproduction, the five NRO populations were then compared to the five corresponding O
populations from which they were derived with regards to the onset of late life. Evolutionary theory
predicts that the NRO populations would eventually evolve an earlier plateau in mortality rates when
compared to the O’s. However, this pattern would only be observable after so few generations of
reverse selection if antagonistic pleiotropy is operating as a genetic mechanism underlying the
evolution of late life.

When the NRO populations were compared to their corresponding O populations using the
same mortality assays that we previously described (Chapter 4 and Rose et al. 2002), we found
significant evidence of a rapid response to selection in the NRO populations with regards to the onset
of mortality-rate plateaus, or the breakday (Table 5-1). In fact, the breakdays’ response to selection
was remarkably rapid and highly significant in males, demonstrating a net response of more than 20
days in only 24 generations. Furthermore, the female response to selection for the start of the

mortality-rate plateau was nearly significant and showed a net response of 13 days in the predicted
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direction. Together these results are consistent with an evolutionary model in which the last age of
reproduction and the evolution of mortality-rate plateaus are positively related (Figure 5-1). The highly
significant male result with respect to the breakday after such a small number of generations of reverse
selection is sufficient to support antagonistic pleiotropy as a genetic mechanism involved in the
evolution of late-life mortality, as drift is unlikely to contribute a significant effect in populations of
this size in such a short amount of evolutionary time.

Table 5-1. Results from a test for response to a brief period of reverse selection in the NRO

populations. Because each NRO population derives from a single O population, paired-difference #
tests were used to test for significant average differences between the O and NRO groups.

Males Females

(0] NRO (0] NRO
Sample size 7,343 9,072 12,784 13,445
Breakday 68.6 48.2 *x 67.8 54.6 T
Plateau 0.28 0.22 0.24 0.26
mortality rate
A 0.0015 0.0021 0.0019 0.0033 *
a 0.062 0.081 * 0.063 0.076
Longevity 533 41.8 *x 50.4 39.2 *x

** 1 <0.01;* p<0.05; 1 p<0.1

Determining whether Antagonistic Pleiotropy Acts as a Genetic Mechanisms
in the Evolution of Late-Life Fecundity

Because the start of late-life fecundity plateaus depends on the timing in the drop in fecundity’s

force of natural selection, specifically the last age of survival in the population’s evolutionary history,
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we predicted that switching to a selection regime with an earlier last age of reproduction should lead
to an earlier age for the onset of fecundity plateaus if antagonistic pleiotropy is a genetic mechanism
underlying late-life fecundity patterns. This experimental design is analogous to the experiment that
we performed to test whether antagonistic pleiotropy operates as a genetic mechanism in the evolution
of late-life mortality rate plateaus. As with the mortality experiment, we subjected later-reproducing
populations, specifically the CO populations described in Chapter 4 and above (see Figure 5-1), to an
evolutionary reversion to earlier ages of reproduction (cf. Rose et al. 2002; Rose et al. 2004), and
consequently, earlier ages of last survival. These newly derived populations were named NRCO, and
each of these populations was derived from the corresponding CO population.

After the new selection regime had been imposed on the NRCO populations for only 24
generations, we compared the fecundity patterns of each of the new early-reproducing populations to
its parental later-reproducing CO population to see whether the NRCO populations also had an earlier
age of fecundity plateau onset (see Rauser et al. 2006 for experimental details). This selection regime
not only selected for early reproduction in the NRCO populations, but also for accelerated
development and an eatlier last age of survival. As before, antagonistic pleiotropy is distinguished
from other population genetic effects in this assay by implementing this specific experimental design,
which allows for too little evolutionary time for mutation accumulation or drift to have a significant
effect within the population sizes we employ.

Evolutionary theory predicts that the NRCO populations will evolve an earlier age of onset
for the plateau in fecundity, compared to the CO populations, if antagonistic pleiotropy is a genetic
mechanism shaping late-life fecundity patterns. Because antagonistic pleiotropy does not simply
depend on early fecundity, selection for multiple early fitness characters [e.g. eatly reproduction or
accelerated development] in the NRCO populations encompasses all types of antagonistic pleiotropy.

Therefore, a shift in late age fecundity in response to this selection will implicate antagonistic
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pleiotropy as a genetic mechanism shaping late-life fecundity patterns, regardless of which particular
early-life fitness components are involved. Our pairwise comparisons of the late-life fecundity plateau
patterns between the NRCO and CO populations corroborated this theory (statistical analyses were
performed as described in the Appendix). Figure 5-5 depicts the average population fecundity for the
four pairwise comparisons between these populations, along with the estimated ages of each breakday,

or start of the late-life fecundity plateau.
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Figure 5-5. The mean age-specific fecundity for four NRCO populations and each of the CO populations from which
they were derived. The arrows pointing down indicate the estimated breakday for the CO populations, while the arrows
pointing up indicate the breakday for the NRCO populations. In each case the breakday occurs at a younger age in the
eatlier-reproducing NRCO population than its paired later-reproducing CO population (mean breakday = 49.59 days in
the NRCO populations and 56.16 days in the CO populations).
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The breakday, estimated from the two-stage model described in the appendix of Chapter 4,
was significantly earlier in the earlier-reproducing NRCO populations compared to the later-
reproducing CO populations (Table 5-2). This result suggests that late-life fecundity plateaus rapidly
respond to selection, and that antagonistic pleiotropy connects late-life fecundity to early-life fitness
characters, resulting in the evolution of an average pair-wise difference of 6.57 days in only 24
generations.

Table 5-2. Results from the test of antagonistic pleiotropy demonstrate that the onset of the late-life
fecundity plateau starts significantly earlier in the NRCO populations, selected for earlier reproduction
for just 24 generations, compared to the CO populations. Plateau height was computed from Equation
A4-2. The regression coefficients (see Equation A4-1) were estimated from the age-specific fecundity

observed in 100 vials (400 females) randomly sampled daily from an initial population size of 3,200
vials (12,800 females).

Population
NRCO CO
Sample size 9,750 13,587

1%t-stage y-int (c1) 71.24  84.80
1%t-stage slope (c2) -1.36 -1.44
Breakday (fbd) 49.59 56.16 ***
Plateau height (¢4) 3.97 3.94

(eggs/female/day)

5% 1) <0.0001

Although our experimental results implicate antagonistic pleiotropy in the evolution of late
life, it is important to note that the two genetic mechanisms of antagonistic pleiotropy and mutation
accumulation are not mutually exclusive and that a positive result for antagonistic pleiotropy does not

necessarily mean that mutation accumulation is not involved in the evolution of late life.
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Antagonistic Pleiotropy is Implicated as a Genetic Mechanism in the

Evolution of Late Life

With antagonistic pleiotropy between early and late ages, some of the alleles that enhance early
reproduction will depress later survival or fecundity (Williams 1957, 1966; Rose 1985; Charlesworth
1994). Furthermore, late-acting deleterious genes that cause reproductive senescence late in life can
persist in a population because these same genes enhance reproduction, or other fitness characters, at
earlier ages when the force of natural selection is much stronger.

We specifically tested antagonistic pleiotropy as a genetic mechanism affecting late-life
mortality and fecundity in two independent reverse selection experiments. These experiments utilized
our well-established later-reproducing O and CO populations (Figure 5-1). From these populations
we used reverse selection for only a short number of generations to create new eatrlier-reproducing
populations, which we then compared to their corresponding parental population. Evolutionary
theory predicts that reversion to an earlier age of reproduction shifts the age at which the force of
natural selection acting on fecundity and survival declines to zero. Natural selection on early
reproduction for a short period will therefore tend to increase mortality rates and decrease fecundity
later in life, providing there is antagonistic pleiotropy between early and late ages.

The experiments on the genetic mechanisms of aging and late life that we have described in
this chapter reveal that both late-life mortality and late-life fecundity can be remarkably responsive to
selection for early reproduction imposed for a small number of generations, which implicates
antagonistic pleiotropy as a powerful genetic mechanism shaping the evolution of late life. The
forgoing studies demonstrate that antagonistic pleiotropy between early fitness-related characters and

late-life characters can affect the evolution of late life. While no evidence for the action of mutation
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accumulation was found, there is no critical evidence against its involvement in the evolution of late

life, eithet.
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Chapter 6. Demography of Late Life with Lifelong Heterogeneity

Within-cohort selection can theoretically lead to the deceleration of mortality rates when there
is substantial lifelong heterogeneity in robustness. This effect arises in both non-aging and aging
organisms. If there is implausibly extreme lifelong heterogeneity in robustness, late life can arise from

the relictual survival of the extremely robust.

The Concept of Lifelong Demographic Heterogeneity

The first theories proposed to explain the leveling of mortality rates at late ages were not
evolutionarily based, but instead were demographic theories based on lifelong differences in individual
robustness within an aging cohort. These theories suppose that there is sufficient heterogeneity in
lifelong robustness within a population to cause the slowing of mortality rates at late ages. That is, it
is imagined that mortality rates will start to slow at later ages, after the less robust individuals in the
population have died. Note that demographic heterogeneity should not be confused with mere genetic
or environmental variation within a population (cf. Carnes and Olshansky 2001). The assumption of
consistent lifelong differences between individuals is more exigent than that.

The idea of demographic heterogeneity predates the definitive demonstration of late-life
mortality-rate plateaus by Carey et al. (1992) and Curtsinger et al. (1992). In crude verbal form, the
idea is mentioned by Greenwood and Irwin (1939). Beard (1959) derived mathematical models for
mortality that accounted for lifelong heterogeneity in individual mortality. He was an actuary who
primarily analyzed human data and was concerned about the way late-age human data did not conform
to the Gompertz family of mortality models. Specifically, his mortality models included variables that

incorporated individual differences in “vitality” (Beard 1964). He even suggested that these differences
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in individual vitality may be the underlying cause of the slowing in late-age human mortality rates
within a population (Beard 1971).

However, it wasn’t until Vaupel et al. (1979) that the first complete /felong demographic
heterogeneity theory to explain late life was developed, also based on observations made on human
mortality data. This theory leads to a robust prediction of decelerating age-specific cohort mortality
late in life, granting only a few, seemingly natural, assumptions. The Vaupel heterogeneity theory
assumes that aging cohorts are comprised of a collection of secondary groups, with each subgroup
having its own characteristic Gompertz function that defines its mortality pattern. Thus, one subgroup
might have a relatively low baseline mortality rate (4 from Equation 2-1) compared to other subgroups
that will reduce its age-specific mortality rates throughout life, but the same rate of aging (a from
Equation 2-1). With this version of Vaupel’s heterogeneity model the average age-specific mortality

rate is,

_ Aed*
Alx) = 1+[02A(e®*—1)]a-1

(6-1)

where 6 is proportional to the variance in A. At advanced ages, once most individuals in the less
robust subgroups have died, the average mortality rate of Equation (6-1) approaches a mortality-rate
plateau equal to & 6.

On the other hand, the rate of aging, or the value of 4, may be the parameter that is imagined
to vary among the subgroups, resulting in some groups having a significantly higher rate of aging than
others (e.g. Pletcher and Curtsinger 2000). Although allowing the rate of aging to vary among such
hypothetical subgroups is much more difficult to analyze, Pletcher and Curtsinger (2000) and Service

(2000) have examined the age-dependent changes in the variance of mortality rates with models of
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this kind. Note that with this general type of model, regardless of whether the variation in mortality
lies within the baseline mortality rate (A) or the rate of aging (a), the hypothetical differences among
the subgroups are lifelong. That is, individuals that are less robust at late ages are imagined to be less

robust at all other ages, too.

Sources of Variation

Sources of possible variation in mortality are outlined in Figure 6-1.
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Figure 6-1. Potential sources of variation in mortality rates estimated from experimental cohorts include genetic variation
(subscript ) and environment-developmental variation (subscript 7).

At the first level, genetic variation may affect the age-independent and dependent parameters
of the Gompertz equation. We examine the 7th genotype in Figure 6-1 in more detail. Individuals that
are identical for this identical genotype may also vary in their mortality rates due to environmental
differences encountered early in life, which may cause A, a, or both variables to vary over the
individuals’ life time. Environment, 7, in Figure 6-1, for example, can be examined in more detail.

Suppose we could create many individuals of genotype 7 that have all experienced the exact same
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environment, 7. Although this would be difficult in practice, it could be accomplished in computer
simulations. However, even under these conditions there is theoretically expected to be variation in
the estimated mortality rates due to binomial sampling variance and experimental error. That is, for

genotype-7 in environment-7 the chance of an individual surviving to age # is,

AimPey [1_exp(aimt1)]}

Xim

p(t) = exp{

Thus, the expected number of survivors at age # is Ny, = p(t;) Ny, which has a binomial

distribution with a vatiance equal to p(t;)[1 — p(t1)]Np.

Eftects of Experimental Error

We can explore the extent to which experimental error may be responsible for mortality rate
plateaus by generating artificial cohorts of fruit flies on the computer with varying levels of

experimental error.
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Figure 6-2. Experimental error is added to the age-at-death of an experimental cohort. These errors are assumed to have

a normal distribution with mean zero and variance 62 Thus, when 6=6 the 95% confidence interval on the estimated
age-at-death is £12 days.

In Figure 6-2, mortality is simulated in cohorts of 1,000 individuals with Gompertz parameters,
A = 0.00725346 and a = 0.22891005 (see the Appendix for details). These values were estimated
from the mortality of a large number of Drosophila during ages prior to the mortality plateau. The
median longevity of the simulated populations in Figure 6-2 is just 14 days and deaths are estimated
to the nearest day. The experimental error is assumed to have a normal distribution with a mean of
zero and standard deviations ranging from zero to six, as given in Figure 6-2. For small to moderate
variance in experimental errors, there is no suggestion that the Gompertz mortality trajectory slows at
later ages. However, there is a slight suggestion of slowing when the standard deviation reaches six.

But this level of experimental error would mean that the estimated age at death would be mistaken by
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neatly 12 days, which is almost equal to the median longevity of individuals in these cohorts. These
errors must arise from an extreme propensity to make mistakes, such as calling a fly dead when it is in
fact alive, or handling a fly in such a way as to cause its premature death. Yet it is highly unlikely that,
in experienced hands, experimental error would ever be this large. In conclusion, variation caused
solely by experimental error is highly unlikely to contribute substantially to the mortality rate plateaus

that have been observed in a variety of organisms, especially under controlled laboratory conditions.

Simulated Effects of Hypothetical Extreme Lifelong Heterogeneity for A and o

Empirically there are several environmental factors that are known to affect longevity. One is
temperature; however, this is unlikely to be important in laboratory populations where this variable
can be carefully controlled. The other factor is food level or caloric restriction, and it is certainly
possible that individuals might vary in their food intake in laboratory experiments. Furthermore, in
Drosophila there 1s good evidence that caloric restriction increases longevity through a decline in the
age-independent parameter of the Gompertz equation, A (e.g. Nusbaum et al. 1996). On a natural log
scale, caloric restriction results in a decline in 4 of about 23%. It seems unlikely that, in a carefully
controlled environment, subtle differences between the environments would be sustained long
enough to result in changes in .4 much larger than those that are purposefully induced. In any case,
we can examine whether late-life mortality-rate plateaus can be generated by producing such extreme
variation in A.

In Figure 6-3A, we show the natural log of mortality for a Drosophila B-female cohort (see
Figure 4-2 for population description) along with mortality rates from several different computer

simulations. Even when the variation in A4 is as large as the variation produced by deliberate and
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extreme caloric restriction in Drosophila experiments (the aforementioned 23%), the mortality rates are
almost indistinguishable from the standard Gompertz model with 0% lifelong heterogeneity.

When we make the variation in 4 four times greater than the variation associated with lifelong
caloric restriction, a slight plateau is visible, although it is still not as pronounced as the plateau actually
observed in female B cohorts. Note that this is a hypothetical environmental effect that is vastly greater
than any yet detected in a Drosophila experiment. Nonetheless, this effect still isn’t big enough to

generate the late-life mortality-rate plateaus that have actually been observed in Drosophila cohorts.
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Figure 6-3. Simulated mortality with entirely hypothetical, lifelong, individual heterogeneity for the .4 and o parameters
of the Gompertz equation (Equation 2-1). In panel A of the figure, the natural log of .4 was assumed to have a log
normal distribution. Observed mortality data for actual B-female cohorts are shown as circles. The lifelong heterogeneity
variances were chosen so that a 95% confidence interval was equal to 0, 10, 23, or 100% of the mean value of A.
Simulated cohorts were the same size as those of the actual B-female cohorts. The values of .4 and o used in the
simulations were estimated from the first 24 days of the actual B-female data. During the first 24 days these cohorts age
according to the Gompertz equation and after this age they start to plateau (data from Rose et al. 2002). Simulation
results for panel B of the figure were carried out as described for panel A, except that the artificially-imposed lifelong
heterogeneity was in the age-dependent parameter of the Gompertz (ar). The solid lines represent the simulations with 0,
10, 19 and 100% variation in o, while the dashed line is with 23% variation in .4 and 19% variation in o.. Details of these
simulations are given in the Appendix to this chapter.

Hypothetical lifelong heterogeneity models may also include variation in the age-dependent
parameter of the Gompertz equation (o). In Drosophila, environmental effects don’t typically affect the
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o parameter, but genetic changes may (Nusbaum et al. 1995). Long term natural laboratory selection
over many generations has resulted in a 19% (on a natural log scale) reduction in the o parameter
within the long lived O-populations relative to their controls, the B’s (see Figure 4-2). Figure 6-3B
simply repeats the hypothetical calculations that were done in Figure 6-3A, but with hypothetically
extreme variation in o rather then 4. Even theoretically-generated cohorts with lifelong heterogeneity
as large as the difference between the B and O populations, which produces two to three-fold
differentiation in average longevity, do not exhibit late-life mortality-rate plateaus. The dashed line in
Figure 6-3B has artificially-generated lifelong heterogeneity in both .4 and o parameters at magnitudes
equal to those produced by caloric restriction (23%) and long-sustained natural selection level (19%),
respectively, giving an effect that is not qualitatively discernible in the plot from the cases with either
one of these individual assumptions.

In this example, it is important to bear in mind that actual B-female cohorts have extremely
few individuals that live as long as the top 30% longevities from O populations, with or without caloric
restriction. So this unreasonably favorable scenario for the lifelong heterogeneity hypothesis is clearly
erroneous even as a bare proposition; it does not correspond to what is ever observed.

But even with such extreme hypothetical variation in both .4 and o parameters, age-specific
mortality rates in simulated cohorts fail to plateau at late ages. With sufficiently large synthetic variation
in o (100%), plateaus do eventually appear in our entirely hypothetical simulated cohorts. However,
no conditions, whether genetic or environmental, have yet been identified empirically that could
reasonably be expected to yield variation in o of this extreme magnitude, even when experimental
evolution over hundreds of generations is deliberately used to force the greatest possible

differentiation in these parameters.
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Lifelong Heterogeneity for Fecundity

There is no equally natural explanation of late-life plateaus in fecundity that derives directly
from extant lifelong heterogeneity theory, but posz hoc explanations are always possible with a theory
as ill-defined and open-ended as lifelong heterogeneity theory. One such explanation could be the
differential loss of more fecund individuals. That is, it is conceivable that some females lay a lot of
eggs at eatly ages, but die prematurely, leaving only those individual females that always laid a low
number of eggs preponderant among the females still alive at later ages. This hypothetical scenario
assumes there is a trade-off between mortality and reproduction, and couples high mortality with high
fecundity, and conversely. Another possible heterogeneity explanation for the existence of late-life
fecundity plateaus could be based on some sort of highly generalized robustness, whereby some
females both survive better and are more fecund. In addition to these two possible explanations, any
number of variations based on heterogeneity in fecundity can be imagined, given the wide latitude

with which lifelong heterogeneity scenarios can be constructed.

Simulation of Lifelong Heterogeneity Effects on Cohort Composition for
Fecundity

We have examined the consequences for average population fecundity of a cohort with two
levels of robustness in fecundity and mortality (see Rauser et al. 2005a). We assumed that a phenotype
with high fecundity was coupled with high mortality (H:H), and a phenotype with low fecundity was
coupled with low mortality (L:L). A population consisting of just these two phenotypes is the simplest
example of the trade-off version of a lifelong heterogeneity theory for fecundity. Specifically, we
assume that more fecund individuals die earlier, leaving the less fecund individuals at later ages. We

do not offer this example because we think that it is the only possible example of a theory of this kind.
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We are merely illustrating what the features of such theories are when they are formally explicit, in
one case. Many models of this type can be invented, in the wide-open context of lifelong heterogeneity
theory.

We assumed that the H:H phenotype initially occurs at a frequency p, and thus L:L females
are at a frequency of 1-p. We modeled adult survival with the Gompertz equation. The probability of

survival to age-z, /, is

A(1—exp(at))}

a

l; = exp{

where A is the age-independent mortality parameter and « is the age-dependent mortality
parameter. If we let the age-specific survival and fecundity of H:H females be [ and 7, respectively,

and for L:L females [; and i, then the average fecundity of a cohort aged 7 days s,

plymy+(1-p)l¢ it
ple+(1-p)l¢

6-2)

The average population fecundity of a cohort with two levels of lifelong fecundity and
mortality is high at early adult ages and decreases with age until it plateaus at low fecundity levels
(Figure 6-4). This plateau in fecundity at late ages occurs once almost all of the lifelong, high-fecundity,
high-mortality individuals have died. The results of this simulation demonstrate how such a
hypothetical model with two levels of heterogeneity within a cohort can result in the average

population fecundity patterns we have observed (Rauser et al. 2003, 2005a, 2005b, 2006). However,
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we are not asserting that this is the only conceivable lifelong heterogeneity model that has such

properties. In Chapter 8 we will review empirical tests of such fecundity heterogeneity models.
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Figure 6-4. The average population fecundity within a cohort, assuming two phenotypes: high mortality with high
fecundity (H:H, dashed grey line), and low mortality with low fecundity (I.:L, solid grey line) using Equation (6-2).
Average fecundity starts high, and then declines with age until it stops declining at low levels at late ages. The onset of
the plateau in average fecundity occurs once the H:H individuals have almost all died. These results assume the H:H and
L:L types start at equal frequencies, p = 0.5. The 4 and o parameters were assumed to be 9.13x10+ and 0.123,
respectively, for the H:H females, and 4.75x10-* and 0.059 for the 1.:I. females. These estimates were taken from actual
mortality data from long- and short-lived fly populations (Nusbaum et al. 1996, Table 1). We assumed that H:H females
had a constant high fecundity such that 7 = 60 eggs/day for all # and likewise L:I. females had a constant low fecundity
with 777, eggs/day. The solid and dashed grey lines represent the proportion of individuals alive at each age

(survivorship) for the low and low mortality phenotypes, respectively.

Conclusion: The Big Strain of Lifelong Heterogeneity Theory

The lifelong heterogeneity theories we have reviewed in this chapter do not rest upon well-

established principles of biology and require extremely high levels of lifelong heterogeneity. The lack
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of a well-defined mechanistic basis for these heterogeneity theories makes it difficult to measure or
infer the types of lifelong heterogeneity that these theories require. The chief support for these theories
comes from their ability to mimic posz hoc patterns of mortality seen in actual biological populations.
This is a weak form of support for models in biology, because there are often many conceivable post
hoc models with these properties (vid. Mueller and Joshi 2000, Chapter 1). In this chapter, we have
focused on demonstrating that extremely high levels of lifelong heterogeneity are required even to
construct the type of hypothetical post hoc model that has been used to fit observed cohort survival
patterns. In Chapter 7, we discuss whether such extreme levels of lifelong heterogeneity could
plausibly evolve, while in Chapter 8 we discuss critical tests of lifelong heterogeneity theories.
However, we hope that this chapter has already shown the reader the extent to which these theories
impose considerable strain on biological credulity with respect to the magnitude of their presumed
lifelong heterogeneity.

Many heterogeneity theories proposed to explain the slowing of mortality rates at late ages
assume that individuals within a cohort are still aging according to Gompertz’s law, but that the
differences between individual Gompertz functions is large (Vaupel 1990; Kowald and Kirkwood
1993). Like us, Abrams and Ludwig (1995) point out that the amount of heterogeneity assumed to
make these models fit population mortality-rate data is extremely large, without precedent in actual
data. In fact, the difference between the Gompertz parameters in our long and short-lived fly
populations (Nusbaum et al. 1996) does not come close to the magnitude of heterogeneity required
within a population to make heterogeneity models fit the data (Vaupel and Carey 1993; Kowald and
Kirkwood 1993). Furthermore, we know that the demographic patterns of short-lived populations do
not indicate the presence of individuals as long-lived as the typical member of the long-lived

population.
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Chapter 7. Evolution of Lifelong Heterogeneity

It is unlikely that lifelong heterogeneity in robustness will be extreme, if it occurs at all. Natural
selection will favor genotypes with much greater lifelong robustness, reducing the genetic variance for
robustness over time. Natural selection will also favor genotypes that reduce the amount of
developmental or environmental variation in robustness. Stable genetic equilibria with sufficient levels

of lifelong heterogeneity to cause mortality plateaus seem unlikely.

An Evolutionary Critique of Lifelong Heterogeneity Theory

Some variability in robustness, the undetlying controller of mortality rates in cohorts free of
exogenous mortality, undoubtedly exists within natural populations due to genetic and environmental
variation. In fact, there is a substantial amount of literature showing that life-history characters vary
(reviewed in Finch 1990; Rose 1991; Roff 1992; Stearns 1992), which might be taken to mean that the
lifelong heterogeneity model is well-founded. Indeed, some types of heterogeneity can arise when
evolution by natural selection maintains genetic variation. But what the heterogeneity theory requires,
as an explanation of the profound late-life deceleration of aging, is sufficiently extreme lifelong
differences in individual mortality rates to produce this effect. This is the essential problem: for lifelong
heterogeneity to work as an explanatory hypothesis for late-life phenomena, it must be so extreme
that it raises questions as to whether or not it is even remotely plausible.

The lifelong heterogeneity theory of late life faces major difficulties in meeting this challenge,
not only with respect to observable data, but even with respect to basic theoretical presuppositions.

Evolutionary theory predicts that natural selection will tend to decrease genetic variation in fitness-
110



Mueller, Rauser & Rose DOES AGING STOP?

related traits like early adult mortality (Nagylaki 1992), because genetic variation in fitness is the ‘fuel’
that natural selection consumes to produce adaptation. Yet the lifelong heterogeneity theory requires
a large amount of sustained lifelong heterogeneity for mortality, either genetic or environmental. If
the genetic heterogeneity for mortality rates, both early and late, is heritable, it is going to be strongly
subject to natural selection. Natural selection will, of course, reduce the amount of genetic
heterogeneity in a population over time, unless there is some form of balancing selection, which is not
necessarily common. Without balancing selection, or some other mechanism constantly introducing
genetic variation for fitness into the population, natural selection will purge most genetic variation for
lifelong robustness from the population.

The lifelong heterogeneity required by the late-life heterogeneity theory can also be
environmental, or even merely developmental. If there is a substantial amount of variation arising
from the environment, whether it is spatial, temporal, or both, then the measure of fitness is given by

the average effect of an allele minus a term giving the variation in fitness. Thus the equation yu —
1 . . . . .
Eazdetermmes the evolutionary outcome, or fitness, of a genotype (Gillespie 1973), where x is the

measure of average fitness and ¢ is the measure of environmental variance in fitness. Therefore,
evolution by natural selection will also tend to reduce environmental sources of lifelong heterogeneity.
Because fecundity is also a major fitness component, we expect the same reduction in genetic and

environmental variation from natural selection on fecundity as with mortality.

Simulated Evolution of Lifelong Heterogeneity

To illustrate the potential of evolution to maintain genetic variation, and to demonstrate the
likelihood that such genetic variation will lead to substantial lifelong heterogeneity, we studied a simple

single-locus population genetic model. We started the population at a state of complete fixation for a
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single allele that determined a particular Gompertz mortality phenotype in the homozygous carriers
of this allele (see Figure 7-1). Mutations were then generated that affected the mortality phenotype of
the most common allele in the population in two different ways.

In the first scenario that we considered, mutants were constrained to have positive correlations
for age-specific effects (Figure 7-1), and these effects could be either entirely positive or entirely

negative. This is the case assumed by genetically-based models of lifelong heterogeneity.

0.7

Positive correlation mutants

2 4 6 8 10
Adult Age

Figure 7-1. The effects of mutation on mortality when age-specific effects are positively correlated, in keeping with
lifelong heterogeneity theory. The solid line is the initial starting Gompertz mortality. The dotted line shows a mutant
phenotype with deleterious effects. The dashed line shows a mutant phenotype with beneficial effects. See the Appendix
for this chapter for more details.

Alternatively, in our second scenario, mutations could have a negative correlation with respect

to their effects on age-specific mortalities. Thus, a mutant that had an increase in mortality at an early
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age would have the pleiotropic effect of decreasing mortality at later ages (Figure 7-2). Under these

conditions, there is no lifelong heterogeneity, though there can be age-specific variation.

0.40

0.28

Adult Age

Figure 7-2. The effects of mutation on mortality when age-specific effects are negatively correlated. The solid line is the
initial starting Gompertz mortality. The dotted line shows a mutant phenotype with deleterious effects early in life and
beneficial effects later. The dashed line shows a mutant phenotype with beneficial effects early in life and deleterious
effects later. See the Appendix for more details.

For each of the mutation schemes outlined in Figures 7-1 and 7-2, we generated 100 mutants.
After the creation of each new mutant and its associated fitness, we used standard single locus
population genetic theory to determine the outcome of evolution (see the Appendix for this chapter
to see further details). Allele frequencies were iterated for 50,000 generations or until an equilibrium
was reached, whichever came first. The mean fitness and number of alleles maintained by selection

are shown in Figures 7-3 and 7-4.
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Figure 7-3. The mean fitness and number of alleles maintained by selection after the introduction of 100 mutants into a
population initially showing Gompertz mortality patterns. These mutants showed positive correlations in age-specific
mortality changes (see Figure 7-1). Between the introductions of each new mutant section was allowed to progress for
up to 50,000 generations (see the Appendix for additional details).
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Figure 7-4. The mean fitness and number of alleles maintained by selection after the introduction of 100 mutants into a
population initially showing Gompertz mortality patterns. These mutants showed negative cortelations in age-specific
mortality changes (see Figure 7-2). Between the introductions of each new mutant selection was allowed to progress for
up to 50,000 generations (see the Appendix for additional details).

Although the simulations with positive correlations among genetic effects on survival across
ages produced two and occasionally three allele polymorphisms, the two allele polymorphisms
typically had a single very common allele, and the rare allele declined in frequency over the course of
selection after it arose (Figure 7-3). With negative correlations, there were typically six alleles
maintained by selection (Figure 7-4). This particular simulation ended with a seven-allele
polymorphism. This was not a transient state, since we checked the equilibrium allele frequencies and
stability conditions by standard analytical procedures (Mandel 1959); this seven-allele equilibrium was

globally stable and the computer simulation had accurately converged to the equilibrium allele
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frequencies. [Previous research on randomly generated fitness matrices has shown that selection at a
single locus can typically support six and seven allele polymorphisms (Spencer and Marks 1992) so the
observations in Figure 7-4 are not exceptional in that regard.] In other words, when there is the type
of positive correlation in genetic effects required to generate lifelong heterogeneity, there is
systematically less genetic variation than there is when there are negative correlations among genetic
effects on survival.

In Chapter 6, we showed that the levels of life-long heterogeneity in demographic parameters
must be exceptionally large to generate late-life plateaus. The present simulation results provide
another means of testing whether or not this requirement is likely to be met. If we use the final
equilibrium allele frequencies and phenotypes from the evolutionary process shown in Figure 7-4, we
can simulate mortality in this heterogeneous population and see if the late-life mortality level off. The
results from such an exercise are shown in Figure 7-5. Note that this model is limited to genetic
effects at one locus on an underlying Gomerptzian mortality pattern. Its failure to generate late-life
plateaus is not evidence against Hamiltonian theories of late life, which are not subject to this type of

evolutionary constraint.
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Figure 7-5. The age-specific mortality pattern exhibited by a genetically heterogeneous cohort that has evolved by
modifying an initial Gompertzian mortality pattern. The allele frequencies and genotypic specific mortalities were
derived from the final equilibrium population shown in Figure 7-4. The age-at-death of 1,566 individuals at Hardy-
Weinberg equilibrium were simulated to give the mortality values in the “Heterogeneous mortality” curve above. Since
this population had 7 alleles there were a total of 28 genotypes that were represented with at least one individual in this
simulation.

[insert figure 7-5 here]

Despite the genetic heterogeneity due to the seven-allele polymorphism, there is no leveling
of mortality in late life. Now this result is in part a consequence of the magnitude of the genetic
differences between the different mutants. However, as new mutants with ever decreasing mortality
are introduced into the simulated population, alleles with substantially higher mortality are gradually
eliminated from the population despite the overdominance built into this genetic model (see Appendix
for details). This scenario suggests that the build-up of the large-scale genetic variation required to

create late-life mortality plateaus is unlikely to occur in populations that evolve according to the rules
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of population genetics. This does not, of course, preclude the artificial generation of lifelong
heterogeneity in composite cohorts assembled from extremely different genotypes, as first supposed
by Greenwood and Irwin (1939). An omnipotent deity could do this for a population in the wild or
an interfering gerontologist could do this for a model organism in the laboratory. But calculations like
these suggest that such lifelong heterogeneity is not readily or ubiquitously produced by natural

processes occurring on their own.

Conclusion: Evolution abhors Extreme Lifelong Heterogeneity

Demographic heterogeneity may arise from standing genetic variation in natural populations.
However, these explanations must confront the problem that, when such genetic variation has
lifelong, pronounced, and positively correlated effects on components of fitness like mortality and
fecundity, it is certain to affect fitness and thus be acted upon by natural selection. Population genetic
theory suggests that, all other things being equal, natural selection will favor reductions in fitness
variation making the life-long heterogeneity hypothesis less tenable as an explanation for the
pronounced deceleration of aging that is observed during late life. Although certain patterns of genetic
variation, like overdominance with antagonistic effects across ages — the opposite pattern from lifelong
heterogeneity, may result in stable genetic polymorphisms, our results suggest that such population-
genetic mechanisms are unlikely to sustain the type of variation that could produce late-life mortality

plateaus from the sieving of lifelong heterogeneity.
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Chapter 8 Experimental Tests of Lifelong Heterogeneity

Experimental tests of lifelong heterogeneity generally do not corroborate the theory. For
example, populations that have evolved a considerable increase in the level of their robustness show
little change in their late life patterns compared to their parental populations, and physiological
manipulation of cohort heterogeneity does not significantly affect the occurrence of late life.
Furthermore, lifelong heterogeneity models predict that far more individuals survive to very late ages
than are observed when these models are fit to actual data. With fecundity, experimental studies have
shown that heterogeneity is not lifelong; that is, heterogeneity in early fecundity does not predict late-

life outcomes.

Tests of Lifelong Heterogeneity in Mortality based on Reduced Variance

Recall from Chapter 6 that the Vaupelian heterogeneity theory based on lifelong differences
in robustness requires a large amount of variance in 4 or a values between subgroups of individuals
comprising a cohort. Although lifelong heterogeneity this extreme has yet to be shown experimentally
for any organism, a theoretical analysis of the Carey et al. (1992) mortality data for medflies
demonstrated that their data could be fitted post hoc to a Vaupelian demographic heterogeneity model
(Kowald and Kirkwood 1993), using entirely hypothetical high levels of lifelong heterogeneity.

So, where might this extreme lifelong heterogeneity in mortality come from? In general, it
could be genetic or environmental in origin. Therefore, if the hypothesized lifelong heterogeneity is
genetic, then an important empirical corollary is that genetically homogenous populations should show
a less distinct mortality-rate plateau compared to genetically heterogeneous populations. To this end,

Brooks et al. (1994) compared an isogenic cohort of Caenorhabditis elegans with a cohort that they
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deliberately constructed from extremely different mutants. Naturally enough, they found a more
distinct plateau in the heterogeneous population, just as Greenwood and Irwin (1939) had suggested
would be found in such contrived cohorts 55 years eatlier, based on the demography of Drosophila
mutants. But Vaupel et al. (1994) pointed out that the isogenic line was grown under different
environmental conditions than the heterogeneous line, complicating the interpretation of these results.

It is possible that genetic variation could drive the heterogeneity models. But extensive
experimental work has shown that, after removing genetic variation by extensive inbreeding, well-
defined late-life mortality-rate plateaus continue to be observed (Curtsinger et al. 1992; Fukui et al.
1993; Fukui et al. 1996). In particular, Fukui et al. (1993) found clear mortality plateaus with highly
inbred Drosophila lines (inbreeding coefficient > 0.99), suggesting that genetic variation is not required
for mortality plateaus to occur. In any case, as we demonstrated in Chapter 7, genetic variation is not
a plausible source of the hypothetical, extreme, and lifelong heterogeneity in mortality required to
explain the existence of late-life plateaus in mortality, since evolution would strongly favor the
elimination of genetic variants associated with such extreme and consistent differences in death rates.
It follows then that, in the absence of genetic variation, all lifelong heterogeneity that is supposed to
cause late-life mortality rate plateaus must be environmental in origin.

Thus, if lifelong heterogeneity in mortality does not arise from genetic heterogeneity, then it
must come from heterogeneity in the environment, or from accidents of development. However,
Khazaeli et al. (1998) found that heterogeneity that was environmentally-induced in flies is not a
primary factor in determining late-life mortality rates. They went to a great deal of trouble to reduce
recondite sources of variation in laboratory-reared cohorts of inbred Drosophila melanogaster lines, and
compared cohorts handled so as to reduce environmental variation with cohorts in which no such
care was exerted. Through diligent application of this procedure in the ‘experimental’ cohorts, they

were able to reduce the variance in age at death in these cohorts compared to unmanipulated controls,
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indicating that they successfully reduced environmental sources of variation. This was achieved with
two different inbred lines, as well as two different conditions of cohort maintenance, with and without
mates. While there were somewhat fewer ‘experimental,’ or low-variance, cohorts (64 out of 69)
showed mortality-rate deceleration compared to the ‘control,” or high-variance, cohorts (37 out of 37),
this effect was not statistically significant. In particular, strenuous attempts to reduce environmental
variance during larval and pupal development did not come close to abolishing the transition to late
life consistently, any more than severe inbreeding has (vid. Fukui et al. 1993). Apparently these efforts
did reduce the initial mortality level in virgin cohorts (KKhazaeli et al. 1998), which may in turn have
had some effect on the ability of the experimenters to detect the transition to late life in ‘experimental’
low-variance cohorts. If the Gompertz demographic parameters are affected by environmental
effects, then plateaus should have been less prominent or non-existent in the reduced-variance
populations. However, there was also no difference found in the timing of late-age mortality
deceleration between these populations, further suggesting that variation in the pre-adult environment
contributes little to the creation of lifelong heterogeneity in demographic parameters. They concluded
“environmental heterogeneity accrued during larval development is not a major factor contributing to
mortality deceleration at older ages” (Khazaeli et al. 1998, p. 314). We know of no other experiments
of this kind that have reached a different conclusion, regardless of the methods used to reduce

environmental sources of variation.

Testing Lifelong Heterogeneity Using Extremal Survivors

Service (2000, 2004) showed that the natural log of age-specific mortality rates should show a
unimodal distribution if there is sufficiently large variation in .4 and a across genetically different

populations to explain late life. We examined this variance across the five B-populations and the five
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O-populations (Mueller et al. 2003). Despite the fact that these populations had been isolated and
undergoing independent evolution for 100-500 generations at the time of this experiment, the pattern
predicted by Service was not seen. These observations don’t preclude the possibility that purposeful
methods of creating genetic differentiation between populations, like selection or inbreeding, might
not result in these patterns. However, differentiation that arises naturally from random genetic drift is
apparently not sufficient to cause these unimodal patterns.

Inspired by the analysis of Service (2000), Mueller et al. (2003) tested the Vaupelian
heterogeneity theory by fitting lifelong heterogeneity models to mortality data from cohorts of
Drosophila melanogaster, specifically choosing parameter values for these models that fit the observed

cohort data as closely as possible. One such model, the heterogeneity-in-o. model, assumes that a small

portion of the population will have very small values of o, or small rates of aging, and will consequently
be very long lived. Service (2000) produced some calculations which suggest that this model is not an
adequate explanation of mortality plateaus in cohorts of Drosgphila. When he varied o in his
simulations, populations with average longevities of 50 days were generated, which is reasonable for
D. melanogaster. But these simulations also resulted in maximum lifespans of 365 days in reasonably-
sized cohorts, which is absurdly long for this species. We know of no case of a D. welanogasterindividual
surviving as long as 200 days when adult diapause is not induced.

We explore these questions in more detail here and expand upon our earlier work from Mueller
et al. (2003). In Chapter 6, we showed that if heterogeneity entered the Gompertz equation only
through the age-independent parameter, then it is very difficult to generate sufficient variation to
account for the plateaus in late-life mortality observed in Drosophila cohorts. This problem is somewhat
reduced if heterogeneity is introduced in the age-dependent Gompertz parameter (@), so we consider

this latter case in more detail here.
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Consider a model in which the age-dependent parameter, a., is a random variable equal to &
where the random vatiable, {, has a gamma distribution with a mean of one and variance equal to £".
We call this the “heterogeneity-in-o. model”. The mean (over all individuals with different a-values,

Le. a-types) instantaneous mortality rate for individuals aged-x under the heterogeneity-in-o. model is,

following Pletcher and Curtsinger (2000), given by

f;o Az* L explazx—¢(x,z)]dz

u(x) = f;ozk‘lexp[—ga(x,z)]dz ’

8-1)

where @(x,2) = kz + A(@z) [exp(@zx — 1)]. To estimate the three parameters in Equation (8-

1) we need to fit the observed mortality over finite time periods of several days to the predictions of

the model. The predicted mortality between times # and % (£>#) is given by 1 — Zﬁ, where p, is the
t1

probability of surviving to time % We estimated this heuristically as follows. If we let _le—]: = u(x),

then it follows that,

11:;—; = p, = exp {— fotﬁ(x)dx} (8-2)

Equation (8-2) can only be considered an approximation, because ©(x) is an average mortality

rate and thus the integral in (8-2) is only an approximation to the average of the integrals of each of

the different a-types in the population, e.g. the integral of the average mortality rate is not equal to

the average of the integrals of the distinct mortality rates.
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The weighted least-squares fit to the heterogeneity model for actual B1 female cohort data is

shown in Figure 8-1a. (See the Appendix for this chapter to see the details of the estimation methods.)
Given the variability of these observations it would appear that the heterogeneity-in-o. model can
mimic the mortality rates of Drosophila quite well. However, the heterogeneity-in-o. model is more than

an equation that mimics these observed cohort deaths post hoc. It also contains a scientific hypothesis
about the cause of these mortality rates. Therefore, it can be subject to more careful scrutiny than just

goodness of fit.

The least squares estimates of the lifelong heterogeneity-in-o. model parameters can be used
to generate the distribution of age-at-death under this model (see Appendix), which can then be
compared to the observed distribution. Following this procedure for the B1 female cohort (Figure 8-
1b), we see that a larger fraction of the cohort dies at younger ages than predicted by the heterogeneity-

in-o. model.
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Figure 8-1. The two figures show results for the B1 female population. (a) The line is the weighted least-squares non-
linear fit of the heterogeneity-in-a. model to the observed B1 female mortality. The circles show the observed two-day
mortality at each sampled age along with binomial 95% confidence limits. (b) Using the parameter estimates obtained
from the best-fit parameters required to fit the line in panel (a), 113,200 (100N) ages at death were randomly generated
using the Gompertz equation with gamma distributed o-values (see text and Appendix for details). These were used to
generate a distribution function for this model and plotted against the empirical distribution function. If the two
distribution functions were identical, they would both fall on the y=xline. Since the empirical curve is above the equality
line, especially at higher values of the distribution function, it indicates that B1 females in this cohort are not as long
lived as predicted by the heterogeneity-in-a. model that was the best fit to the data of this cohort.
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To formally test the ability of the heterogeneity-in-a. model to predict the distribution of age
at death in observed cohorts when the model has been specifically fit to these particular coborts, we carried out

two different statistical tests. We generated 100 sample populations using the parameter estimates
from the heterogeneity-in-o. model (see the Chapter 8 Appendix for the fits of this model to each of

the 40 study populations). Each sample cohort was the same size as our original Drosophila population.

We then used the Kolmogorov-Smirnov test to determine if the observed cumulative distribution
function (CDF) was above the heterogeneity-in-a¢ model CDF. This hypothesis-test specifically
addresses the previous observation that a larger fraction of the population dies at younger ages than

predicted by the heterogeneity-in-o. model.

For each of the 40 observed cohorts of Drosophila, in Table 8-1 we show the fraction of the

100 tests that resulted in a statistically significant difference between the observed and expected CDF
from the heterogeneity-in-o. model. We see that in the overwhelming majority of the populations, the

heterogeneity-in-o. model produces a significantly different CDF function, typically with more

probability mass in the right tail of the distribution.

Table 8-1. The fraction of 100 Kolmogorov-Smirnov tests that resulted in significant results at
$»<0.001.

CO ACO
Population  Females Males Population  Females Males
CO1 1 1 ACO1 1 1
CO2 1 1 ACO2 1 1
CO3 1 0 ACO3 0 1
CO4 1 0 ACO4 0.09 1
COS5 1 0 ACOS 1 0.99
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(0] B
Population Female Male Population Female Male
01 1 1 B1 1 1
02 1 1 B2 1 1
03 0.97 1 B3 1 1
04 1 1 B4 1 1
05 1 1 BS 1 1

We have done a similar analysis just focusing on the tail of the distribution of age at death. We

chose an age at which about 90% of the population is expected to be dead under the heterogeneity-
in-o. model. We then compared the observed frequency of the population still alive (p) to the expected

() and used a binomial test to determine if p < P.

Thirty five of the forty tests in Tables 8-2 and 8-3 are significant failures at the 5% level. Even
if we control for multiple testing using the Bonferroni inequality, there are still 35 significant test
results (assessing each individual test using a significance threshold set at p=0.00125). In other words,
the probability of flies surviving long enough to reach late life is significantly less than predicted by

the heterogeneity-in-o. model, when it is specifically fit to the data from these cohorts. Thus, for these

Drosophila data, we can confidently reject the heterogeneity-in-o. model as an adequate explanation of

mortality in late-life.

Table 8-2. The observed ( p ) and expected ( p ) probabilities of females living greater than a critical

age, with the expectations derived from the heterogeneity-in-o. model. The critical ages were: 57.8
(CO), 41.5 (ACO), 39.3 (B) and 80.8 (O).
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Population p D Prob( Population p p Prob(
p<p) P<p)
Ccol1 0.057 0.12 2x10'¢  ACO1 0.0089  0.056 2x1071¢
CO2 0.027 0.057 1x103  ACO2 0.0014  0.10 2x10°16
Co3 0.24 0.32 2x10'5  ACO3 0.071 0.018 1
CO4 0.092 0.13 8x101  ACO4 0.01 0.05 2x10°16
CO5 0.021 0.086 2x107'*  ACOS5 0.0055  0.11 2x10°16
o1 0.03 0.056 1x10%  BI1 0.026 0.099 2x10°16
02 0.012 0.026 2x10° B2 0.033 0.13 2x10°16
03 0.017 0.038 5x10° B3 0.02 0.076 2x10714
04 0.032 0.12 2x107'° B4 0.055 0.14 2x10°16
05 0.035 0.057 8x107  BS 0.022 0.046 4x10°

Table 8-3. The observed ( p ) and expected ( p assuming the heterogeneity-in-a model) probabilities
of males living greater than a critical age. The critical ages were: 57.8 (CO), 41.5 (ACO), 39.3 (B) and
80.8 (O).

Population p P Prob(p < p) Population P D Prob(5 < p)
Co1 0.17 0.21 2x107® ACO1 0.68 0.67 0.85

Co2 0.11 021  2x10" ACO2 0026 010 2x1076
CcO3 0.32 0.085 1 ACO3 0.13 0.26 2x107'6
CO4 0.12 0.05 1 ACO4 0.057 0.17 2x107'¢
CO5 0.065 0.0009 1 ACOS5 0.024  0.056 2x107'°

01 0.04 0.13 2x10°1° B1 0.0066 0.11 2x107'¢

128



Mueller, Rauser & Rose DOES AGING STOP?

02 0.017 0.077 2x10'® B2 0.012  0.057 9x10*
03 0.065 0.16  2x10'° B3 0.0041 0.036 3x10°!!
04 0.082 0.15  2x10'° B4 0.02  0.14 2x10'°
05 0.095 0.19  2x10'® BS 0.033 0.14 2x107'6

We have also done a similar analysis for data from the Mediterranean fruit fly, Ceratitis capitata
(Carey 1993). Like Drosophila, medflies show far too few long lived individuals based on the predictions
of the heterogeneity-in-o. model, as shown in Figures 8-2 and 8-3. Under the heterogeneity-in-o.

model, 9.7% of females and 9.3% of males should live to 48 days or longer; while in fact only 1.4%

of females and 0.98% of males live this long in the actual cohorts. These discrepancies from the
predictions of the heterogeneity-in-a model are statistically significant (p= 2x10"%), and therefore, do

not lend support to the model.
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Figure 8-2. The two figures show results for the Medlfy male population (Carey 1993, Appendix 2). (a) The line is the
weighted least-squares non-linear fit of the heterogeneity-in-o. model to the observed Medlfy male mortality. The circles
show the observed daily mortality at each sampled age along with binomial 95% confidence limits. (b) Using the
parameter estimates obtained from the calculated results shown in (a), 598,118 ages at death were randomly generated
using the Gompertz equation with gamma distributed o-values (see text for details). These simulated deaths were then
used to generate a distribution function for this model which was plotted against the empirical distribution function. If
the two distribution functions were identical, they would fall on the y=xline. Since the resulting curve is above the
equality line, especially at higher values of the distribution function, it indicates that Medfly males are not as long lived as

predicted by the heterogeneity-in-a. model.
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Figure 8-3. The two figures show results for the Medfly female population (Carey 1993, Appendix 3). (a) The line is the
weighted least-squares non-linear fit of the heterogeneity-in-o. model to the observed Medlfy female mortality. The
circles show the observed daily mortality at each sampled age along with binomial 95% confidence limits. (b) Using the
parameter estimates obtained in (a), 605,528 ages at death were randomly generated using the Gompertz equation with
gamma distributed a-values (see text for details). These were used to generate a distribution function for this model and
plotted against the empirical distribution function. If the two distribution functions were identical, they would fall on the
y=xline. Since the curve is above the equality line, especially at higher values of the distribution function, it indicates that

Medfly females are not as long-lived as predicted by the heterogeneity-in-o. model.

In summary, the heterogeneity models that best fit the overall mortality patterns of well-

studied large cohorts of laboratory organisms do not accurately predict the age at death of the last fly
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to die in the cohort. Furthermore, these heterogeneity models predicted that more flies would be alive
at late ages than were actually observed. Mueller et al. (2003) also showed that the variance of mortality
rates changed little with age in laboratory Drosophila, leaving aside very eatly and late ages, which is
contrary to predictions that have been made based on the lifelong heterogeneity model (cf. Service
2004). Collectively, these experimental results do not support a key role of demographic heterogeneity
in late-life mortality. But they do not necessarily exclude a contribution of lifelong heterogeneity to
some of the slowing in mortality rates at late ages. However, it is unlikely that this theory can explain

late-life patterns entirely on its own.

Testing Lifelong Heterogeneity Theoties by Manipulating Robustness

When individual robustness is radically improved by selection for increased robustness, and it
is hypothesized that lifelong heterogeneity is the cause of late-life mortality rate plateaus, then late-life
mortality rate plateaus should change with respect to their timing. The more robust population will be
affected by environmental variation in a radically different fashion than the less robust population,
and therefore the late life characteristics of the two populations ought to be very different. In
reasoning like this, we are implicitly accepting the presupposition that robustness at one adult age is
strongly correlated with robustness at all adult ages. In doing so, we are conforming to dictates of
lifelong heterogeneity theory, as a bare supposition, not arguing that this is in fact the case.

Drapeau et al. (2000) tested this lifelong heterogeneity prediction using populations of
Drosophila selected for starvation resistance (SO) and comparing them to their controls (CO and RSO);
they found no differences in late life (Figure 8-4). By contrast, a post-hoc reanalysis of these data by
Steinsaltz (2005) led him to different conclusions. It is important to note, however, that in a major

methodological departure, Steinsaltz chose to remove from his analysis the observed mortality data in
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early life. With such a selective omission, it is hardly surprising that the results might differ. The
process of removing data is always fraught with danger, because it is by and large a subjective
procedure often guided by a priori expectations that are in fact part of the hypotheses being tested.
Therefore, we believe that we can reasonably conclude that selectively produced differentiation in
robustness does not consistently affect the presence of late-life mortality-rate plateaus, contrary to the

line of reasoning outlined above that was based on the lifelong heterogeneity hypothesis.
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Figure 8-4. The daily mortality rates from the fitted two-stage Gompertz model for females from the SO (solid lines),
CO (dashed lines) and RSO (dotted lines). An analysis of the breakday and plateau height showed no significant
differences (Drapeau et al., 2000).

Carey has argued (Carey et al. 1995; Carey 2003) that if mortality is increased by increasing the
population density, then the age at which a mortality plateau occurs should decline. This is a
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robustness-reducing environmental manipulation, the converse of the experimental strategy of
Drapeau et al. (2000). This follows because at high density the less robust groups are eliminated faster,
and thus the age at which only the most robust groups are left (or the ‘breakday,” in our terminology)
should come sooner. However, in experiments with Mediterranean fruit flies, changing adult density
had no detectable effect on the age at which mortality rates leveled off (Carey et al. 1995; Carey 2003).
From these results, Carey (2003) concluded that the “...leveling off of mortality is not an artifact of

changes in cohort composition”.

Test of Lifelong Heterogeneity Theory Using Correlations of Age-Specific
Fecundity

As we discussed in Chapters 2 and 4, previous studies have found that fecundity, like mortality-
rates, plateaus at late ages in several independent cohorts of Drosophila melanogaster (Rauser et al. 2003,
2005b, 2006). Although evolutionary theory based on the age-specific decline in the force of natural
selection can explain the decline and plateau in fecundity at late ages (Hamilton 1966; Rauser et al.
20006), Rauser et al. (2005a) thought it worthwhile to consider the possibility that life-long
heterogeneity in individual female fecundity could cause a spurious plateau in average late-life
fecundity.

Although Vaupelian theory has not been extended to include fecundity by its original
proponents, several post hoc explanations that are based on demographic heterogeneity might be able
to explain the existence of late-life plateaus in fecundity, as we outlined in Chapter 6. Fecundity models
analogous to the Vaupelian model for mortality could be based on lifelong differences in individual
female fecundity. One possible heterogeneity-based explanation analogous to the Vaupelian model

for mortality for observing late-life fecundity plateaus in cohorts of D. melanogaster is that females that
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lay a high number of eggs die prematurely; leaving only the females that always laid a low number of
eggs preponderant among late ages. Another possibility is that some females both live longer and
sustain fecundity better. In either case, if fecundity plateaus are a consequence of lifelong differences
in egg laying, then measuring individual fecundity patterns for females comprising a large cohort, and
comparing the fecundity of individuals that live to lay eggs in late life with those that do not, would
test ezzher possibility, and we did just that (Rauser et al. 2005a).

The first lifelong heterogeneity in fecundity hypothesis described above is implicitly based on a trade-
off between egg-laying and lifelong robustness, while the second is a generalization of the Vaupelian
lifelong-robustness theory from mortality to all age-specific life-history characters (cf. Vaupel et al.
1979). Furthermore, many other variations on these themes are conceivable. However, regardless of
the numerous conceivable /ifelong heterogeneity in fecundity hypotheses, all of them have in common the
ability to infer late-life fecundity patterns from attributes of young individuals in a cohort, just as
demographic theories of late-life mortality hypothesize that mortality rates plateau because of
individual heterogeneity effects that are present throughout life (vid. Vaupel et al. 1998). To be
specific, lifelong heterogeneity theories for mortality assume that individuals are imbued with life-long
consistent levels of robustness that define their mortality rates. As a result, individuals within a cohort
that are less robust zhroughout life die at earlier ages, leaving individuals with lifelong superiority in
robustness predominant in the cohort at later ages, causing a slowing of mortality rates (Vaupel et al.
1979; Vaupel 1988, 1990; Pletcher and Curtsinger 2000).

A major problem with testing lifelong heterogeneity theories with regards to mortality is that
an individual’s rate of aging with respect to mortality cannot be measured readily while it remains alive,
so lifelong heterogeneity for robustness has only been studied indirectly where mortality is concerned.
However, with fecundity this is not the case, as individual age-specific fecundity over a lifetime can

easily be measured within a cohort. Thus, fecundity can be used to test the genera/ concept of lifelong
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demographic heterogeneity (Rauser et al. 2005a), because average population fecundity shows the
same plateauing pattern at late ages as mortality rates.

Other studies of individual fecundity trajectories helped to motivate this experimental strategy.
For example, Miiller et al. (2001) looked at fecundity and death patterns in Medflies and found no
apparent trade-off between reproductive output and lifespan. This is preliminary evidence against one
version of the lifelong heterogeneity in fecundity theory, specifically the hypothesis that females that
lay a high number of eggs should die at earlier ages. In another study by Novoseltsev et al. (2004), flies
with short lifespans did not have higher mean fecundity during their midlife “plateau” — note that their
usage of this term does not correspond to ours -- compared to flies that lived a medium number of
days. This result is also inconsistent with the predictions of the first type of heterogeneity theory for
fecundity adduced above. However, they did show that the longest lived flies had a lower mean
fecundity than the medium and short lived flies, though this difference was not always statistically
significant. Overall, at the time we decided to test the lifelong heterogeneity in fecundity hypothesis
using lifetime fecundity trajectories for individual females within a cohort, it was not clear from the
published literature whether any form of this theory was most likely to be correct.

We tested whether observable lifelong heterogeneity in fecundity can be used to predict the
properties of the late life of individual flies, including the survival of individual flies to the late-life
period. This was done by measuring for individual females both daily fecundity over the entire lifetime
and the age of death, and then testing whether the age-specific fecundity of females that lived to lay
eggs at late ages differed significantly throughout life from the age-specific fecundity of females that
died before the onset of the cohort’s plateau in fecundity (Rauser et al. 2005a). Over the course of this
experiment we counted 3,169,101 eggs laid over the lifetime of 2,828 females.

Our study used the outbred laboratory-selected “CO+” population of Drosophila melanogaster

selected for mid-life reproduction, as described in Chapters 4 and 5 (see Figure 4-2). These populations
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are cultured using females 28 days of age (Rose et al. 1992), and at the time of the study that we
describe here had been maintained at population sizes of at least 1,000 individuals for more then 170
generations. Both late-life mortality-rate plateaus and late-life fecundity plateaus have been observed
in the CO populations (Rose et al. 2002; Rauser et al. 20006). Three separate assays were performed
using large cohorts from the CO; population (see Rauser et al. 2005a for experimental details).

The basic flavor of our results can be illustrated by examining the third experiment (Figure 8-
5). We have plotted the lifetime fecundity of each female with a line of different shades of white and
black (Figure 8-5). A line in this figure ends when the fly dies. It is clear from this figure that, just prior
to death, fecundity has declined dramatically relative to the other females that are still alive (this is the
death spiral described in more detail in chapter 9). More importantly, if we look at female fecundity
early in life (ages 12-25 days) we see very little difference between the flies that die first and those that
live much longer. These visual impressions are confirmed by more formal statistical tests described in

Rauser et al. (2005a).
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Figure 8-5. Individual fecundity records of 606 females from the third assay. Females were rank-ordered by age of death
within this cohort on the y-axes and the individual age-specific fecundity patterns of each female are plotted horizontally
on each graph along the x-axes. Female fecundity was divided into five categories and color-coded accordingly: 0 eggs,
1-9 eggs, 10-19 eggs, 20—49 eggs, 50—194 eggs. The zero-fecundity category is black, and the shades get progressively
lighter as the number of eggs increase.

Our test of lifelong heterogeneity theories for fecundity based on these data depends on
whether late-life fecundity or survival is predictable from differences in egg laying between individual
females at earlier phases of adult life, including early adulthood. For example, a cohort that shows

lifelong heterogeneity in egg laying with strong trade-offs between reproduction and survival should
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have females that consistently lay more eggs quickly and then die at earlier ages, leaving only females
who have always laid eggs at a low rate preponderant among late ages. Alternatively, a cohort that has
some members that show lifelong superiority with respect to all adult life-history characters, including
all age-specific survival probabilities and all age-specific fecundities, should allow us to predict survival
to late life from early fecundity data. However, our analysis showed that neither of these hypotheses
are likely to be correct, because early life fecundity did not predict late-life characteristics. The data
suggest that there is a significant amount of age-specific variation in fecundity, but that it has no
predictive value until 12-15 days after the start of reproduction (Rauser et al., 2005a).

Similarly, our simple model for heterogeneity in fecundity required a 15-fold difference in
fecundity between the high and low egg-layers in order to simulate accurately our observed cohort
fecundity values. It would be interesting to see if average cohort fecundity plateaus at late ages in
genetically homogenous cohorts. A plateau in fecundity under these circumstances would indicate
whether age-specific, though not lifelong, genetic heterogeneity plays a role in late-life fecundity
patterns, because it would not eliminate the contribution of age-specific environmental heterogeneity.
However, it is unlikely that exogenous environmental heterogeneity has much of an effect on the
existence of fecundity plateaus, as we have observed fecundity plateaus under both constant and
varying environmental conditions (Rauser et al. 2005a, 2005b, 2000).

Other studies of the fecundity trajectories of individual flies generally support our
experimental findings, and do not support the predictions of lifelong heterogeneity models for
fecundity. As we explained above, Miller et al. (2001) found no apparent trade-off between
reproductive output and lifespan in Medflies, which is additional evidence against the type of model
that we simulated here. A lifelong heterogeneity model for fecundity with strong trade-offs between
reproduction and survival predicts just the opposite: females that lay a high number of eggs should

die at earlier ages, which is equivalent to a trade-off between reproduction and lifespan. Analysis of
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the phenotypic relationship between lifetime reproduction and lifespan in our flies indicates that long
life is also coupled with increased lifetime reproduction (Rauser et al. 2005a). Furthermore, as already
mentioned, Novoseltsev et al. (2004) showed that flies with short lifespans do not have higher mean
fecundity during what they call their midlife “plateau” compared with flies that live a medium number
of days. This too is not consistent with the predictions of the lifelong trade-off heterogeneity theory
for fecundity [Note that their “plateau” is a midlife plateau for individual females, while our “plateau”
usage refers to average population fecundity at very late ages]. However, they did show that the
longest-lived flies had a lower mean fecundity than the medium and short lived flies, but not always
significantly lower. An analysis of the relationship between the mean number of eggs each female laid
per day and lifespan in our flies suggests a similar relationship. That is, longer lived flies had a slightly
lower mean number of eggs laid per day (Rauser et al. 2005a), but not low enough compared to
shorter-lived flies to significantly improve our ability to predict which females would be long-lived
plateau females, or not, at earlier ages.

Our studies of fecundity indicate that there is significant, predictive, age-specific
heterogeneity in fecundity within large cohorts, which is to be expected in a genetically heterogeneous
outbred population. This heterogeneity is not lifelong, nor is it sufficient to cause late-life plateaus in
average population fecundity. The most significant type of age-specific heterogeneity was between
flies about to die vs. those that were not about to die. Because lifelong heterogeneity in fecundity
hypotheses are based on the same type of underlying assumptions as lifelong heterogeneity theories
proposed to explain late-life mortality-rate plateaus, our test of such lifelong models for fecundity is
relevant to the mortality models as well. If lifelong heterogeneity effects are generally related to late
life, then they should have passed this test. Our results refute at least one general class of heterogeneity

theories, those based on fixed /felong differences in fecundity.
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Conclusion: Evidence against Lifelong Heterogeneity Theoties of Late Life

A great deal of experimental effort has been devoted to tests of lifelong heterogeneity as an
explanation of late life phenomena involving both mortality and fecundity. It should be pointed out
that, while we have not been exponents of lifelong heterogeneity theory for some time, others who
have conducted tests of it apparently were, at least prior to collecting their data (e.g. Khazaeli et al.
1998). But regardless of the views of the experimenters, no one has found support for this hypothesis
in critical experimental tests, as opposed to post hoc fits of demographic data using the lifelong
heterogeneity hypothesis, whether merely conjectural (e.g. Greenwood and Irwin 1939; Beard 1964,
Vaupel et al. 1979) or quantitative and specific (e.g. Kowald and Kirkwood 1993). Instead, there is a
proliferation of evidence against lifelong heterogeneity theories of late life.

In fairness, however, it should be pointed out that there is an abundance of alternative
mortality models in demography, and some of the tests described here, such as those of Mueller et al.
(2003) are model-dependent. Choosing other demographic models might lead to different results,
and we have not repeated our analyses over the full range of published, much less conceivable,
demographic models. Naturally, this would be an endless enterprise.

On the other hand, some of the tests of lifelong heterogeneity which we have discussed in this
chapter are not particularly model-dependent.  Examples of relatively model-independent
experimental tests are those of Fukui et al. (1993), Khazaeli et al. (1998), Drapeau et al. (2000), and
Rauser et al. (2005a). Lifelong heterogeneity theory has only received falsifications in these tests, never
corroborations, when the experimental results have been clear. However, we have already
encountered some maneuvering with respect to these ostensible falsifications (see Mueller and Rose
2004), as we have discussed in this chapter with reference to the re-analysis of our data by Steinsaltz

(2005). We can expect more such challenges to experimental refutations of lifelong heterogeneity,
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since the theory is mathematically elegant as well as intuitively attractive for those who cannot accept
the conclusion that aging could possibly cease at the level of individuals.

Thus like those who espouse special creation or intelligent design against the evidence
accumulated against these hypotheses, we can expect devotees of lifelong heterogeneity theories for
late life to be with us for some time. But even if they are wrong, they serve the useful role of Devil’s
advocates against the claims of Hamiltonian aging research, keeping its proponents on their toes, as

we will illustrate below:.
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Chapter 9. Death Spirals

Unlike mortality, there are no general purpose models to describe age-specific fecundity
patterns. Here we show that combining the effects of natural selection on fecundity with a newly-
discovered physiological phenomenon we call the death spiral results in highly accurate descriptions

of female fecundity in Drosophila.

Models of Fecundity

Unlike the case of the demography of survival, there is no universal simple model that
describes age-specific fecundity. Most models of the patterns of age-specific fecundity that are used
in biological research are simple phenomenological models. These models have as their primary goal
the accurate prediction and statistical analysis of fecundity (e.g. Geyer et al. 2007; Shaw et al. 2008).
While such descriptive models serve an important role in population biological research, another
important goal of modeling is to understand the forces shaping age-specific fecundity. For us, an

important force is the impact of natural selection on patterns of age-specific fecundity.

There have been previous attempts to develop models of age-specific fecundity based on
physiological and evolutionary forces. For instance, Novoseltsev et al. (2003, 2004) proposed a model
that assumes a decline in fecundity late in life due to age-related oxidative vulnerabilities. While this is
not an explicitly evolutionary model, one could argue that these vulnerabilities show a decline with
age due to the declining force of natural selection. Cichon (2001) and Shanley and Kirkwood (2000)
developed evolutionary models for life history, including fecundity, following the optimal life history

paradigm pioneered by Gadgil and Bossert (1970). These theories can incorporate a number of
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complex effects on fecundity, although they often ultimately rely on the questionable assumption that

natural selection maximizes the lifetime number of offspring.

In Chapter 4 we developed Hamiltonian evolutionary theory that suggests some very general
patterns for age-specific fecundity. We elaborate upon that general model here, with the addition of a
newly discovered physiological phenomenon called the ‘death spiral’ that profoundly affects fecundity
just prior to death. The resulting model is relatively simple, biologically motivated, and provides
accurate descriptions of age-specific fecundity in Drosophila. This makes it a potential candidate model

for the demography of fecundity in other species as well.

The Death Spiral Phenomenon

There are three important stages of life from the perspective of evolutionary biology (Rose et
al. 2000; Shahrestani et al. 2009). The first is the developmental period, prior to reproduction. During
this stage, natural selection works with maximum efficiency to weed out genetic variants that reduce
survival before the onset of reproduction. Any individual that fails to survive this period will have zero
fitness, in the absence of altruistic interactions with related individuals. The powerful action of natural
selection during this stage doesn’t guarantee survival, even under optimal conditions, because of
recurring mutations, segregational genetic load, and developmental accidents. But it does mean that
this stage of life is the primary beneficiary of natural selection for enhanced survival. The aging phase
is the second stage of life; it is also the period following the onset of reproduction, which brings
fecundity into consideration as a component of fitness. The theory of selection in age-structured
populations predicts eventual decreases in age-specific fitness components, even under ideal
conditions, including age-specific fecundity, during this second stage (Charlesworth 1994). The third

stage of life has been called ‘late life’ (e.g. Rose et al. 2002; Rauser et al. 2006). Because at advanced
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ages age-specific selection is effectively absent, our expectation is that age-specific fecundity under
protected conditions will plateau. We have reviewed data suggesting this in Chapter 3. A more formal
explanation of fecundity plateaus was then presented in Chapter 4.

But it turns out that fecundity trajectories are even more complicated. In the large-scale study
of age-specific patterns of female fecundity in Drosophila that we described in Chapter 8, we discovered
a fourth life-cycle phenomenon which we have called the ‘death spiral” (Rauser et al. 2005a; Mueller
et al. 2007). For a period of 6-15 days prior to death, the fecundity of females that are about to die
drops at a much faster rate than the fecundity of similarly aged females that are not about to die. This
result was discovered by comparing the slopes of the line describing fecundity vs. age as a function of
the prospect of death for individual females. In Chapter 8, we saw that the ability to distinguish
between plateau and non-plateau females improves as more non-plateau females are about to die, or
enter the death spiral, in our terminology (see Figure 8-5). The death spiral is detectable across a wide
range of adult ages (Figure 9-1); it may signal a very general decline in physiological health prior to
death. The death spiral has also been independently documented in D. melanogaster by other
laboratories (e.g. Rogina et al. 2007).

Phenomena similar to the death spiral have been observed in other organisms. Christensen et
al. (2008) monitored the physical and cognitive abilities of 2,262 Danish individuals all born in 1905.
Over the course of the study, the individuals were between 92 and 100 years of age. They found that
the physical and cognitive scores of a group of individuals that died within two years of the initial
measurements were significantly lower than the scores of similar aged individuals who did not die.
Similarly, male medflies will often be found on their backs prior to death, although if the fly can right
itself it continues more or less normal behavior (Papadopoulos et al. 2002). This supine behavior

appears to also be a reliable signal of impending death.
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Figure 9-1. Daily fecundity of 1,100 females from the CO1 population (Rauser et al. 2005a; see also Chapter 8). The thin
solid line shows the average fecundity for all females. The thick lines show the average fecundity for females five days
prior to death that have entered the death spiral at different age ranges. It appears that death is accompanied by a
dramatic decline in fecundity independent of the age at death.

There are a host of interesting questions about the process of dying that could be addressed,
if it were possible to reliably identify the females that have entered the death spiral prior to their actual
death. It is reasonable to suppose that, if fecundity is undergoing a dramatic decline prior to death,
then other aspects of physiology may also be changing dramatically. Since many physiological assays
in Drosophila and other species are destructive, it will not always be possible to collect this physiological
data immediately prior to the death of a test female. This inability will limit the study of the process
of dying.
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Predicting Death in Female Drosophila

We have recently developed statistical methods for predicting whether an individual female is
in the death spiral or not (Mueller et al. 2009). These methods were validated using three different

data sets that we now describe in more detail.

Our study used the data collected from the lifelong heterogeneity in the fecundity experiment
described in Chapter 8 that followed the daily fecundity and time of death of 2,828 individual females
from the outbred CO; laboratory population of D. wmelanogaster (see Rauser et al. 2005a). This
population is one of the five replicate CO populations derived in 1989 from five corresponding O
populations (Rose 1984b), and is selected for mid-life reproduction (age 28 days; Rose et al. 1992), as
further described in Chapters 4 and 5 (see Figure 4-2). The data that we analyze here were derived
from three large cohorts of flies from the CO; replicate population and were collected to test the
lifelong heterogeneity in fecundity hypotheses, as described in Chapter 8 (see Rauser et al. 2005a and
Mueller et al. 2009 for experimental details).

Suppose we have a cohort of flies aged # days, an age that we will call the ‘target age.” At the
target age, we would like to separate females into two groups, those that are in the death spiral and
those that are not. To be more specific, we consider a female in the death spiral if she is expected to
die on day #+1, 742, .., #+v, where the age-increment Vv is the maximum length of the death process.
Based on our previous estimates of the duration of the death spiral in Drosophila, v could range from
5 to 14 days, for a female who enters the death spiral at day #

Since it is more likely that flies well into the death spiral will exhibit altered physiology
compared to females that have just begun the death spiral, we have set v=5 for the data analysis that

follows. We regard this as a conservative assumption that also allows the female to be in the death
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spiral for several days prior to the target day, and her fecundity should reflect this. This definition of
the duration of the death spiral means that it is possible that some females that have started their death
spiral might be mistakenly classified as non-death spiral females because they die at an age > #+5.
However, it is much less likely that a female who would die within five days of the target age would
not be classified in the death spiral.

In the absence of any information about female fecundity, we could still use the survival of
flies prior to the target day to estimate the chance of a fly dying over the next five days. We expect
that experiments designed to measure the physiology of death spiral females would collect flies at ages
well before a mortality plateau, in which case survival might be accurately predicted by the Gompertz
equation (Gompertz 1825; Mueller et al. 1995). Under this model, the chance of dying in the five days

following the target age (P) would be,

P=1-— %’ (9-1)
Pt

where p; is the chance of surviving to age-z The probability of surviving to age 7 is given by the

Gompertz equations as,

A[1—exp(at)]}
a 5

pe = exp 9-2)

where A is the age-independent Gompertz parameter and o is the age-dependent parameter.
Information from a cohort’s survival records allows us to predict with some accuracy how

many females should be in the death spiral. However, with this information alone the only way to use

this information would be to randomly choose the appropriate number of females for each group, i.e.
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those in the death spiral and those not in the death spiral. But data on age-specific female fecundity
might, in principle, give better information for making more precise predictions about which females
to put in each category. As shown in Mueller et al. (2009), the total number of eggs laid by females
three days prior to an assay can be used to reliably classify females as either in the death spiral or not.
Thus, a practical protocol for creating the two groups of females can make use of demographic
predictions from both the observed number of deaths prior to the assay and age-specific female

fecundity (Figure 9-2).
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Figure 9-2. A collection of N females is ranked according to their three-day fecundity, with /i being the lowest value of
fecundity and fy the greatest. From the survival data, the parameters of the Gompertz equation can be estimated and
then used in equation 9-1 to predict P, the fraction of the population that should be in the death spiral. Thus, the PN
females with the lowest fecundity values form the death spiral group and the remaining females form the non-death
spiral group. Techniques for improving this classification scheme are discussed in Mueller et al. (2009).

An Evolutionaty Heterogeneity Model of Fecundity

We will now present a statistical model of late life fecundity by distinguishing between the egg-
laying of females before and during their death spiral. Since this model uses predictions from
evolutionary theory and the fact that females are heterogeneous (e.g. spiral vs. non-spiral), we call this
model the Evolutionary Heterogeneity Fecundity model, or the EHF model for short. The basic

pattern of female age-specific fecundity before the death spiral which is assumed in our model is that
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in mid to late life, fecundity shows a roughly linear decline until the fecundity breakday (fd), after
which fecundity remains constant (Figure 9-3). These assumptions lead to the following relationship

between age (#) and fecundity (f{9)),

(¢ tetift < fbdf
NO {c1 4 ¢, fbd,if t > fbd

9-3)
slope = f(t¥)c3

o~

slope = ¢,

c1+¢»(fbd)

Female fecundity [f(t)]

0 t* fod

Age (t)

Figure 9-3. An EHF model of female fecundity. During middle ages, the decline in female fecundity at age #is described
by the line f7) = ¢1 +et. At age fbd, called the fecundity breakday, female fecundity reaches a plateau of ¢ +eyfbd eggs per
day. Females about to die are assumed to enter a death spiral that involves a steep decline in fecundity. If a female begins
this death spiral at age 75, then it is assumed that fecundity declines linearly from that age until death with a slope of
o3f(). This slope may be the same for all flies or may vary for pre- and post-plateau females. The duration of the death
spiral is assumed to be of fixed length. It may be estimated independently from data or via regression from the
population fecundity data.

Just before death, during the death spiral, it is assumed that fecundity declines at a more rapid

rate (Figure 9-3). If the duration of the death spiral is » days and a particular female dies at age 4, then

her fecundity for » days prior to death, f(t), is given by,
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fO=fAd-—w)+f({d—-—w)cz(w+t—4d). 9-4)

This formulation of the death spiral assumes that the slope of the decline is proportional to the average
fecundity of females at the age the death spiral begins. Both f{7) and f(t) are constrained to have non-
negative values. Accordingly, the complete four parameter model for age-specific fecundity with

patameters, 0 = (¢1,0,63,/0d), is,

fFO ift<d-w

f(t) otherwise - (9-5)

F(t,d,0) = {

An important parameter of this stochastic EHF model is the duration of the death spiral, ». While the
value of this parameter could be estimated from a regression analysis, we first examined individual
fecundity patterns to see what an empirically estimated value of » might be. To accomplish this, we
analyzed the individual fecundity data collected for the CO1.; population described in Chapter 8 and
in Rauser et al. (2005a) as follows.

We separated all females within the cohort into two groups, those dying before the breakday
(fbd) and those dying after fbd. The age of these flies was then rescaled to the number of days before
their death, rather than absolute age. From these data, we then estimated the slope of female fecundity
over the days before death using different numbers of observations, varying the duration of the death
spiral. Our expectation was that, as we added observations further back in time from the day of death,
the fecundity value should return to the average cohort fecundity value, causing the magnitude of the
slope of the fecundity decline to fall, relative to its value when only the first few days before death are

used to estimate this slope. This analysis showed that the slope remains unchanged for non-plateau
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females until 16 days before death, suggesting a death-spiral duration of 15 days (Figure 9-4). In plateau
females, the slope-change occurs at seven days before death, suggesting a death window of six days.
Based on these results, we used a death-spiral duration of 10 days in models that treat » as a fixed

constant, for the sake of simplicity.
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Figure 9-4. The slope of the death spiral as a function of the width of the death spiral window, in days, for non-plateau
and plateau females. The horizontal line shows the base slope of the death spiral using only 5 (non-plateau females) or 4
(plateau females) days of fecundity observations before death. Each point represents the slope with additional
observations added. The error bars can be used to determine when these slopes are significantly different from the base
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slope. The error bars are twice the square root of the variance of the sum of the two estimated slopes (the base slope and
the current slope).

Our basic model of female fecundity (Equation 9-5) has four parameters, O = (¢1,0,/bd,c3), but
we also examined three other variants of this model. We studied a five-parameter model, which
assumes that the slope of the death spiral, ¢;, may be different for pre-plateau and post-plateau females.
We also generalized this five-parameter model to a six-parameter model by making the duration of the
death spiral a model parameter. The fourth model that we considered was the most complicated; it
was the same as the six-parameter model, except that the duration of the death spiral was allowed to
differ for flies dying before the plateau and after the plateau.

Estimating the parameters of these EHF models requires information on both age-specific
fecundity and mortality. Without the mortality data, we cannot directly infer the timing of female death
spirals. Therefore, we identify three classes of experimental data that we have been able to analyze. (1)
Experiments that have measured fecundity on individual females and have also recorded the age at
death of these females (specifically, data from Rauser et al. 2005a). These are the best data and permit
direct estimates of model parameters. (i) Experiments where the number of deaths of a cohort of
females is recorded at regular time intervals, but fecundity is observed on groups of females, not
individuals. (iii) Finally there are experiments where fecundity was observed on groups of females, but
no survival data was recorded. We discuss the results and methods of analysis for each of these three
classes of experimental data in turn.

Individual fecundity and survival records. Let the observed number of eggs laid by a
female-7 at age-x be, fi, 7 = 1,.,N and x = #.. Z. Thus, # is the age from egg at which female

reproduction begins and #+1 is the greatest age at death of the IN females. For each of the IN females
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let the observed age at death be 4. With these observations we can compute the average fecundity at

each age from

1
fx = — Xii such that fix (9-6)

n
x di>x

based on records of 7. females still alive at age-x. The predicted average fecundity (Fx(é)) at age-x for

parameter values 0 is calculated as,

nixZi such that F(x; d;, é), ©O-7)

d;>x

where F (x, d;, 9,) is one of the fecundity models such as Equation 9-5. The model parameters, 0,

are then chosen to minimize,

1
(tg—tp+1)

ta ~\12
Zx:tb [fx - Fx(e)] : 9-8)
Since there are so many more females at the young ages, we have chosen a least squares statistic
that treats each age as an equivalent sampling unit. However, since there are fewer observations at the
older ages, we expect these predictions to be less reliable. This uncertainty will be reflected in the size
of the confidence intervals we compute with these regression predictions.

To evaluate the uncertainty in the predicted values of female fecundity, we used bootstrap

resampling of our data. A bootstrap sample, fi, , was generated by taking a sample of N females with

replacement from the original set of N females. This sampling also produced N bootstrap ages at
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death, d;. With this bootstrap sample, we utilized the methods summarized in Equations 9-6 to 9-8

to obtain a least squares estimate, 8. The parameter @ was then used to predict the mean fecundity at

each age,

Fx(g) = ﬁile such that F(X, d~i, é),

d;>x

where 7l is the number of females alive at age-x in the bootstrap sample. One hundred bootstrap
samples were generated and 96% confidence bands on the average value of the 100 F () were

derived from the second smallest and 99® largest value of F; ().

We performed an analysis of the EHF models using the individual fecundity and mortality
data collected by Rauser et al. (20052) and found that the four-parameter model (Equation 9-5) was
most often the best model over all three indices used for assessing model fit (see the Appendix for
this chapter to see statistical details of this analysis, including Table A9-1). This result combined with
the normal scientific preference for the most simple model suggests that Equation 9-5 is perhaps the
best and simplest description of age-specific female fecundity. We have used this four-parameter
model to compare the average predicted fecundity from the model with the observed average

fecundity in the three CO1.4, CO1.,, and CO13 cohorts (Figure 9-5).
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Figure 9-5. The four parameter fecundity model (dark solid line) and 96% confidence interval (light black lines) for
cohorts (a) CO1.1, (b) CO12, and (c) CO13. The circles are the mean observed fecundity at each age.
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Although the fit of the four-parameter model is very good, we do not consider goodness of
fit alone to be the sole important criterion for assessing the utility of this type of model. This model
is our hypothesis about the evolutionary forces molding age-specific fecundity as well as a reflection
of individual physiological decline prior to death. Thus our belief in this model, or any other model,
cannot be evaluated solely by its goodness of fit. The strongest virtues of this model are the soundness
of its theoretical underpinnings and its ability to predict new experimental observations, which are in
part addressed by the cross-validation statistic.

Individual survival records and group fecundity records. To estimate the basic four-
parameter model’s (Equation 9-5) coefficients and to provide confidence intervals about the estimated
parameter values, we compared observed fecundity with those derived from simulations. The
simulations generated ages at death from the two-stage Gompertz mortality model. The parameter
estimates for the two-stage Gompertz model were obtained in independent mortality experiments.

Our experimental data (described in Rauser et al. 2000) consisted of an initial cohort of 3,200
females. These females were maintained in vials with four females per vial. At each age, if there were
more than 400 surviving females, a sample of 100 vials was chosen to estimate fecundity. Once the
number of survivors dipped below 400, all vials were used to estimate fecundity. Thus, the per-capita
fecundity of females in vial-7 at age-x is given by fi(x), 7 = 1, 2, .., n., where 7. is the number of vials
used to estimate fecundity at age-x. Age-specific fecundity estimates started at age %, which was 30
days from egg for all five populations, and ended at day 7, the last day there were four live females,

which varied among populations.

In our numerical analysis, the bootstrap fecundity sample at age-x was generated by taking 7.

samples with replacement from fi(x). This bootstrap sample is represented as,f; (x), 7 = 1, 2, .., n.

b > **
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The independent mortality data were used to estimate the parameters of the two-stage
Gompertz that were used in simulations of mortality. The distribution function of the two-stage

Gompertz, G(x) is,

{A[l — exp(ax)]
exp

[ <
" }fo_mbd

{A[l — exp(ax)]
exp -

}exp[ﬁ(mbd —x)| if x> mbd

The age at death, 4, for 3200 females in the bootstrap sample was simulated by the inverse
transform algorithm as, 4 = G'(U), where U is a uniform random number on the interval (0,1)
(Fishman 1996). At each age we took a sample of 400 females or, if there were fewer than 400
survivors, all females were used. Let the number of females used at each age be 7i,.. With the simulated
age at death for these females and an estimate of the model parameter 0o, we estimated the predicted

fecundity of each female as F(x, d, 05) (Equation 9-5), for / = 1,...,3,200. The bootstrap estimate of

the average fecundity at age-x, for parameter @y, was then estimated from the average, F,(8,) =

1 @i=1l . e
—Yi-1 F (x, d,00). The least-squares estimates were found by minimizing the sum,
Ng -

j=tg i=nj = 7,12 . .
Zj=tb Yicq [F}(@O) —fl(])] . From this first bootstrap sample, one bootstrap estimate of the
patameter vectot, 0, was obtained. One hundred bootstrap samples were then generated and their

mean was used as the final parameter estimate, 8. These least squares estimates treat the vials as the
units of observation. Since the number of vials used was limited at the early ages, these regressions do
not weight the very early ages heavily, although the very late ages contribute less to minimizing the

squared deviations due to the small number of survivors at those ages.
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Our analysis of the EHF models using individual survival and group fecundity data from
Rauser et al. (2006) found that, except for one case out of the ten examined, the four-parameter model
(Equation 9-5) had the smallest values of both AIC and BIC (see Appendix for statistical details of
this analysis and Table A9-2). Accordingly, we focused on this model in our detailed analysis of the
CO data.

Fecundity and mortality rates were measured for each of the five replicate CO populations.
Figure 9-6 shows the data for both age-specific fecundity and female mortality, along with their
respective fitted models for all five populations. Although the fecundity model is composed entirely
of linear functions, the fact that the population is composed of two types of females, the normal and
the dying, produces predicted fecundities that decline slowly and in a nonlinear fashion with age
(Figure 9-6). The age of onset of the late-life fecundity and mortality-rate plateaus for a population,
with their respective breakdays, were estimated from the stochastic fecundity model and the two-stage

Gompertz model, respectively.
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Figure 9-6. Age-specific female mortality and fecundity data along with the respective model predictions for all five CO
populations. The circles are the observed mean fecundity and the triangles are the observed mortality rates. A two-stage
Gompertz model was fit to the mortality data and the four-parameter stochastic fecundity model was fit to the fecundity
data to determine the breakdays, or the onset of the late life plateaus, for both mortality and fecundity. The dashed lines
are the upper and lower 96% confidence interval for the fecundity predictions. Fecundity plateaued earlier than mortality
in all five populations. The average pairwise difference between the onset of the two types of plateaus was 12.7 days.

Group fecundity records only. When only fecundity data from groups of females exist, it

isn’t possible to estimate all of the parameters in Equation 9-5. However, using the fecundity data
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alone we can get estimates of the parameters for Equation 9-3 using standard nonlinear regression
techniques. From these we can use the estimated breakdays to make important evolutionary
inferences. For this procedure to be valid, it is important to assume that there is some correspondence
between the estimated value of the breakday utilizing only Equation 9-3 vs. the value for the breakday
derived from the full model (Equation 9-5). We explore this problem below.

For eight different experimental data sets, we estimated the parameters of Equation 9-3 from
the fecundity data only. Three of these data sets, referred to as COy.1, CO1., and CO, are replicate
experiments on individual females from the CO; population (Rauser et al. 2005a). For these three
cohorts, the parameters of Equation 9-3 were also estimated from the EHF model (Equation 9-5)
using the techniques described previously for individual fecundity and survival records. The remaining
five cohorts were obtained from the entire set of five CO populations (CO;s). However, for these
data fecundity was recorded on groups of females and survival was observed on a separate group of
females. Accordingly, the parameters of the stochastic fecundity model were estimated by the
techniques described previously for individual survival records and group fecundity records. These
analyses were done using an adult age time scale. Thus, time zero is the start of adult life.

The results (Figure 9-7) suggest that the values for the fecundity breakday are very similar with
each technique. The other parameters of the fecundity model may have estimates that vary depending
on the technique used. This is not surprising, since the decline in female fecundity with age is described
by two parameters in the EHF model (Equation 9-5), while the simple model (Equation 9-5)
summarizes this decline with just one parameter. Given these findings we suggest that reasonable
estimates of the breakday for the EHF model can be obtained when survival data is absent by simply

fitting the two-stage fecundity model.
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Figure 9-7. The estimated fecundity breakday for 8 CO cohorts. For each population the breakday was estimated by
Equation 9-3 (x-axis) and by Equation 9-5 (y-axis). The solid lines shows equality of the two estimates.

Early Fecundity and an Alternative Model

The EHF model does not treat the changes in Drosophila fecundity that take place immediately
after sexual maturation. As discussed by Novoseltsev et al. (2003), the initial rapid rise in female
fecundity after sexual maturity may represent the balance of ovariole maturation and egg production,
with several days being required before females hit their maximum egg output. We believe that the
falling force of natural selection acting on fecundity will result in a slow decline in age-specific
fecundity after this initial maturation of the female’s reproductive physiology. Novoseltsev et al. (2003)
suggest that there will in fact be a plateau for some extended period of time at the female’s maximum

egg production. Novoseltsev et al. (2003) recognize that the pattern of average female fecundity does
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not typically show such a plateau, but they argue that this is an artifact of the averaging over many
females that have plateaus of different lengths.

Novoseltsev et al. (2003) estimate these plateaus by fitting a model to each individual female’s
age-specific fecundity. An unresolved problem with this approach is whether individual data is
sufficiently reliable to distinguish between patterns of fecundity that plateau vs. those that show a
simple peak with a lot of noise. Future work will hopefully focus on sorting out the different
predictions of the resource-allocation model of Novoseltsev et al. (2003) and our evolutionary

heterogeneity fecundity (EHF) model.

Conclusion: Death Spirals and the Evolution of Late-Life Fecundity Plateaus

For the chief subject matter of this book, the most important scientific issue arising from the
discovery of death spirals in Drosophila is whether or not death spirals invalidate the research that we
have performed on fecundity plateaus when we have not had access to complete records of the age-
specific fecundities and ages-at-death of individual females. Recall that this is the case for the fecundity
data discussed in Chapters 2, 4, and 5, none of which was based on the collection of complete
demographic data for individual females.

We have already used the EHF model to account for death-spiral effects in our fecundity data
from previous chapters. Fortunately, the basic evolutionary inferences that we had made before
developing the EHF model remain valid; late-life fecundity plateaus evolve in conformity with

expectations derived from Hamiltonian models.
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Chapter 10. Physiology of Late Life

Hamiltonian theory suggests that the physiology of late life could be different from that of
aging. Drosophila experiments comparing the physiology of aging with the physiology of late life

corroborate this suggestion, but much work remains to be done.

Intuitive Intimations Concerning Late Life Physiology

As our discussion to this point should have made clear, there are two chief contending
explanations for the late life phenomenon: lifelong heterogeneity and Hamiltonian evolutionary
theory. On the first view, aging is an ineluctable process that never ceases, but in elite sub-cohorts it
proceeds so slowly that age-specific mortality rates roughly plateau at very late ages, due to the absence
of inferior sub-cohorts. Intuitively, then, it might be expected that the first view implies that
physiologically monitoring cohorts undergoing the transition from aging to late life would reveal no
definitive transition, although there might be a gradual deceleration in physiological deterioration as
inferior sub-cohorts progressively die off. Thus, lifelong heterogeneity seemingly implies that late life
physiology should not show distinctive properties compared to the physiology of aging.

On the Hamiltonian view, aging largely comes to an end, with much older individuals no
longer afflicted by the collapsing forces of natural selection. For this reason, it has been proposed that
there is a distinct “third phase” to life, after the end of the aging phase or stage (e.g. Rose et al. 2000).
By contrast to the implications of the lifelong heterogeneity theory, it might be supposed intuitively
that the Hamiltonian view necessarily implies that “aging” physiology should stabilize during late life,
and the characteristic chronological decline in functional attributes that is such a hallmark of aging

must come to an end.
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Here we will show that neither of these intuitive expectations are correct, both in principle
and in some early data collected from our Drosophila experimental system. However, the present
chapter chiefly serves to open a door into a novel arena for research, and the conclusions that we have

to offer are only preliminary in character.

Paradoxes and Indeterminacies arising from Lifelong Heterogeneity Theory

There are four major empirical problems with lifelong heterogeneity theory, as we have
discussed. First, there is no direct evidence showing that lifelong heterogeneity in key, delimitable, and
measurable robustness characters leads to sufficient differential survival to explain late-life mortality
rate plateaus, as we have discussed principally in Chapter 6. Second, there are a range of experiments
that give results incompatible with specific lifelong heterogeneity theories, which we have reviewed
particularly in Chapter 8. Third, there are experiments that corroborate the alternative Hamiltonian
theory for late life (e.g. Rose et al. 2002; Rauser et al. 2006), particularly experiments involving
experimental evolution, which we have reviewed in Chapters 4 and 5. Fourth, there are no experiments
or other data that evidently falsify the alternative Hamiltonian theory. For these four reasons, based
in data, we have argued against the validity of lifelong heterogeneity theory as an explanation for late
life plateaus in mortality and fecundity.

But as a theory, in and of itself, lifelong heterogeneity has both the strengths and weaknesses
of indeterminacy. As an ill-defined and unconstrained theory, it can be modified in innumerable ways.
We have taken some pains to show its difficulties in previous chapters when it is formulated explicitly,
particularly when it is formulated in terms of lifelong heterogeneity in either background age-

independent mortality (the 4 parameter of the Gompertz equation) or the rate of Gompertzian aging
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(the o parameter). But there are other conceivable, alternative, ad hoc and post hoc demographic models
for mortality based on lifelong heterogeneity, which we haven’t subjected to the same level of scrutiny.

We note three particularly slippery features of the full range of lifelong heterogeneity theory
from the standpoint of the physiological foundations of its presuppositions. (i) It invokes hypothetical
hidden variables such as underlying ‘robustness’ characters of some type, or their converse ‘frailty’
characters. Yet such underlying physiological characters are not operationally defined so that they can
be measured physiologically in the literature that invokes them. (ii) Lifelong heterogeneity theory then
posits hypothetical interactions between such hidden physiological variables and known demographic
variables such as age-specific mortality rates. These linkages can take many conceivable forms,
including the production of trade-offs between characters mediated by underlying connections
involving the hypothesized physiology. (iif) Lifelong heterogeneity theories have potentially unlimited
freedom in the composition of these theory-elements, such as arbitrarily varying sub-cohort-number,
arbitrarily varying the number of underlying physiological robustness characters, and so on. Taken
together, all these elements of flexibility in lifelong heterogeneity theory provide an expansive
playground for the mathematical imagination of a demographer, particularly as it is not reliably
tethered to physiological particulars.

Lifelong heterogeneity theory thus seems to meet many of Popper’s (e.g. Popper 1959) criteria
for unfalsifiability. And thus, we can expect lifelong heterogeneity theory to persist in the
gerontological and demographic literatures. An often irrefutable and widely flexible theory, with
hidden variables whose correct identification or measurement can always be disputed, will be very
difficult to force out of a scientific arena, if it is not rejected on methodological grounds.

Turning to the implications of lifelong heterogeneity theory for the observable physiology of late
life leads to some of the typical features of an unfalsifiable theory. If there is no particular expectation

for the relationship(s) between functional physiological characters and hypothesized lifelong
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differences in demography, then a transition between aging and late life produced by extreme lifelong
heterogeneity can lead to a wide spectrum of trajectories for physiological characters. In explicit
simulations of age-specific physiological characters, simulations that assume lifelong heterogeneity for
robustness, we can generate a variety of curves for underlying physiological characters. Essentially any
pattern can be produced: reversal of functional aging, alternating waves of increase and decrease in
functional physiology, continuing physiological deterioration during late life, accelerating deterioration
during late life, and so on. An example is shown in Figure 10-1. The lack of structural or parametric
constraints on the physiological underpinnings of lifelong heterogeneity theories allows such theories
to generate a great diversity of possible patterns for the physiological transition from aging to late life.
For those who enjoy theory untrammeled by the risk of experimental refutation, lifelong heterogeneity

theory will be an attractive way to explain and characterize the physiological features of late life.
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Figure 10-1. A population is assumed to have a phenotype that declines, linearly in value with increasing age: dotted lines
in (a). There are 101 different physiological types in the population with phenotype vs. age curves that fall between the
two dotted lines in (a). We further assume that as this physiological trait declines with age so does the age-independent
Gompertz parameter for that physiological type. If at age 0 there are equal numbers of all 101 types then the age-specific
mortality in the whole population remains Gompertzian as shown in (b). The population average phenotype is the solid
line in (a). The phenotype will eventually start to decline again at very advanced ages when there is only one physiological
type remaining. The shape of this population average curve can be changed under different assumptions about the
number of types and the relationship between the physiological phenotype and the Gompertz equation.
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Potential Physiological Complexity of Hamiltonian Physiology during Late
Life

One of the inherent strengths of the Hamiltonian analysis of aging is that it has always had
within it the implicit prediction that any component of age-specific adaptation that is subject to genetic
variation is liable to deterioration, thanks to the strongly declining age-specific forces of natural
selection shaping both survival and reproduction. In effect, if an adult adaptation is subject to
evolutionary genetic age-specificity, then it should undergo some degree of deterioration during the
phase of adulthood known as aging. This deterioration may be delayed relative to the age at which the
forces of natural selection start to fall, and it may not be a very pronounced deterioration in some
cases, but there should be an overwhelming tendency for physiological deterioration of widely varying
kinds to occur.

The only plausible way by which a function can escape this effect would be if there is no
evolutionary genetic possibility for age-specific selection. This would be true, for example, of
characters that are essentially unaffected by the passage of biological time. Indeed, such characters
may underlie the very capacity of old individuals to continue surviving and reproducing, albeit with
much higher average rates of age-specific mortality, as in Charlesworth’s (2001) analysis of alleles with
age-independent beneficial effects.

But turning to the case of late life requires us to leave general expectations behind, except for
a negative prediction. If the broad and characteristic physiological declines observed during aging
continued unremittingly after the transition to demographic late life, then the kind of Hamiltonian
theory that we have proposed here would be implausible. That is because late life is like the period
prior to the onset of reproduction, the period of ‘development,” in that it does not feature consistent

changes in the force of natural selection acting on age-specific survival. During development, mortality
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rates fluctuate, but do not show general or consistent trends. During points of vulnerability or
transition, such as hatching, birth, molting, first flights of fledglings, and so on, mortality rates may
spike upward. But such upward spikes are not sustained, and there are no general mortality or
functional patterns that compare with the sustained declines exhibited during aging. Likewise, there
are no general expectations concerning specific physiological functions during development. Some
capacities may decline as a function of age during development, while others increase. Thus the
capacity of the human child to acquire new languages peaks at an early age, perhaps at 3-6 years of
age, and then declines, while the capacity of children to learn mathematics generally peaks later. While
aging involves general patterns of deterioration across most physiological functions, development
does not have such widespread patterns.

Given the existence of plateaus in the forces of natural selection during late life, we cannot
make specific predictions about the patterns that age-specific physiological characters will show,
except we predict that during late life the consistent physiological deteriorations of aging will no longer
prevail. As suggested by Shahrestani et al. (2009), it is possible that functional characters generally
stabilize during late life, much as age-specific mortality eventually does. But it is also possible that, as
Shahrestani et al. (2009) suggested too, physiological characters vary in their trajectories during late
life, some continuing to deteriorate, others stabilizing, and perhaps some even improving with age.
Broadly speaking, the physiology of late life might be one of general ‘stabilization’ or one of
‘complexity.” Either are at least conceivable, since Hamiltonian theory only makes clear predictions

where components of fitness are concerned, not their underlying physiology.
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Initial Expetiments Suggest that Late Life is Physiologically Complex

Work in the Rose and Mueller Drosophila laboratory by P. Shahrestani (Shahrestani et al., in
prep.) suggests two things. First, late life is physiologically different from aging. Second, late life is not
marked by ubiquitous physiological ‘stabilization.” It is instead more akin to the complexity of
development.

Shahrestani has provided us with some preliminary results that are as yet unpublished. She
followed six populations with well-defined demographic transitions between aging and late life, the
IV and B populations of Rose (1984b), also described in some detail in Chapter 4 (see Figure 4-2).
These populations were characterized throughout adult life, during both aging and late life, for a
variety of functional physiological characters that decline during the aging period. In one of her data
analyses, she compared the functional trajectories of these characters between aging and late life
phases, as shown in Figure 10-2 for the character of time spent in motion during a two-minute interval.
As can be seen from the figure, this character appears to stabilize during late life. Results like this from
Shahrestani’s study corroborate the Hamiltonian expectation that the physiology of late life should be
different from that of aging. This particular result leaves open the possibility that late life is marked

by a general stabilization of functional physiology.
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Figure 10.2. Time spent in motion in a two-minute time interval, measured in seconds, is plotted against adult age. Each
point represents the average data from all flies (male and female) from all populations (Bi_s and IV) tested at that age.
The error bars are standard error of the mean between the six populations. Before age 30, the data points are in the
aging phase as determined by demographic characterization of other individuals in this cohort; after age 40, the points
are made up of data collected during the late life phase. Time spent in motion declines during the aging phase, but
plateaus in the late life phase.

Shahrestani (Shahrestani et al., in prep.) also studied other Drosophila characters in both aging
and late life phases. Among these other characters was negative geotaxis, as measured by the
percentage of a group of flies that climb up the side of a vial in a finite period of time. As shown in
Figure 10-3, there was no stabilization of this character during the late life period. Instead, negative
geotaxis appears to continue falling during late life, moreover doing so at a faster rate. Again, the

pattern during aging was clearly different from that during late life, but the late life pattern was not
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one of stabilization. From this, Shahrestani et al. (in prep.) conclude that late life does not constitute

a general physiological stabilization. Instead, it is physiologically complex, much as development is.
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Figure 10.3. Negative geotactic ability, measured as the percentage of flies that made it to the top of an 8-cm glass vial
in one minute, is plotted against adult age. Each point represents the average data from all flies (male and female) from
all populations (Bi_5 and IV) tested at that age. The error bars are standard error of the mean between the six
populations. Before age 30, the data points are in the aging phase as determined by demographic characterization of
other individuals in this cohort; after age 40, the points represent late life phase. Negative geotactic ability declined more
rapidly in the late life phase compared to the aging phase.

Additional Experiments on the Hamiltonian Evolutionary Physiology of Late
Life

From a strictly logical point of view, the two types of data just supplied are key to the

physiological interpretation of late life. It appears that neither character shows a continuation of aging-
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related deterioration, nor is there a general stabilization. But more studies of this kind are needed, with
both Drosophila and other model organism populations, in order to ascertain the features of late-life
physiology more widely. Humans, again, are probably a very poor system with which to address the
issue of the physiological transitions from aging to late life, due to differential patterns of medical care
and other lifestyle factors that can change as a function of chronological age independently of
underlying physiology. But there is no reason why, in principle, the kind of study that Shahrestani has
performed could not also be performed on medflies or nematodes, not to mention more arcane model
species.

Another type of experiment naturally suggests itself to experimental evolutionists like
ourselves. Rose and colleagues have constructed an array of populations with very different ages of
transition between aging and late life (e.g. Rose et al. 2002). On Hamiltonian principles, some of the
physiological characters that undetrlie age-specific demographic characters should have undergone
corresponding shifts in their transition ages from their ‘aging trajectory’ to their ‘late life trajectory.’
To use the preliminary Shahrestani results plotted above as a point of reference, populations that have
undergone a shift in the average age at which the demographic transition from aging to late life occurs
should show at least some corresponding shifts in the ages at which physiological transitions occur.
Thus, for time spent in motion, shown in Figure 10-2, the age at which the rapid aging decline of this
character effectively plateaus should occur at relatively later ages in replicate populations that have
evolved much later mortality-rate plateaus. For negative geotaxis, shown in Figure 10-3, the age at
which this character starts to decline more rapidly should undergo a parallel shift when comparing
populations that have evolved different starting ages for their late-life mortality rate plateaus. It might
be the case that not all such physiological characters will respond at comparable speeds and to
comparable magnitudes in the experimental evolution of the age at which aging stops demographically,

but at least some cases like this should be significant enough to be detectable experimentally.
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Shahrestani has collected data of this kind from populations that have evolved somewhat
different starting-ages for their late life plateaus, the CO and ACO populations of Rose et al. (2002).

But the extensive data have not yet been analyzed.

Provisional Conclusion: the Physiology of Late Life is Hamiltonian but
Complex

Limited data are available concerning the physiological transition from aging to late life. What
we have so far has yet to be published in reviewed journals, and must be taken as only preliminary.
However, it does suggest that the physiology of late life is broadly Hamiltonian. Functional aging does
not merely continue on as if late life is not underlain by different evolutionary rules. On the other
hand, Shahrestani et al. (in prep.) have apparently already found enough physiological complexity
during late life to suggest that it is as functionally complex as development. Much interesting work

remains to be done, and we invite our readers to proceed with it.
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Chapter 11. Late Life in Human Populations

Late life was first detected in human populations, despite the very late occurrence of late life
in humans. Recent data from supercentenarians provide evidence for a late-life mortality rate plateau
in human populations. An important evolutionary puzzle is why human populations reach late life so
late. Several explanations are conceivable, and not necessarily incompatible with each other. One of
these is that a generally increased mortality level under evolutionarily novel conditions due to a lack
of time for age-independent beneficial substitutions to increase in frequency. Another is that a recent
expansion in effective population sizes, greatly prolonging the age-range over which the effective force
of natural selection declines. Regardless of its evolutionary explanation, the cessation of aging in

human populations suggests new possibilities for the extension of human healthspan.

The Problematic Nature of Human Data

We have already mentioned in Chapter 1 that the demography of humans late in adult life has
been a common subject of study. It is a commonplace of such studies to note that Gompertzian
models start to break down, in terms of their quantitative accuracy, at very late human ages (e.g.
Greenwood and Irwin 1939; Gavrilov and Gavrilova 1991). We will be considering the case of the
human species in more detail here, from the standpoint of the evolutionary biology of late life.

But before doing so, it is important to understand what is and what is not appropriate in
discussing the human case. Starting with what is not appropriate is the most important concern in this
instance. Humans just are not appropriate experimental animals, for obvious ethical and practical
reasons. No one should approach the manipulation of human patterns of survival and reproduction

with anything but the greatest care and the greatest scruples. Precisely the kind of environmental
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control and standardization that makes work with organisms like laboratory Drosophila and laboratory
mice so useful should not be attempted in studies of human biology. Indeed, human biology is being
continually shaped by economic, medical, and public health progress, which measurably improves
standards of living, life expectancies, and basic human suffering from generation to generation since
the 18" Century. People in 17" Century Europe still died in great plagues, suffered from unsanitary
water, and had no recourse to antiseptic surgery. By every reasonable measure, the lives of Europeans
and North Americans have steadily improved since then. And with such secular historical
improvements have come rapid and extensive demographic changes.

Madame Jeanne Calment, for example, was born in 1875. For her birth cohort, tuberculosis
was still a2 major risk factor impinging on life expectancy, as were septicemia and any number of other
incidental types of bacterial infection. Yet she survived, through two world wars conducted partly in
her native France, through the pandemic Spanish influenza that followed WWI, through the invention
and widespread adoption of antibiotics, and even through the AIDS pandemic. During that time, even
the availability of food fluctuated, particularly with the privations and dislocations associated with the
two world wars and the Great Depression. Thus, her individual life history over the course of 122
years occurred in a context of extensive environmental change. Those people who lived more than 30
or 40 years, in the course of the last two centuries, underwent substantial changes in the environmental
hazards that they faced during their lifetimes.

This scientifically inconvenient fact makes human demographic data extremely unsatisfactory
from the standpoint of testing fundamental ideas concerning the evolution of life histories, including
both the evolution of aging and the evolution of late life. For this reason, our view is that human data
should nof be used for the purpose of strong inference (Platt 1966) tests concerning the type of

scientific theory that we discuss in this book.
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On the other hand, the caveats just adduced do not mean that general findings concerning the
evolutionary biology of late life cannot be applied to human demography. What these caveats mean is
that, from the standpoint of scientific inference, there is a one-way street between the type of focused,
well-controlled, and theoretically motivated scientific research that is our principal concern, in the first
instance, and the type of scattered, uncontrolled, and ad hoc data that is supplied by human
demography, in the second instance.

There is nothing special about this stricture. Chemists are not fond of doing experiments out
of doors during rainstorms, but that doesn’t mean that they can’t apply their understanding of
chemistry to explain or interpret data concerning acid rain. We regard the application of our research
findings to the case of human late life in the same way. We don’t regard human data as a useful way
to evaluate alternative theories, whether Vaupelian or Hamiltonian, of late life. But we do regard the
application of Hamiltonian research on late life to the interpretation of human demographic data as a

legitimate enterprise.

Do Human Demographic Data Show Signs of Late Life Mortality-Rate
Plateaus?

It can be conceded that human demographic data are inherently deficient, but one can still
want to know whether, despite that, signs of late-life plateaus can still be detected. This doesn’t mean
that the failure to detect such plateaus should be regarded as a threat to the scientific salience of late
life as a life-historical phenomenon. There is a strict asymmetry here. If human data, with all their
deficiencies, nonetheless still show evidence for late-life mortality plateaus, that would suggest the
obduracy of phenomenon, its potential to penetrate the morass of confounds and obscurities that

human demographic data are necessarily afflicted by.
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Greenwood and Irwin (1939) supplied one of the earliest and most detailed studies of human
demographic data from very late in life, working primarily with English actuarial data. Looking chiefly
at the mortality records of those over 90 years of age, they were led to consider the possibility that
“with advancing age the rate of mortality asymptotes to a finite value” (Figure 11-1). They then
approached their human mortality rate data in light of this hypothesis, and found that the quantitative
fit of late-life actuarial data to this hypothesis is at least reasonable. In particular, they proposed, as a
bare possibility, that the rate of human mortality approaches a value of about 50% per year.

It is also notable that Greenwood and Irwin (1939) proposed a crude version of the lifelong
heterogeneity hypothesis, invoking Pearl’s earlier work on the demography of laboratory Drosophila
mutants, particularly the contrasting demography of ‘wild-type’ and vestigia/ mutant flies. They offered,
as a thought-experiment, a scenario in which a cohort of fruit flies consists of a mixture of wild-type
and vestigial flies, the latter dying off entirely so that, at the end of the composite cohort’s period of
observation, the mortality pattern is defined entirely by that of the wild-type flies. Under these
conditions, they supposed that one would observe mortality rate deceleration without having to
suppose that aging stops.

Indeed, they assumed that, “In a labile, highly specialized metazoan, decay must surely
continue.” Thus, while the data surveyed and modeled by Greenwood and Irwin (1939) seem to show
an asymptotic approach to a constant mortality rate, and thus a cessation of aging, their reaction was
to assume that some type of complication or artifact was responsible. In particular, like later authors
(e.g. Maynard Smith et al. 1999), they proposed that individuals over the age of 90 years are likely to
undergo a change in their circumstances and thus enjoy a mitigation in mortality. In these respects,
Greenwood and Irwin’s analysis anticipates major protective maneuvers that have been used

repeatedly over the last seventy years to safeguard the near-universal assumption among biologists,
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gerontologists, and demographers that aging continues unabated at later ages, the demographic data

from very old humans notwithstanding.
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Figure 11-1. Mortality from age 93 on for English women from 1900-1920. The mortality data are plotted only for those
ages with at least 10 females at risk (from Greenwood and Irwin 1939).

It is historically interesting that Comfort (1964, Fig. 18, p. 90) supplied a graphical plotting of
one of Greenwood and Irwin’s (1939) data tables, showing how well the numbers fit a simple
exponential decay pattern, a pattern that implies a lack of demographic aging after the age of 90 or so.
Gavrilov and Gavrilova (1991) examined much more extensive European demographic data, and

likewise found that Gompertzian models break down at sufficiently late ages.
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Recently, Young et al. (2009) have supplied a graphical compendium of human global
mortality rates after the age of 110, and an adaptation of their figure is shown here as our Figure 11-
2, focusing only on mortality rates up to 115 years of age. After this age, there are so few individuals

that the observed mortality rates fluctuate wildly between 0 and 100%.
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Figure 11-2. Mortality from age 110 on for men and women with documented ages above 110 years as determined by
the Gerontology Research Group (data from www.grg.org/ Adams/LHTM). The mottality rate is plotted only for those
ages with at least 10 individuals at risk (Young et al. 2009).

From this figure, it is evident that Greenwood and Irwin’s (1939) suggestion of an asymptotic
human mortality rate of about 50% is well within the bounds of statistical plausibility. It should be

noted, further, that 984 individual deaths contribute to the pattern shown in Figure 11-2, so this result
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is likely to remain stable, at least qualitatively, as more deaths are recorded among individuals over the
age of 110 years.

Nonetheless, for the reasons already adduced, these data hardly have the scientific quality of
laboratory animal cohort studies. In particular, these data are compiled from actuarial records from
multiple countries, chiefly European, together with the United States, Canada, Australia, and Japan.
Though all these countries are affluent, they have significant disparities in health care delivery and
access. Therefore, some caution is warranted in viewing these data. Still, Greenwood and Irwin’s
(1939) purely demographic conjecture seems to be sustained. Age-specific human mortality rates seem
to asymptote to an approximately constant value. Thus, demographically, human aging too appears to
cease.

As difficult as it is to collect good human actuarial data, the likelihood of collecting good
functional or physiological data on the transition from aging to late life in human populations is still
less in magnitude. Our position going forward, then, is to accept provisionally the hypothesis that in
humans, just as in well-studied fruit flies, aging does in fact cease at the level of the individual, and
this cessation leads to the demographic pattern that have been noted for the last seventy years. With
this provisional conclusion, we turn to a discussion of its interpretation and its possible practical

implications.

Why Does Human Late Life Begin so Late?

It is significant for the history of science that late life begins so late in humans. If it started at
age 35 or 40, then it would have become apparent at least as eatly as the 19" Century, when good
actuarial tables became generally available, that demographic aging can cease. Human aging has long

been the intuitive source of much reasoning, and certainly still more emotional concern, about aging
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in general. As late life is not apparent in human actuarial records until the cohort-decade that begins
at 90 years of age, the intuitive notion of unceasing aging took hold millennia ago, and still grips both
popular and scientific imaginations.

But in the demographic patterns of the medflies studied by Carey et al. (1992), as well as those
of some of the fruit fly populations studied by both Curtsinger’s laboratory (e.g. Curtsinger et al. 1992)
and the Rose laboratory (e.g. Rose et al. 2002), late life starts much earlier relative to the duration of
development. In humans, development to first reproductive maturity takes about 12 to 14 years. Late
life then starts at 90 to 105 years, about eight times later. In our B fruit flies, development to first
reproductive maturity takes about 10 days, while the transition to late life then occurs at about 38 days
from the egg stage of life (Rose et al. 2002). To scale this pattern to human data, this would put the
transition to human late life in the decade between 40 and 50 years of age. Thus human late life begins
about twice as late as that of some fruit fly populations, relative to the duration of development to the
point of first reproduction.

On the other hand, Rose et al. (2002) show that their O populations, which take only about a
day longer to develop than the aforementioned B populations (Chippindale et al. 1994), start late life
at ages of about 72 to 82 days, from egg. This is a pattern more like that of human populations. In the
case of the B and O populations studied by Rose et al. (2002), we have a fairly good idea as to why
late life starts at such different ages: the last ages of reproduction in their evolutionary culture histories
were different for some hundreds of B generations. This raises the question: why have humans
ostensibly evolved such late onset of late life?

There are two broad types of evolutionary answers to this question, on first inspection:
selection history and demographic history. Both of these types of answer must take into account an
important feature of the cultural and evolutionary history of Homo sapiens: the recent adoption of an

agricultural way of life by the majority of the species. It is generally agreed that humans widely adopted
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agriculture as their primary mode of sustenance on the order of 10,000 years ago (Lindeberg 2010). If
we assume an average generation length of about 25 years among human populations, then human
populations have undergone selection under agricultural conditions for at most about 400 generations.
And many human populations have adopted agricultural life much more recently, in some cases only
in the last five to ten generations. The transition to agriculture necessarily generated selection for
adaptation to a different diet, a different distribution of mortality risks, very different population
densities, and very different patterns of migration between local breeding demes. This is the backdrop
to any discussion of the selection and demographic histories which underlie the evolution of human
life history.

In this evolutionary and historical context for human aging and late life, there are several
alternative, although not mutually exclusive, evolutionary genetic mechanisms that have come into
play:

1. Humans have undergone a process of adaptation to the agricultural way of life with
respect to the impact of diets based on grasses and dairy products on human health,
function, reproduction, and chronic disease. This process of adaptation may or may not
be complete, as a function of the total time since each human population shifted from a
hunter-gatherer way of life to an agricultural way of life.

2. Humans have undergone adaptation to altered demographic patterns of survival and
reproduction, with changes to the first age of reproduction, the last age of reproduction,
and the shape of Hamilton’s forces of natural selection between those two ages. [Note
that all three of these features of the forces of natural selection could be different for the

two sexes, both before the adoption of agriculture and since.]
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3. Humans have undergone evolution in response to large-scale changes in effective
population size brought on by agriculture, with the most likely pattern being a substantial
increase in local deme size, relative to pre-agricultural population structure.

We will now discuss each of these factors in order, although what follows should be taken as

the start of a process of scientific evaluation, rather than a summative conclusion.

The Eftect of Dietaty Change on Human Aging and Late Life

Lindeberg (2010) has recently contributed an extensive discussion of the relationship between
different types of human diet and chronic human diseases, particularly those that could be considered
age-associated diseases. It is a key conclusion of his book that many features of the age-dependent
pathophysiology of chronic human diseases, such as cardiovascular disease or metabolic syndrome,
arise from the agricultural diet. Evidently, this mode of reasoning is based on the concept of
inadequate adaptation to the agricultural diet, with significant benefits to be achieved by switching
back to a diet that resembles that of a hunter-gatherer. Such arguments are founded on an assumption
of incomplete adaptation to agricultural diets.

Research on experimental evolution provides a useful perspective from which to evaluate
arguments like those of Lindeberg (2010), which are not unique in the anthropological or
epidemiological literature. Focused, sustained, and intense laboratory selection is sufficient to change
functional characters rapidly (vid. Garland and Rose 2009). That is, when natural selection is very
strong, experimental evolutionists would expect 200-400 generations of selection for adaptation to a
particular environment to be sufficient to produce extensive and effective improvements to the level
of fitness required to function in a novel selective environment. Data from the laboratories of Matos

(e.g. Simoes et al. 2009) and Rose (e.g. Rose et al. 2004), in particular, have shown a pattern of very
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rapid adaptation to novel conditions. This type of result seemingly impinges on the view of Lindeberg
(2010) and, for the present purpose, the relevance of the historical transition in human diet to the
interpretation of human aging, including the transition from aging to late life.

But there is an important omission in this line of reasoning. Given Hamilton’s forces of natural
selection, adaptation to a novel environment will scale according to age, when there is age-specificity
to at least some of the genetic variation that underlies such adaptation to the novel environment during
adulthood. That is, Hamilton’s forces scale the intensity of natural selection such that, qualitatively,
we can expect adaptation to agricultural diets to have proceeded very effectively at early ages, such as
those ages before and just after the first age of reproduction. But at later adult ages, we should expect
to see a quantitative and progressive reduction in the extent of adaptation to the agricultural diet. With
this factor in mind, we should expect a failure of Lindeberg’s (2010) reasoning at juvenile and early-
adult ages, but much greater applicability at later adult ages, for populations that have long sustained
themselves agriculturally. A crude but perhaps evocative way to convey this Hamiltonian effect on
human health is to say that, as one chronologically ages during adulthood, one is proceeding backward
in evolutionary time. As the human body undergoes this form of ‘evolutionary time-travel,” the lack
of adaptation to the agricultural diet will thus become steadily more important.

This argument is particularly important when considering the transition from aging to late life.
In effect, human aging is amplified, when human aging is viewed as the detuning of age-specific
adaptation during the course of the first phase of adulthood. There is the basic pattern of aging
generated by the Hamiltonian reduction in age-specific adaptation as adult age increases; this must
produce numerous accelerating forms of pathophysiology as a function of age. And added to this is a
pattern of detuned adaptation to the novel agricultural diet. This combination could have been a factor
in producing our much later transition from aging to late life, particularly given the pleiotropic echoes

of these two progressive detunings of adaptation acting in conjunction. However, this type of
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hypothesis needs further study, using both explicit evolutionary genetic simulations and laboratory
evolution experiments in which the age-dependent impact of adaptation to a novel environment can

be studied explicitly.

The Effect of Agticultural Life-History Change on Hamilton’s Forces of
Natural Selection in Human Populations

Regardless of the salience of views like those of Lindeberg (2010) and others (e.g. Eaton and
Konner 1985) regarding the effects of qualitative human dietary change in human evolution, the
adoption of an agricultural way of life must have radically changed the demographic patterns of human
survival and reproduction. One way to explain the very late transition from aging to late life in human
populations would be to propose that the demographic effects of agriculture were analogous to the
transition from early-life reproduction to later-life reproduction, which has been such a staple of
laboratory evolution experiments on aging in Drosophila (e.g. Rose et al. 2004). Thus, to give one
scenario, it could be argued that the adoption of the agricultural way of life might have led to three
consequential changes in human life histories: (i) postponed age of onset of reproduction, (ii) increased
rate of survival during adulthood, and (iii) increased fertility of humans, perhaps particularly males, at
later adult ages. All together, these effects would have been fully parallel to the life-historical regimes
characteristically imposed on populations like the D. melanogaster O populations of Rose et al. (2002),
populations that show a much later age of transition from aging to late life.

The simulations that we have provided in Chapter 3 (Figures 3-2 and 3-5) or Rose et al. (2002)
illustrate what happens during such evolutionary transitions as a result of altered life-histories: a
progressive wave of age-specific adaptation at later and later adult ages that, in turn, postpones the

transition from aging to late life. The advantage of this type of explanation is that it does not depend

187



Mueller, Rauser & Rose DOES AGING STOP?

on any feature of the evolutionary process which remains to be worked out. As we have shown here
in this book, using both numerical simulations and data from experimental evolution, this evolutionary
mechanism can readily generate a shift in the age at which aging stops. This isn’t to claim that this
evolutionary scenario is in fact the best, or the only, scenario for explaining the very late transition
from aging to late life in human populations; the present authors are not aware of anthropological
data that could confirm this hypothesized transition, as the nature of pre-agricultural demography
itself remains a point of some controversy (see Panter-Brick et al. 2001 for an interdisciplinary review

of pre-agricultural society).

Effect of Increased Effective Population Size on the Age of Transition to Late
Life

It was a surprising result of our explicit simulations of the evolution of the transition from
aging to late life that this age depended critically on effective population size. In particular, it was
initially counter-intuitive that a smaller effective population size produced an earlier transition to late
life, as shown in Mueller and Rose (1996, Figure 2). In retrospect, this effect can be understood
intuitively: reducing effective population size reduces the width of the range of adult ages over which
selection has a differential impact among ages, bringing forward the first age at which age-specific
characters are no longer differentiated with respect to the impact of natural selection. More formally,
the strength of selection (8) of new mutants will become smaller with reduced population size. Thus,
the frequency of strongly selected mutants (Figure A3-4) will be reduced. Mutants with small effects
are more likely to have their phenotypic effects on fitness restricted at late ages and hence the range

of ages not under the influence of selection increases.
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In the context of the transition from hunter-gatherer life to agricultural life, there is little
question that this produced broadly progressive increases in human population densities. This effect
alone then, in view of the simulated effects just described, must have increased the ‘effective’ last age
of reproduction in human populations. This population-size effect in turn is expected to lead to a
delay in the transition from aging to late life in human populations.

Thus we have three possible evolutionary mechanisms that can explain the relatively late
transition from aging to late life in contemporary human populations: (i) qualitative dietary and other
lifestyle changes; (ii) a demographic shift to later ages of reproduction; and (iif) increased population
sizes increasing the range of ages over which natural selection is effective. It is not our goal at this
point to decide which of these mechanisms is predominant, but further research on these alternative

mechanisms would be of great interest, in our opinion.

The Prospects for Radical Human Life Extension

It is a simple demographic point that greatly extending human functional lifespan, or
“healthspan,” would be much more easily achieved by shifting the age at which human aging stops to
much earlier ages. If the process of aging were stopped at the age of 40 years of age, for example, then
the capacity of modern medicine to sustain survival and function of people over that age would be
greatly increased. This does not mean that heart attacks, strokes, or cancer would no longer continue
to occur in individuals whose aging has been arrested at that age. Rather, such individuals would
continue to suffer from accidents impinging on their cardiovascular functioning, such as a wayward
thrombotic plaque, or the somatic mutation of a few cells in their lymphatic system producing a
lymphoma. But the raze at which such health ‘accidents’ occur would not continue its exponential rise.

This raises the possibility of medical interventions ‘rescuing’ those individuals whose aging has been
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arrested soon enough that they can be largely or entirely restored to the level of health they had before
the onset of a particular cardiac disorder, malignant tumor, or other medical problem. In effect, this
would allow indefinite survival, providing the aging process had been arrested at sufficiently early ages,
relative to the restorative powers of the available medical treatments.

The obvious puzzle that this scenario raises is, ow could we arrest human aging at an earlier
age than those ages at which it decelerates to a stop now, between 90 and 105 years of age? For an
organism that has had a stable evolutionary regime for some time, there is no certain or obvious
answer to that question, short of using experimental evolution.

But humans present a different, and intriguing, possibility. We have only recently started to
adapt to agricultural conditions. And that qualitative dietary transition has been associated with a
demographic revolution in our effective population sizes, our population structure, and our forces of
natural selection, as already discussed in this chapter. Is it possible that we could shift our aging pattern
to one in which the incidence of chronic age-associated diseases would be greatly reduced 7 we adopt
a lifestyle more like that of our hunter-gatherer ancestors? Lindeberg (2010), for one, evidently thinks
so. From the evidence presented in this book, however, more than our aging might be affected by this
lifestyle transition. It is worth at least mentioning that such a lifestyle transition might also change the
age at which the process of aging stops, moving that age to an earlier point. If an effect like this were
sufficiently great in magnitude, then the stabilization in underlying health achieved by a reversion to
our ancestral way of life in most respects could be sufficient to, first, shift the age at which our aging
stops to an earlier age, second, reduce our plateau mortality rate from then on, and third, thereby,
extend human healthspan to a remarkable degree, following the scenario described in the previous
paragraph. This bare possibility rests on several questionable conjectures, or at least conjectures

concerning which some degree of doubt is reasonable.
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But the existence of an age at which human aging stops is not a questionable conjecture, nor
is its potential malleability. The cessation of aging is neither a mythological possibility nor an
unchangeable feature of life history. Like most features of biological diversity, it is a tunable product
of evolution. In principle, anything microevolution can readily change can be modified with the
application of enough medical technology. This makes the idea of radically extending human lifespan
by changing the age at which human aging stops of potentially great practical significance, even if we

do not now know precisely how to achieve that objective.
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Chapter 12. Aging Stops: Late Life, Evolutionary Biology, and

Gerontology

Most biologists have assumed that aging proceeds progressively and unrelentingly until all
organisms in a cohort are dead. This has further given rise to the widespread view that the underlying
physiology of aging is one of unremittingly cumulative damage and disharmony. With the
demonstration that later adult life commonly does not have such features, the entire field of aging
research now must be re-cast, both with respect to its characteristic physiological hypotheses and with
respect to its relationship to evolutionary biology. Aging is the age-specific de-tuning of adaptation,

not a cumulative physiological process.

Yes, Aging Stops

Our position is that the formal theory and the experimental data that have been presented to
this point in this book amount to a case for the cessation of aging at the level of individuals, in turn
generating the cessation of demographic aging among cohorts. That is, we conclude that there is
reasonable support for the hypothesis that individuals who have reached demographic late life have
in fact undergone a change in the processes of deterioration which, in their aggregate physiological
effect, produce roughly stable average age-specific mortality and fecundity rates for each such
individual.

It might be useful if we reduce the fairly convoluted case that we have built to this point to a

series of itemized inferences which, together, amount to the gravamen of our brief:
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1.

In at least some cohorts that are kept under good conditions free of obvious contagious
diseases, predators, and environmental extremes, both age-specific mortality and age-
specific fecundity can roughly stabilize, on average, at late adult ages.

This pattern of stabilization in both age-specific mortality and age-specific fecundity at late
ages can be explained theoretically by the eventual plateaus of Hamilton’s forces of natural
selection, both in principle and in explicit numerical simulations.

Critical evolutionary experiments which shift the points at which these plateaus in the
forces of natural selection occur in turn lead to shifts in the ages at which demographic
plateaus start as predicted by Hamiltonian theory.

There is no direct empirical evidence showing that lifelong heterogeneity in robustness
generates late-life demographic plateaus in naturally configured cohorts.

Evolutionary theory suggests that the massive lifelong heterogeneity required to explain
late life on purely demographic grounds is unlikely to exist in natural populations, because
natural selection would act to eliminate it.

There is empirical evidence showing that lifelong heterogeneity in robustness does 7ot
generate late-life demographic plateaus in naturally configured cohorts.

Plateaus in late-life fecundity can be obscured by the process of dying.

The physiology of late life is complex, but it can be distinctly different from the general
pattern of deterioration that characterizes aging.

Humans show demographic cessation of aging with respect to late-life age-specific
mortality rates, although there are many uncertainties associated with the explanation and

interpretation of these data.
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Our conclusion is that we have answered our basic question: aging does indeed stop. Thus
aging is followed by a third phase of life, which we call late life, a phase that is fundamentally different
in its evolutionary foundations and its physiology.

We now turn to the general implications of this conclusion.

Parallels between the Cessation of Aging and the Speed of Light

It is a cliché of the historiography of science to say that Einstein revolutionized physics,
supplanting the essentially ‘Newtonian’ paradigm that had prevailed before 1905, the year Einstein
published five groundbreaking papers. Of course, the Newtonian paradigm was initiated by Galileo
and greatly improved by Newton’s successors, such as LaPlace. But the term Newtonian in physics is
as fair as the term Darwinian is within biology, in that it honors the key figure who provided the first
well-worked out foundations for physics, so that it could become the highly successful science that it
has been over the last few centuries. Similarly, Finstein was not alone in undermining the prevailing
Newtonian paradigm. Others, such as Minkowski, supplied better-developed versions of relativistic
mechanics. And Einstein was not involved in the key experiments, such as those of Eddington, which
supplied the ‘strong inference’ tests of Einstein’s ideas. But the ‘headline’ characterization of the
revolutionary effect of Einstein’s work is essentially correct.

What is less noticed in the headline version of Einstein’s revolution is that it started from
empirical paradoxes that most physicists, before 1905, were generally ignoring. Among the most
important of these paradoxes was that the speed of light was always ¢, never more or less, even if the
object emitting light was not stationary. That is, one of the key assumptions of classical Newtonian
mechanics, the additivity of velocities, was clearly violated by photons. Physicists knew this, but they

weren’t doing anything about it, at least at the level of re-examining their fundamental assumptions
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about mechanics, energy, space, and time. From this unraveling thread, Einstein disassembled the
tapestry of Newtonian mechanics, replacing it with his relativistic mechanics.

Our view, as we have argued before (Rose et al. 2000), is that the cessation of aging is as
significant for the fields of gerontology and demography as the constancy of the speed of light was
for physics. In this volume, we have mounted a case for the view that aging does indeed stop.
Furthermore, we contend that we have reasonably falsified the attempts of those who do not accept
our conclusion, and instead believe that the aggregate demographic cessation arises from lifelong
heterogeneity producing a within-cohort shift toward predominance of individuals who are more
robust throughout adult life. However, we concede that there is no limit to the range of novel
demographic models that can be constructed to evade our attempts to falsify such lifelong
heterogeneity theories. But until new arguments are mounted that reinstate the traditional view of
unremitting aging, arguments that we cannot summarily dismiss on substantive or methodological
grounds, we assume henceforth that conventional views of aging are as undermined as Newtonian
mechanics, with the cessation of aging playing the role of the constancy of the speed of light in
undermining the longstanding traditional view of unremitting aging (cf. Rose et al. 2006; Rose 2007).

In this last chapter, we spell out what we see as the extensive consequences of this

revolutionary situation.

Significance for Evolutionaty Biology

In works like Evolutionary Biology of Aging (Rose 1991), evolutionary biologists were content to
claim to have explained the commonplace observations of gerontology: the ubiquity of aging among
strictly ovigerous species, the absence of aging among symmetrically fissile species, the phylogenetic

diversity of demographic patterns and physiological mechanisms of aging, and so on. Up until that
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very year of 1991, the intuition of evolutionists was that once Hamilton’s forces of natural selection
had reached zero, death and sterility were inevitable and likely to occur very soon after that point. But
the lengthy demographic plateaus in medflies published by Carey et al. in 1992 were a direct assault
on that simple-minded interpretation. An interesting historical note is that the appearance of plateaus
in demographic data were in fact described well before 1992 (Greenwood and Irwin 1939; Comfort
1964), but were largely ignored, probably because those data primarily came from human populations.

After some discomfiture in the face of the Carey et al. (1992) and Curtsinger et al. (1992)
publications, Mueller and Rose (1996) and Charlesworth (2001) were able to right the overturned boat
of Hamiltonian theory, as we have explained here in some detail, as well as developing this
Hamiltonian theory further. Hamilton’s equations had always allowed the possibility of the evolution
of demographic plateaus; evolutionary biologists just hadn’t done the numerical and mathematical
work required to see this. We think that there are several lessons to be learned within evolutionary
biology from this turn of events. These lessons revolve around why this failure of intuition occurred.

At the most basic level, the failure of evolutionary biologists like ourselves to understand
Hamilton’s equations propetly is characteristic of scientists generally. Whenever we step away from
the direct and formal corollaries of our theories, we are essentially guessing. A scientist who knows
the formal theory that is proximal to their guess may do a better job than a person, be they scientist
or not, who does not know that formal theory. But there is the possibility that the manner in which
scientists use their formal theory tends to lead them astray.

In the case of Hamiltonian theory, we think that the intuitions of evolutionists were blinded
by two things: (1) simple-minded extrapolation; and (ii) simplified population genetics theory. During
the period over which the forces of natural selection are steadily falling, at the start of the adult
reproductive period, mortality rates are expected to rise consistently, providing one’s analysis is

couched in terms of age-specific genetic effects on mortality rates. Similatly for the evolution of age-
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specific fecundities, they too are expected to fall. These theoretical assumptions give rise to an
expected pattern of steadily falling age-specific survival and fecundity characters. It is thus intuitively
natural to extend these falling curves to age-specific survival probability and fecundity both achieving
zero values in a reasonable, finite, period of time.

The intellectual sleight of hand in this intuitive inference is the implicit dismissal of
interconnectedness between ages. Yet decades of work have revealed abundant evidence for
pleiotropic interconnection between life-history characters at different ages, both antagonistic
pleiotropy and non-antagonistic pleiotropy, or what de Grey (2007) has called ‘protagonistic
pleiotropy.” Both of these patterns of pleiotropy are in turn natural consequences of the
interconnectedness of the genomic, proteomic, metabolomic, ef cetera networks that have been
detected in abundance over the last decade or so. That is to say, there are few things /ess plausible than
the idea of strictly age-specific genetic effects, because genetic effects are generally #of strictly focused.
Rather, they radiate through large networks, and these effects will generically be dispersed in
physiological time.

Here we have presented experimental evidence for both types of pleiotropy. Late life is
antagonistically connected to early adult life-history characters. Once selection for eatly reproduction
is reintroduced in populations that have not been recently selected for early reproduction, like the
reverse-selected derivatives of the O populations we have discussed in detail in Chapters 4 and 5, both
late-life age-specific mortality and fecundity characters rapidly evolve (Rose et al. 2002; Rauser et al.
2006). And on the other hand, the strictly positive values of average age-specific mortalities and
fecundities during late life are evidence for protagonistic pleiotropy, that is, beneficial effects at later
ages arising from selection acting at earlier ages. Otherwise, age-specific survival and fecundity would

fall to zero at late ages.
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This extensive pleiotropy in turn produced a situation in which the non-pleiotropic age-
specific intuitions of evolutionary biologists were systematically misleading. It required explicit
calculations, such as those of Mueller and Rose (1996) or Charlesworth (2001), for evolutionary
biologists to ‘get over’ their misleading intuitions.

Furthermore, our own initial intuitions were that the transition from aging to late life might
be an obdurate feature of life history. This intuition was first somewhat undermined by the obvious
and extensive differentiation of breakdays among our long-standing Drosophila populations, as
described in Chapter 4. Then this notion was definitively demolished by the speed with which reverse
evolution of only 20 or so generations shifted the breakdays of our populations with respect to both
mortality (Rose et al. 2002) and fecundity (Rauser et al. 2000), as described in Chapter 5.

We detect two basic sources for the errors of interpretation that we committed. The first type
of error is a commonplace one among scientists who work in fields with mathematical theories. In
order to get analytical and general results, theoreticians in fields like physics, economics, and
population genetics characteristically assume away potential complexities. They are forced to do so
because otherwise they face a proliferation of higher-order terms in their equations that not only make
the calculation of equilibria and trajectories difficult, they make the evaluation of local and, still worse,
global convergence to attractors (which may be either equilibria or trajectories) still harder, at least for
the human mind. Such simplification is not necessarily dangerous if the scientists who use such
simplified theories realize that there are hazards that arise from such simplification. In particular, if
numerical examples are generated computationally that explore the sensitivity of theory outcomes to
structural variation in the equations, then scientists may have a fairly good sense of how well they can
generalize from their simplified analytical theories.

Problems can, and in the present case demonstrably did, arise when such numerical

calculations are not performed. In effect, what the Mueller and Rose (1996) study did was explicitly
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calculate what age-structured population genetics theory actually implies when the full life-history is
considered, going well beyond the period when the forces of natural selection are falling rapidly with
respect to age. That is, we moved beyond the ‘local’ or low adult-age cases to look at the more global
pattern of the evolution of demography, as we present in some detail in Chapter 3. Doing so naturally
generated Gompertzian mortality dynamics for the initial period of adulthood, with ‘bending’ or
decelerating mortality dynamics thereafter. This broke-down our natural, but simplified and
extrapolationist, intuitions with respect to the long-term trajectories of mortality as a function of age.
This then led us on to perform similar calculations for the evolution of age-specific fecundity (Rauser
et al. 2006b), with similar results.

Having obtained these results theoretically, and then corroborated them experimentally, we
have reached the point where we have still less trust in the hand-waving sort of extrapolations that
evolutionists too often make based on highly simplified formal theory. This is not an argument in
favor of merely verbal theorizing. We regard that as still /ss reliable than generalization from simplified
mathematical theory. Instead, it indicates the need for still more use of computational tools, whether
computer-generated algebra or simple numerical iteration of dynamical equations, in the interpretation
of formal theories. In a sense, this suggests that evolutionary theory has reached a point like that of
modern physics, in which the human mind can no longer generate predictions for experimental results,
not even with the aid of analytical theory. Now we have to use explicit computation to lead us to our
experimental predictions, not simple verbal formulations.

A general expectation about the evolution of late-life was that there ought to be a wall of
mortality where in fact survival goes to zero (vid. Pletcher and Curtsinger 1998). This expectation
follows from the simple logic that if the fitness effects of changing survival at very late ages are
essentially zero, then evolution by natural selection is free to allow these survival rates to decay to

zero. However, as outlined in some detail in Chapter 3, the dynamics of these systems do not follow
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these simple expectations. When mutants have pleiotropic effects on a range of age classes and
random genetic drift is taken into account, mortality plateaus persist. In fact, populations will drift

away from the evolutionary “optimum” (see Figure A3-5).

Gerontology Based on Cumulative Damage or Programmed Aging is Defunct

We have devoted a great deal of this book to the difficulties facing the major alternative theory
that late life arises from lifelong heterogeneity, because we take that theory as the “last stand” of the
ubiquitous assumption within gerontology that aging is a cumulative and unremitting process. Our
view is that this conventional assumption is erroneous, and that the existence of a late-life phase in
which individual organisms themselves undergo a stabilization in their capacity to survive and
reproduce is a fatal refutation for this theory.

The corollaries of this conclusion, if it is accepted, are extensive and profound. Conventional
biochemical, molecular, and cellular theories of aging that presume some ineluctable process of
breakdown, akin to rust or progressively increasing disorganization, are, in our opinion, defunct. This
does 7ot imply the absence of cumulative damage or disrepair. The declining forces of natural selection
can lead to failures of repair as part of the deterioration of age-specific adaptation that arises with the
falling forces of natural selection. Or they may not. In particular, the mere existence of a possible
source of damage, or the demonstration that a particular form of damage or disrepair arises in a
particular organism during a particular part of its life history, is not a warrant for inferring that this
type of damage will be ubiquitous and continuing among all organisms. Thus free-radical damage,
which undoubtedly does occur in some organisms at some points in their life histories, is not correctly
generalized as a universal and ineluctable type of damage that ensures or determines aging. It is merely

a biochemical processes that conditionally may, or may not, be part of the pattern of aging in a
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particular species for a particular period. And this reasoning can be extended ad infinitum. The
foundations of aging are not to be found in physics or chemistry, but in the patterns of the forces of
natural selection.

There is an alternative conventional, indeed long-standing, theory of gerontology in its classic
20™ Century form: the programmed theory of aging. According to this theory, in its original form,
species have specific genetic programs that have evolved to cause aging in a predictable manner. This
theory is true, in some sense, for the senescence of erythrocytes, flowers, and perhaps worker bees.
That is, evolution can select for the deterioration or elimination of specific structures or individual
organisms that are part of a larger evolutionary unit, be it a mammalian body, a plant, or a social insect
colony. The notion that such programmed deterioration leading to death is a valid general explanation
of aging has been rejected among virtually all evolutionary biologists and, to a lesser extent, among
many gerontologists. Only when there is a strong type of group integration, such as that which subsists
among the cells of a multicellular animal, is programmed aging likely to underlie the aging of a
particular component cell, structure, or organism.

There is a more recent insinuation that is common in the gerontological literature of today,
which has some affinities with the programmed theory of aging. This insinuation is that aging is
‘regulated.” If this merely means that aging is affected by signaling pathways, then it is a relatively
innocuous, if distracting, usage. Adaptation generally involves signaling pathways; thus its age-specific
breakdown among adults as a function of age, meaning aging itself, may involve signaling pathways,
just as aging can involve any aspect of adaptation, so long as that aspect of adaptation has some age-
dependence during adulthood.

Thus to refer to the ‘regulation of aging’ is either a merely verbal flourish, of some comfort to
those cell biologists who like to think in terms of the regulation of any biological process, or it is an

illegitimate attempt to resurrect the programmed theory of aging, when such aging does not refer to
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the selectively favored deterioration of a component part of a larger group or other type of
supervenient unit undergoing natural selection. In either case, the usage is of little substantive value.

The demise of both cogent ‘damage’ and ‘programmed’ theories of aging leaves the field of
gerontology with little in the way of useful theory for aging outside of the Hamiltonian theory for
aging that evolutionary biology can supply. Furthermore, and as a natural consequence of this
situation, conducting gerontological experiments without the guidance of evolutionary biology is
necessarily hazardous. On the Hamiltonian view articulated throughout this book, the study of aging
is the study of the transient breakdown of age-specific adaptation, arising from declining forces of
natural selection, a breakdown that can come to an end before the last member of an artificially
protected cohort dies. As such, studying the aging phenomenon, including its rate and its cessation,
without attention to the methods, strictures, and potential artifacts developed or discovered by
evolutionary biologists over the last 150 years risks errors both systematic and incidental. And not
least among these methodological issues are those that have arisen from Hamiltonian research within
evolutionary biology, the research that is squarely founded on the consequences of Hamilton’s forces
of natural selection (vid. Rose et al. 2007).

Put another way, we believe that gerontology needs to be re-founded on Hamiltonian
principles and discoveries. This re-founding does not imply that obdurate empirical discoveries that
are now part of gerontology should be discarded. But the conceptual framework and experimental
plans of gerontology should be appropriately re-cast in Hamiltonian terms.

There is little in the historical, sociological, or psychological study of scientists which suggests
that most gerontologists will find the perspective offered here the least bit congenial. Generally, their
training is in biochemistry, molecular biology, or cell biology, because the common view among
gerontologists since the 1960s is that these three fields supply the foundations for gerontology. In

particular, the apparent non-Darwinian biases of the funding agencies that support a large fraction of
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the gerontological research within biology will not be easily overcome. In any case, the present bias
permeating the American biomedical establishment is that the foundations of medicine are to be found
in cell and molecular biology.

It often takes a long while for the academic and scientific community to transition from one
prevailing way of thinking about a particular subject to another, even when all of the empirical
evidence points in the other direction, as is the case in gerontology. And although good science does
not always immediately prevail in the world of academic research, it eventually does. [The cliché is that
it does so “one funeral at a time.”] While the futilities of mainstream gerontology continue unabated,
future generations of all types of biologists will see the errors of its present mainstream as clearly as

evolutionary biologists do now.

Implications for the Medical Control of Human Aging

Part of the reason why gerontological research without Hamiltonian foundations will
eventually wither is that it provides few useful leads concerning the medical control of human aging.
Indeed, its common presumption that there is anything to be defined specifically as the ‘aging process’
only leads it to methodological paradoxes and problems. For example, it is often said that, “Rather
than attempting to treat heart disease or cancer specifically, if we could just stop the undetlying aging
process itself then medical progress would be much faster.” Or, in the imaginatively articulated
program of Aubrey de Grey’s SENS, all we have to do is reverse seven specific types of cell-molecular
damage and we will completely recover our youthful health (e.g. de Grey and Rae 2007). Yet, on a
Hamiltonian view, there is no physiological process of aging, only a lack of adaptive information built

by natural selection at later ages (vid. Rose 2009). And in particular, this failure of adaptation is
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expected to produce vastly more different kinds of pathophysiology than could conceivably be
remedied by repairing just seven specific types of cumulative damage.

Unlike cell-biological prescriptions such as those of SENS, which reflect the zombie-bank
theories of conventional gerontology, Hamiltonian research on aging has some very promising insights
and possibilities for technological intervention into the human aging process, as follows.

1. As presented most completely in this book, aging is #of necessarily an unremitting process
that proceeds until all members of a cohort are dead and sterile. This implies that
substantial improvements to the physiological machinery that underlies health do not
require halting a devastating and accelerating process. Instead of bending down a curve of
endlessly accelerating mortality, the control of aging requires instead that we slow
processes of deterioration that, in some cases, come to an end on their own during late
life.

2. As shown repeatedly in the Hamiltonian research of the last few decades, it is trivially easy
for biologists to produce much longer-lived organisms by altering the forces of natural
selection. Both the rate of aging and the age at which aging stops can be altered by
experimental evolution. And since experimental evolution works through perfectly
ordinary changes in allele frequency, there is the prospect of emulating the biochemical
effects of such allele frequency change by pharmaceutical and other medical interventions.
In particular, when there are genomic tools available, the utilization of genomic,
proteomic, metabolomic, and other types of ‘omic’ information derived from longer-lived
model organisms will provide numerous leads and insights into the best choice of medical
intervention, locus-by-locus, disease-by-disease, and molecule-by-molecule. For it is not
molecular or cell technologies which are the problem in mainstream gerontology, only the

conceptual equipment of that type of gerontology.
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Envor

While our biomedical colleagues may find our perspective on aging chilling, if not perverse,
there is nothing unusual about evolutionary biologists upsetting their colleagues in the rest of biology.
One of Darwin’s key points in Origin of Species was the displacement of the, then entirely conventional,
invocation of theistic special creation of adaptations as a key explanatory tool of biologists. Evidently,
he wanted to replace special creation with natural selection. In the same way, we propose to replace
the, now entirely conventional, conceptual edifice of gerontology with one founded on the formal
analyses of Hamilton (1966), Charlesworth (1980, 1994), as well as Mueller and Rose (1996) and
Charlesworth (2001), among others. Specifically, we want to replace notions of relentlessly
accumulating damage and disharmony with the age-dependent tuning of natural selection by
Hamilton’s forces of natural selection. The demonstration that aging stops is, for us, the final nail in
the coffin of theories which assume that aging is a merely physiological process akin to rust. We invite
our gerontological colleagues to join us at the funeral of the 20™ Century version of their field. We
think that the 21* Century Hamiltonian version will be much more promising, both scientifically and

medically. After all, science advances one funeral at a time.
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Appendices

Appendix — Chapter 3

Baudisch’s Challenge to Hamiltonian Theory

We need to address a recent challenge to the use of Hamilton’s forces of natural selection in
evolutionary theory. Specifically, the generality of Hamilton’s results has been challenged by Baudisch

(2005, 2008). In Hamilton’s derivation, the function s(x) was derived by implicitly differentiating the

dr

Euler-Lotka equation [X5- e " I(y)m(y) = 1] and finding the partial derivative pm

where p, is
NpPa

the survival from age z to age a+1. A new and different approach to the problem of aging was
suggested by Baudisch (2008, pg. 22), who proposed that “Equally reasonable, alternative forms would
have been dr/dp., dr/ dq., dr/dn g, or dr/dnlg”, where ¢, = 1-p,, and In Ug=-In p,. Here we address
the cogency of this claim that these alternatives are equally reasonable.

Consider a simple single locus genetic model with two alleles. The three genotypes A4,
ArAz, and AxA, differ in their probability of surviving from age @ to a+1 according to Pii(a), Pix(a)
and Px(a). All other survival probabilities and fecundities are the same. Then in a population nearly

fixed for the 4, allele the allele frequency dynamics of the rare 4, allele is approximately

Ap, = pr(1 — Pz)apsn(a)Tﬂla (A3-1)
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where 511(@) is defined in Equation 3-1 using the genotypic survival values for genotype A4y, Tii is
the generation time produced by the genotypic survival values for genotype A4 and a(p) is piln Pra(a)
+ poln Pr(a) — piln Pii(a) — poln Pia(a). So the sign of Equation A3-1 is determined by o(p) and the
magnitude of the change in p» is determined by the product a(p) si1(a).

Explicit population genetics models for survival show that the fate of alleles at a single locus
are dependent on the genotypic equivalent of s(x) (Charlesworth 1980, pgs. 207-208). We do not have
equivalent results for the other proposed measures of Baudisch and therefore her proposed fitness
measures do not have equal standing with Hamilton’s original measure. Put another way, in terms of
explicit population genetics, Baudisch’s proposed indices have no well-founded basis.

To make the problem with the theory proposed by Baudisch more concrete, consider the
following example. The survival and fertility patterns shown in Figure A3-1a produce very different
curves for Hamilton’s index of the strength of selection on mortality (s(x)/T) and one of Baudisch’s
indices (dr/dln  Jabeled B. in Figure 3-2b). Hamilton’s index shows the expected pattern in the
declining streng;ﬁ of selection with age (Figure 3-1b). Baudisch’s index shows a maximum impact of
selection at age 2, not 1 (since B. measures the effects of changing mortality on 7 it yields negative

values, and the larger the negative value the greater the impact of selection at that age).
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Figure A3-1. An example of two different indices of age-specific selection. (a) The survival (4) and fertility (#z)
functions; and (b) Hamiliton and Baudisch force of natural selection indices for the life-table in (a).

To study the behavior of these indices we followed the change in allele frequencies for 10,000
generations after introducing a mutant with increased survival at age 1, 2, 3, or 4. The expectation is
that the greater the force of natural selection the greater the increase in allele frequency over this fixed
period of time. In other words, this analysis does not rely on an index of selection, but rather on the
observed dynamics of allele frequency change. We do #of assume any particular force of natural
selection; we let the simulated dynamics determine the outcome of selection. The shape of Hamilton’s
function in Figure 3-1b suggests that the allele frequency change should be smaller with each
increasing age. Baudisch’s index predicts that the strength of selection will be greater at ages 2, 3, and
4 than at age 1.

The outcome of natural selection shown in Figure A3-2 was calculated using Equations 3.14
from Chatlesworth (1980), which do not make any assumptions about the strength of selection, unlike
Equation A3-1. The outcome of selection follows the qualitative predictions from Hamilton’s index
and is contrary to Baudisch’s expectations (Figure A3-2). We conclude there is no reason to expect

that Baudisch’s indices of selection will propetly predict the actual effectiveness of natural selection.
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Figure A3-2. The numbered lines show the change in allele frequencies for beneficial mutants that affect age-specific
survival at ages 1, 2, 3, or 4 respectively. In each case the mutant started at a frequency of 0.01.

Numerical Details for Calculations in Figure A3-2.

We assumed a single locus with two alleles, 4 and 4. The resident population is assumed to
be fixed initially for the .4, allele, and then a small frequency of the 4, allele is introduced and followed
over time. The resident 414, life history consists of 35 age classes. The maternity function has 7. =
0.5 for x = 1...29, and m. = exp[0.978x(30-x)] for all other ages. The survival function is 4 = 0.99*".

The resident population was assumed to be at its stable age distribution.
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The new mutant, 4>, was assumed to affect survival for one age-class (p.). In particular, the
heterozygote was assumed to have a survival equal to 1.0025p., while the homozygote mutants had a
survival equal to 1.005p.. The simulation was started by making the frequency of the .4, allele 0.01 in
all age classes. Allele frequency dynamics were predicted from Equations 3.14 from Charlesworth
(1980). We also ran numerical calculations in which mutant survival was changed additively, e.g.
heterozygote survival was p. + 0.0025 and homozygote survival was p. + 0.005. The results were very

similar and are not shown here.

Post publication Update

Since publication of our book it has been suggested that a more appropriate test of the
Baudisch theory would consist of multiplicative in the log of mortality rather than additive changes
(we thank David Bahry for this suggestion). Accordingly we repeated the numerical calculations above
by decreasing mortality at ages 1-4 and 6, creating mutant heterozygotes with log mortality decreased
by 20% and mutant homozygotes by 40%. From Figure A3-1(b) the Baudisch prediction is that
mutants at ages 2 and 3 should be under stronger selection than age class 1. In Figure A3-2.1 we see

that indeed the mutants at ages 2 and 3 increase at a faster rate than at age class 1.
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Figure A3-2.1. The numbered lines show the change in allele frequencies for beneficial mutants that affect age-specific
survival at ages 1, 2, 3, 4 and 6. In each case the mutant started at a frequency of 0.01 and mutants log mortality was
decreased relative to the mutant.by a factor of 0.8 (heterozygotes) and 0.6 (homozygotes).

The multiplicative changes in log mortality result in relatively greater changes in mortality than do
similar additive changes to log mortality. This combined with the very rapid increase in late-life fertility
[Figure A3-1(a)] is responsible for the departure from the Hamilton predictions. Of course the
experimental results of Rose (1984b) showed that selection could be changed to favor late-life genetic

variation if fertility in late-life was sufficiently increased.

Evolution of Late-Life Simulation Details

The simulations were written in R (version 2.10). Fitness was determined from the single
positive, real root of Equation (3-2) using the R function wniroot. Uniroot uses an enhancement of the
bisection technique, and therefore does not require that the function be differentiable, but it does
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require that it have a single maximum in the specified interval (Brent 1973). The solutions returned by
uniroot had precisions of approximately 7x10”. This leaves open the possibility that some fitness
estimates may differ by less than the precision of our fitness estimates, and thus we would make
erroneous conclusions about fitness differences if we used the entire number of machine-significant
digits. To circumvent this, we multiplied our solution by 10° and converted this real number to an
integer, thereby removing all the non-significant digits. Of course, mutants whose fitness was the same

as the resident could only increase in the population by genetic drift.

Relative Roles of Drift and Selection

At each cycle we have three fitness values, resident, heterozygote mutant, homozygote mutant
symbolized as 7:/+, 74/, and 7,,, respectively. We then rescale these fitnesses to 1, 1+sh, and 1+s.
Although the heterozygote survival is chosen to be exactly intermediate between the resident and
mutant homozygote the fitness is not necessarily intermediate. In fact, we have occasionally found
overdominance in fitness. If the initial frequency of the mutant is x, then the probability that a new

mutant will be fixed is given by,

() = o XPLBYCRya-2m)1dy
0 Jy exp[-By{2h+y(1-2h)}]1dy

(A3-2)

where B = 2N.s. In the simulations a uniform random number (u; € (0,1)) is generated and if u; <

m(xo) then the mutant is fixed by drift (Ewens 1979, Eq. 3.28, pg. 83).
We first show the results of a simulation with no genetic drift, so that all beneficial mutants

are established not matter how small their fitness advantage and all deleterious and neutral mutants

212



Mueller, Rauser & Rose DOES AGING STOP?

are eliminated (Figure A3-3). Although the results show a plateau in late life with very high mortality
we stopped this simulation after generating 10,000 mutants and we know we were not at selection
equilibrium. The primary point of interest here is the strength of selection on new mutants over the

course of evolution.

1.0

Initial mortality

0 20 40 60 80 100
Adult Age

Figure A3-3. Evolution of mortality with no random genetic drift. The lines show the evolved mortality after 1,000,
5,000 and 10,000 cycles of introduced mutants. Mutants wete generated according to Equations 3-2 and 3-3 with §=0.1
and ®=10.

"m/m

Let’s define the selection coefficient of a new mutant as, s = — 1. The strength of

T+/+
selection relative to drift is then assessed by the parameter f = 2N,s, where N, is the effective

population size. Neutral genetic vatiation corresponds to =0, although drift can has a strong affect

on the fate of new genetic variation when [ is small. The empirical density function of f3’s after 1000,
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introduced mutants and 10,000 introduced mutants is shown below (Figure A3-4). After 1000

introduced mutants nearly 21% of all possible mutants have f>1 whereas after evolution has

proceeded through 10,000 introduced mutants only 1.5% of all possible mutants have 3>1.

0.04

003 N XXX XX 1)000 Cycles
— 10,000 cycles

Density

0.02 - f
0.01 - .5

0.00 +

-400 -300 -200 -100 0 50
b (N,=10,000)

Figure A3-4. The strength of selection (b) after 1,000 and 10,000 cycles of evolution shown in Figure A3-3. 3 was
calculated assuming an effective population size of 10,000 and used the fitness of all possible mutants at each of the two

cycles. The selection coefficients were based on the resident phenotype’s fitness at each of the two cycles.

Every 500 cycles in the simulation shown in Figure A3-3 the selection coefficients of all
possible mutants was calculated and the largest saved. With these values the largest values of 3 are
shown in Figure A3-5 over the 10,000 cycles of evolution. These results are consistent with Figure

A3-4 in showing that as evolution proceeds the magnitude of selection weakens. By 4,000 cycles all

mutants have 3’s less than 10 and by 8,000 cycles they are all less than 5 (Figure A3-5).
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Figure A3-5. The maximum possible strength of selection () among all mutants every 500 cycles of the simulation
shown in Figure A3-3. These are not necessarily the actual strength of selection for the mutants that were introduced
each cycle. As evolution progresses it is clear that the fitness range of positive mutants is getting closer to zero.

The picture that these results suggest is that as evolution proceeds the impact of evolution on
the evolution of mortality is increased steadily. Thus, by the time all ’s are less than 5 their chance of
ultimate fixation is less than 50% even when they start at an initial frequency of 0.1 (Figure A3-6). If
the initial frequency of mutants is even less than 0.1 then the role of drift expands over a much greater

range of positive mutants (Figure A3-0).

215



Mueller, Rauser & Rose DOES AGING STOP?

1.0

'O
o0
!

=
o)
1

'CD
~
1

Initial allele frequency
—— 0.001

—o— 0.1

Probability of Fixation
o
\S)

0 10 20 30 40
b

Figure A3-6. The probability of fixation for beneficial mutants at two initial allele frequencies. The probabilities were
calculated from Equation A3-3, assuming /=0.5.

To illustrate the effect of drift we carried out a new simulation that started from the same
initial conditions and the same set of parameters for new mutants as Figure A3-3. However, instead
of randomly generating new mutants at each cycle we computed the fitness of every new possible
mutant (8,372 total) at each cycle and then chose the mutant with the greatest fitness to be the new
resident phenotype. If there was more than one mutant with the maximum fitness we chose the new
resident at random from all the maximum fitness mutants. In this sense we did a hill climbing search
up to the maximum fitness plateau of this evolutionary process.

The search stopped when the fitness of all new mutants was less than or equal to the resident
fitness. The final phenotype reached by this process is show in Figure A3-7 and labeled “Maximum
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fitness phenotype”. At this equilibrium there were 4,102 mutants with the same fitness as the resident.
Since the fitness was estimated to 8 significant digits it is possible that there would still be beneficial
mutants had we computed fitness more accurately. However, the selection coefficient for these
mutants would be on the order of 2x10°®. For B to be greater than 4 and selection to have even a small
chance of influencing the fate of these mutants, we would need an effective population size greater
than about 100,000,000. This calculation drives home the point that drift will dominate this

evolutionary process well before a selection equilibrium is reached.

1.0 1 Maximum fitness
phenotype
0.8 -
Q 0.6 I Maximum fitness
= + drift
5
= 0.4 -
0.2 -
0.0 -mmmmnmi——j

0 20 40 60 80 100
Adult Age

Figure A3-7. The effects of drift on the evolution of late-life. The initial mortality schedule was set equal to the same
schedule as shown in Figure A3-3. When then used the maximum fitness searching routine described in the text to find
the “Maximum fitness phenotype”. The plateau mortality is close to but not equal to 1. We then started a new simulation
using the “Maximum fitness phenotype” as the starting condition. We randomly generated mutants and allowed drift to
influence their fate. The evolved phenotype from that simulation is labeled “Maximum fitness+drift”. The effective
population size was 10,000 and the initial frequency of mutants was set to 0.1.

To illustrate the effects of drift we have taken the “Maximum fitness phenotype” in Figure

A3-7 as the starting point for evolution of random mutants with drift added. The effect is that many
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neutral mutants and in fact some deleterious mutants now sweep through the population and result

in a dramatic decline in the height of the plateau (Figure A3-7, Maximum fitness+drift curve).

Other Models of Mortality Plateaus

Optimality models: Abrams and Ludwig (1995) construct an optimality model based on the
disposable soma theory of senescence. They take the reproductive schedule of the organism as fixed
and assume the survival schedule is optimized by natural selection. Survival and reproduction are
connected through resource allocation. When resources are allocated to reproduction, mortality
increases. Thus, if mortality at age 7 is initially p;, after allocation it is p; +a. Reproduction, #(a), is an
increasing function of 4, and #,(0)>0. Abrams and Ludwig look at a variety of functional forms for
m(a). Most of the models considered by Abrams and Ludwig do not produce plateaus. They interpret
late life plateaus in medflies and fruitflies as consistent with this theory since “The disposable soma
theory that we have modeled predicts that aging should cease at an age when reproductive
contributions decline to zero. ...the leveling of the mortality curve late in life for medflies and fruitflies

.. is consistent with aging ceasing after reproduction terminates” (Abrams and Ludwig 1995, pg.
1064). However, as shown in this book, reproduction in Drosophila does not cease in late life, so
optimality theory does not illuminate the cause of plateaus in fruit flies and, as Abrams and Ludwig
themselves point out, is apparently contradicted by the very late onset of plateaus in humans.

Directionality theory: This theory developed by Demetrius (1997) is designed for age-
structured populations. It assumes that the appropriate measure of fitness is entropy. If Ax) is the
probability that an individual survives to age-x, 7(x) is the mean number of offspring produced by an
individual aged-x, and ris the intrinsic rate of population increase then we can define p(x) = exp(-7x)

Ax) m(x), and entropy (H) is defined as,
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Iy p(x) log p(x)dx
f0°° xp(x)dx

Demetrius (2001) uses an analytical technique also used in the classic paper by Hamilton (1966)
to infer the effects of natural selection on survival. He determines the partial derivative of entropy
with respect to age-specific survival. Under ecological conditions that limit growth, entropy is expected
to increase by natural selection, thus positive partial derivatives favor the increase of survival while a
negative partial derivative would favor a decline.

The results of this theory are illustrated with an example used by Demetrius, human life table
data from Sweden in 1835. Figure A3-8 displays the example used by Demetrius (circles) and a slightly
altered example with constant mortality in the last three age-classes (triangles). We see that even when
there is already a mortality plateau, directionality theory predicts that late-life survival is favored to
increase (e.g. the strength of selection is positive in age classes 9 and 10). Increasing survival to age
class 9 and 10, without increasing survival to age classes 7 and 8, can only be accomplished by

decreases in late-life mortality. Such decreases would cause an actual drop in late-life mortality.
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Figure A3-8. The strength of selection on age-specific survival for two life tables. The circles show results for the
example given in Table 2 of Demetrius (2001). The triangles are the same data except the last three age-classes have a
constant mortality, e.g. are at a plateau. To get the correct mortality for age class 4 the erroneous sutrvival for age class 3
must be changed from 0.94844 to 0.64844 (see Table 2, Demetrius 2001).

Although there are occasional unreplicated examples of declines in late-life mortality, this does
not seem to be a repeatable or pervasive feature of late-life mortality. For instance, compare the
mortality of inbred Drosophila lines studied by Fukui et al. (1993) to the populations studied in the
same lab in a later experiment (Fukui et al. 1996). The former experiment shows mortality declines at
late life, while the latter study only display plateaus with no substantial dips in mortality late in life.
Likewise, none of the studies of outbred populations of Drosophila by Rose et al. (2002) show declines
in mortality in late life. Thus, this key prediction of directionality theory is not consistent with most
empirical data. Under ecological conditions of exponential growth, directionality theory predicts
exponential increases in mortality not plateaus. We conclude that this theory doesn’t appear to
adequately account for late-life mortality plateaus.

Wall of mortality: Several commentators have suggested that our simulation results must be
flawed since mortality in late-life did not reach 100% (Charlesworth and Partridge 1997; Pletcher and
Curtsinger 1998). We focus here on one such critique by Pletcher and Curtsinger (1998), since their
comments are the most detailed. Pletcher and Curtsinger say that our observations of mortality less

<

than 100% at advanced ages is “..inconsistent with the equilibrium predictions of both the
antagonistic pleiotropy and mutation accumulation models of senescence, which, under a wide variety
of assumptions, predict a ‘wall’ of mortality rates near 100% at postreproductive ages”. But none of
the Mueller and Rose models had postreproductive ages. In addition, with respect to the mutation
accumulation models developed by Mueller and Rose (1996), in which all ages reproduced, Mueller

and Rose state that “One would also expect that if this process were the only important one

determining mortality rates then the mortality rates in the plateau would eventually rise to 100%”".
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Nevertheless, Pletcher and Curtsinger make some detailed comments concerning the mutation
process and how they affect mortality in our antagonistic pleiotropy models that we will address.
Equations 3-2 and 3-3 describe how new mutants affect age-specific survival in our simulations. With
these methods, as survival approaches either O or 1, the incremental changes to mortality get smaller
and smaller. For instance, with, d=0.1 and ®=10 when P, is 0.5, a2 new beneficial mutant will have a
survival value of 0.505. If the initial survival value had been 0.99, the new mutant survival would be
only 0.9901. Now one could argue that on biological grounds that it is probably more likely for a new
mutant to improve survival by a large amount when survival is low than when it is already very close
to 1.

Using our notation, the survival values of the mutants used in Pletcher and Curtsinger were

changed to,

P,=P +=2 (A3-3)

Deleterious effects were assumed to result in a new age-specific survival value,

P,=P —-2 (A3-4)

Although Pletcher and Curtsinger set 8,8, =0.05 and ®=1, these equations allow the possibility that
the quantitative effect of a beneficial mutation will not be the same as a deleterious mutation, e.g.
d#9;. Equations A3-3 and A3-4 highlight another substantial difference between Pletcher and
Curtsinger’s work and our own. By assuming m=1, they have eliminated the possibility of mutants

affecting multiple age classes. Clearly, an important biological phenomenon that may prevent late life
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mortality from reaching a wall of 100% is that mutations affecting these ages also affect earlier ages.
In fact, Mueller and Rose (1996, pgs. 15252-3) make this very point by suggesting that a wall of
mortality may not occur because “mutations affecting very late survival also have effects eatly in life,
where selection is still effective”.

We illustrate the importance of the effect of mutations affecting multiple age-classes with a
simple example. Using a simple life history with nine pre-reproductive age-classes and six reproductive
age classes we have simulated the change in adult mortality using assuming mutants have effects across

1, 2, 3 or 4 consecutive age classes (Figure A3-9) with effects on survival governed by Equations A3-

3 and A3-4.
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Figure A3-9. The evolution of mortality due to 5000 mutants with antagonistic effects modeled by Equations A3-3 and
A3-4, with §,=8,=0.005. The mutants affected either 1, 2, 3, or 4 age classes ().
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When the window is just a single age-class, the first five age-classes have mortality reduced to
zero and the last age-class approaches 1 (Figure A3-9). In these simulations, we did not generate
sufficient mutations for mortality to reach 100% in the last age class, but mortality would have evolved
to reach that value given enough time. Thus, these results are consistent with Pletcher and Curtsinger’s
predictions. This result is qualitatively different from those we produce with our models. However,
this wall of mortality does not occur when multiple age classes are affected by mutation. When ®=2,
the first four age-classes have reached zero mortality before the last two have hit 1. At this point, no
further improvements in fitness are possible, because any reductions in fitness at the last two age
classes would have to be accompanied by increases in mortality at earlier age-classes, or at best at the
last two age-classes, thus exactly cancelling the benefits. When m=4, the simulations converge to a
fitness maximum. We determined that evolution had stopped at a local fitness maximum by comparing
the fitness of all possible new mutants to the resident fitness. The fitnesses of all six alternative mutants
are lower than the final genotype illustrated in Figure A3-9.

So even though the Pletcher and Curtsinger conclusion about wall of mortality are dependent
upon their special assumption that mutants only affect single age classes, additive models of mutation
still present problems for the evolution of plateaus. It is clear that the final mortality pattern in Figure
A3-9 is not a mortality plateau.

We next show results for the additive model in which Equations A3-3 and A3-4 determine
the properties of new mutants. These simulations have assumed mutants affect a large number of
adjacent age-classes, i.e. they have extensive pleiotropic effects. With the additive mutation scheme it
is possible that mortality will hit 100%. When this happens, these simulations truncate the adult life
span to the age before mortality hit 100%. Thus, in these evolutionary scenarios, maximum lifespan
may decrease as mutations cause late life mortality to reach 100%. However, even with the much larger

number of age classes in these simulations, it is still relatively simple to compute, at any point in the
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evolution of these simulated populations, the fitness of every new possible mutant. These fitnesses
can then be compared to the fitness of the resident to determine if the evolution is at a local fitness
maximum. We have checked the fitness of all possible new mutants after every 1000 introduced
mutants, in order to determine if the current age-specific survival schedule is at a local fitness

maximum.
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Figure A3-10. Evolution of mortality to a local maximum fitness phenotype. The maximum was reached after 4,000
introduced mutants. The parameters of the simulation were 6,=0.1=8, =0.01 and ®=060, fecundity was 5 at all adult ages.
There was no genetic drift and the number of initial age-classes was 100 and those were reduced to 64 by evolution. At
the equilibrium the resident fitness was 0.1306774 and the best new mutant fitness was 0.1306627.

In the example shown in Figure A3-10, the population eventually reached a local fitness

maximum characterized by a plateau in late life. While we don’t show all our numerical results for the

additive model, we note the following. With small ®, many late age-classes evolve to 100% mortality
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until 2 maximum fitness is obtained. At these equilibria, early mortality is low and then mortality rises
quickly to the maximum age, showing no plateau. With large ®, we also get equilibria with late age
patterns that are largely shaped by initial conditions. Clearly, when initial mortality is relatively
constant, late life will evolve plateaus. Finally, none of these results has accounted for the effects of
random genetic drift.

In summary, Pletcher and Curtsinger’s prediction of a wall of mortality in late life is only seen
consistently if mutations do not have effects on multiple age-classes. In addition, their claim that
plateaus were contingent on Mueller and Rose’s (1996) particular mutation model is not correct. As
shown here, the completely additive model of mutation of Pletcher and Curtsinger (Equations A3-3
and A3-4) can result in plateaus (Figure A3-10), albeit under a more limited set of conditions.

Plateaus are transient states: Our primary tool for studying the evolution of late-life
mortality has been computer simulations. In our initial paper (Mueller and Rose 1996), we did not
check to see if the simulations had reached a loci fitness maximum. Consequently, it has been
suggested that the plateaus we observed were in fact simply transient states of a process whose
stationary states were not characterized by late-life plateaus. Wachter (1999) focused on the special
case of one of our models. He analyzed the antagonistic pleiotropy model, with no genetic drift and
mutations that affect a single age class, whereas Mueller and Rose (1996) consider this model and
others in which mutations affected multiple ages. Interestingly, Yashin et al. (2000, pg. 322) mistakenly
inferred that just the opposite was true when they asserted that “Charlesworth and Partridge (1997)
and Pletcher and Curtsinger (1998) criticized the assumptions of Mueller and Rose's (1996) models.
They argued that it is difficult to imagine any genetic mutation producing changes in the mortality rate
at only one or two precise ages. More realistic models of mortality tradeoffs should include changes

in survival over larger age intervals.”
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Wachter shows that the limiting states of the single age-class model are unlikely to have long
stretches of high mortality, only the last few age-classes having high mortality rates. In fact, he shows
that, if there is a late-life plateau, it is more likely to be with mortality rates close to zero not 1. Wachter
also demonstrates that, for this version of our model, the predicted equilibrium equations derived by
Pletcher and Curtsinger (1998, eq. A5) are wrong.

However, Wachter does not derive results for mutations that affect multiple age-classes.
Rather he merely suggests that his results will apply to these models, “Similar arguments are believed
to apply to all the Mueller—Rose models” (Wachter 1999, pgs. 10546-10547). In practice what appears
to happen is that, long before any equilibrium of the sort Wachter refers to, the progress of selection
is halted because the magnitude of the selection on the best possible mutants becomes too small

relative to the effects of genetic drift.
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Figure A3-11. Mutations generated by Equations 3-2 and 3-3, . =1, \v4 x, 0=0.1, and ®=3. The equilibtium was
reached after 821 mutants had been generated. The equilibrium is defined by the condition that the fitness of the final
equilibrium mortality phenotype is greater than or equal to the fitness of all possible mutants that can be generated by
Equations 3-2 and 3-3 from this equilibrium phenotype.

Using a model with no drift, dominant mutants, and a window of 3 age classes, the simulation
shown in Figure A3-11 quickly reaches a local maximum in fitness which is characterized by a plateau.
In addition, the initial conditions had a linear increase in mortality. Thus this plateau is not an artifact
of our initial conditions. At the calculated equilibrium, all possible mutants have lower fitness than
that of the resident genotype except for a genotype which has equal fitness. The one mutant with
equal fitness (equal to eight significant digits) results in small in reductions of mortality during the very
last two age classes (e.g. from 0.5084763 to 0.5084762 and from 0.5084935 to 0.5084922). This

happens because this mutant has both beneficial and deleterious effects hitting the last three age classes
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and these effects exactly cancel in age class 4. However, the fitness benefit from this change is less
than 10°®. This means that, unless the effective population size is substantially greater than about 10
million, the fate of these mutants would be largely determined by genetic drift. Although it is
technically difficult to find a true equilibrium for this model, recall in the previous section that such
an equilibrium was found for the completely additive mutation model.

Certainly, with the addition of drift to these models, equilibria of the sort reached in the
simulation Figure A3-11 will not be attained. However, it remains for future theoretical work to derive
a full analysis of the drift/selection balance stationary distributions.

Plateaus are a natural consequence of quantitative genetics: Fox and Moya-Larafio
(2003) suggest that an individual’s lifespan can be represented as a quantitative trait determined by the
sum of a large number of genes with small additive effects. They then assert that if longevity has a
normal distribution, this can be used to derive a new relationship for instantaneous mortality rates that
is a function of the mean and distribution of the longevity. The interesting aspect of this model is that
observed longevities can be used to estimate the phenotypic mean and variance and therefore the age-
specific mortality rates expected under this model. While it is true that the model does give rise to
plateaus, they have not identified the mechanism for this.

There are at least two major problems which erode our confidence in this model. The first is
that the simple assertion that longevity will be determined by small additive effects of many genes
does not make it true. Evidently, longevity can be affected by large-effect mutations, as we have already
mentioned. Secondly, the data analyzed by Fox and Moya-Larafio (2003) do not generally conform to
the model predictions. The three species whose demography they analyzed show fairly widespread
departures from the model predictions, even at very early ages where there are large numbers of
observations and hence reliable mortality estimates. This suggests that their model does not capture

important features of age-specific mortality patterns.
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Evolutionary string models: Pletcher and Neuhauser (2000) elaborate on a model
introduced by Penna (1995) to study the evolution of age-specific mortality. This model shares features
of reliability models, in that at each age there are believed to be several crucial components which may
fail. Failure of all the components at any age leads to death. Genetics are introduced into the haploid
model by assuming two genetic states at each locus. The more fit wild-type state has 40 components.
A deleterious mutant has only two components. Mutations are allowed every generation although each
individual gamete may gain only one mutation at one of the 32 age-classes per generation. In this
respect, this model is a special case of the models considered by Wachter (1999). Simulations were run
where the fate of all individuals in a population about 3100 individuals were followed.

This is clearly a novel way to model the biology of an organism, although it should be noted
that the model’s component assumptions are not readily testable. The model appears to produce
plateaus in mortality at late life and to predict that, when a population is subjected to late life selection
(by waiting until age 16 to reproduce rather than age 8), the mortality plateau shifts to later ages.

For this model to be taken seriously, it must be able to reproduce simple patterns of selection
that are well established. For instance, since there is no reproduction prior to age 8 in either the early
or late reproducing population simulated by Pletcher and Neuhauser, there ought to be equally strong
selection for high survival up to age 8. However, Pletcher and Neuhauser’s results clearly show that
the mortality rates are higher in the eatly reproducing population at ages 1-7 compared to the late
reproducing population. Since survival does not affect other fitness components, like fecundity, this
result is unexpected. In addition, the equilibrium number of deleterious mutants increases from ages
1 to 8, indicating age-specificity to selection prior to reproduction. This result is seemingly contrary to
standard population genetic theory. Therefore, it seems difficult to interpret how their evolutionary
model is functioning at reproductive ages, which raises questions about its relevance to patterns of

mortality in real populations.
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Markov mortality models: These are models based on Markov processes that are stopped,
or killed, at random times. They can be applied to biological longevity by assuming that there is some,
possibly unobserved, Markov process which determines an individual’s health, the most important
features being whether the individual is alive or not. For example, Weitz and Fraser (2001) model what
they call viability by assuming it is subject to a constant downward force and random variation with

age. Thus at age-7 an individual’s viability is given by,

v(t+1) =v(t) —e+ ay(t),

Where € measures the impact of aging to decrease viability, % () is the effect of a random

process on viability that has a mean of zero and unit variance, and finally the constant ¢ modulates
the variance of the random process. When viability reaches zero, the individual dies. This type of
model can be thought of as a dynamic heterogeneity model, as opposed to the static heterogeneity
models we review in chapter 6. The random effects on longevity are not specifically defined by Weitz
and Fraser, but they suggest these might be phenomena like competition for resources, phenotypic
differences, local environmental changes, or even stochastic gene expression. While this list of factors
could in principle affect longevity, there is nothing in the formulation of this model which would help
us determine how, for instance, increasing or decreasing phenotypic differences will impact mortality.
In any case, this very simple model can produce plateaus or even declining mortality at late ages,
although as mentioned before there is little empirical support for declining mortality with age.
Steinsaltz and Evans (2004) provide a comprehensive overview of these types of models. They
refer to these Markov models as part of the evolving heterogeneity theory of mortality tapering. From
these theories, Steinsaltz and Evans suggest these models give us an explanation for mortality plateaus:

“As a Markov process progresses, the distribution of its state is being shaped by two forces: random
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motion spreading the mass out, and shifting it in certain preassigned directions; and deaths lopping
off mass at each point, at a fixed rate...if we wait long enough the distribution of those individuals
who survive will approach a certain one of these quasistationary distributions. The mortality rate, of
course, will also approach the mortality rate averaged over this distribution” (Steinsaltz and Evans
2004, pg. 321). When this average mortality rate is reached, these rates will stop increasing with age
and hence we have a plateau.

While this may constitute an explanation of plateaus for a statistician, it is hardly a biological
explanation. There have to be biological phenomena that determine the properties of these Markov
chains, and thus a biological understanding of this phenomenon is not advanced by a thorough
understanding of Markov chain-killing models. Steinsaltz and Evans do make the very useful
observation, however, that since there are so many models that can apparently produce plateaus,
simply producing a model that can mimic these patterns does not constitute strong support for the
model. This viewpoint is very much in line with our own and is of course why our research program
has focused on experiments that explicitly test our theory in a more stringent manner than merely
predicting plateaus that have already been observed.

Reliability theory: These theories are a subset of the Markov chain models discussed above,
but attempt to develop a mechanistic view of an organism, albeit a non-genetic one. The theories of
Gavrilov and Gavrilova (2001) are perhaps the most prominent. These models assume that organisms
are constructed of many different critical components that have high levels of redundancy. Even if
these components themselves don’t age, Gavrilov and Gavrilova show that the chance of a critical
failure increase with age. They also suggest that mortality rates generated form their models follow the
Gompertz pattern. Their models have a number of unrealistic biological assumptions (see Pletcher
and Neuhauser 2001), in addition to some technical flaws that invalidate their claim of Gompertz

mortality (Steinsaltz and Evans 2004). However, models of this kind might have some use, if they are
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used to model how physiological components of organismal function underlie the evolution of
patterns of age-specific survival and fecundity, where the latter processes are supervenient. At this
point in time, the only work of this kind of which we are aware is that of Frank (2007), on the

development of cancer.
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Appendix — Chapter 4

Estimation of Mortality-Rate Plateaus

Mortality rate plateaus were estimated by allowing d* to be the age at which mortality rates
become constant with age (the “breakday”). Then, at ages x less than d*, age-specific mortality rates
were modeled by the continuous-time Gompertz equation and set equal to Aexp(ax), where A is the
age-independent rate of mortality and o is the age-dependent rate of mortality increase. For x > d*,
mortality rates were assumed to equal 4. A is independent of age, but different from A. For a
particular value of d*, A, a, and A were estimated by maximum likelithood. This was repeated for a
range of d* values, and the value of d* that yielded the largest likelihood value was chosen as the best
estimate of the breakday between early and late mortality.

The likelihood function was constructed from ages at death of the N members of a cohort,
following methods similar to those of Mueller et al. (1995). In the experiments of Rose et al. (2002),
the raw data consisted of the number of dead flies recorded every two days, which might be zero.
Therefore, we numbered the two-day checks sequentially and let the £y be the last check during which

the last fly died. Then the number of dead flies in each two-day period is,

dy,dy,...,dy,.

Likewise the number of flies alive at the start of each census period is Ni (=N), N, ..., Ni, (= dgy,).

Let ¢(?) be the probability that an individual that lived to census period 7, dies by census period 7+1.

Then the likelihood function is defined as,
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L=TE" (3 a@ 1 - g™,

For a particular breakday, #*, ¢(7) is then estimated as,

a

{1 _exp {A[exp(azi)—exp(az(H1))]} if 2i < d *
1 — exp(—24) if 2i > d*

Statistical Tests for the Existence and Evolution of Late-Life Fecundity

Plateaus

We tested whether fecundity plateaus at late ages by statistically testing the fit of a model

with a late-life plateau to mid- and late-life fecundity data in the cohorts compared in the

experiments of Rauser et al. Average population fecundity in Drosophila increases at early adult

ages until it reaches a peak, and then starts to decline. Therefore, we defined mid-life as those ages

where average population fecundity starts to decline, and late-life as those ages where the decline

in average population fecundity stops or slows. The model we fit to the data was a 3-parameter

two-stage linear model with the following relationship between age (4 and fecundity (7)),

_(cr et ift<fbd
f(t)_{ci+cz if t > fbd
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This model was used since we did not have survival data for all the populations in this study and the
techniques for inferring differences in breakdays are easier to apply with this model. A more detailed
explanation of this model will be covered in Chapter 9.

The model was fitted using all of the fecundity data at each age (100 observations), starting at
an age in mid-life where the average fecundity for that population started to decline (age 30 days for
all CO populations except COs, where fecundity did not start to decline until age 46 days, and age 26
days for all ACO populations). Each cohort was fitted to the model independently. This model was
fit to the data using a nonlinear least-squares function in the R-project for statistical computing

(www.R-project.org). We wrote a self-starting R-function for the two-stage linear model that provided

initial estimates for the parameter values as well as the predicted fecundity from the equation.

We tested whether fecundity plateaus evolve according to the last age of survival using the
ACO and CO Drosophila populations described above. The replicate ACO populations have an earlier
age of reproduction and shorter life spans compared to the CO populations. However, these average
life span patterns and ages of reproduction by themselves do not indicate the timing or nature of
fecundity plateaus for these populations. A pair-wise comparison between cohorts obtained from the
ACO and CO populations allows us to properly test whether the onset of fecundity plateaus, or the
breakday, would occur later in the CO populations relative to the ACO populations.

This experimental design resulted in one ACO, cohort and one CO, cohort that were matched
by a common index being tested at one time. The common index indicates that the two populations
had a common population of origin (O)). Thus, the pairs of populations form blocks that have a
common evolutionary origin and a common set of experimental conditions. Each population also has
its own unique history of genetic change due to random genetic drift. Thus, there are three sources of

random variation in this experiment: populations, blocks, and individual measurement errors.
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In this formulation we will let the index 7 indicate one of the 10 populations of origin, / be one
of the five blocks or cohort pairs, and £ a vial of four individuals, which is the smallest unit of
observation within a population. If each cohort has a total of 7 individuals, then the number of eggs

per female in population-7 block-j, individual-£ is yjz. The basic nonlinear model is given by,
Vijk = f(Pijre Viji) + Eijies

where @ is the vector of parameters, s, is the covariate vector, and & is the within-cohort variation.
The covariate vector contains the age of individual 74, %, and the population code, &, which is zero
if the population is ACO (e.g. 7 = 1,2,3,4, or 5) and one if the population is CO (e.g. 7 = 6,7,8,9, or
10).

For the two-stage linear model the functional relationship is,

f(bijivije) = {¢1if + Gaijtije U tijk < Paij
Uk TURD T A brij + baijbsiy I tire > daif

We assume that the values of the model parameters are affected by both fixed and random effects.
The fixed effects can be examined to determine if the selection treatment has a significant effect. The
parameters are also assumed to vary randomly between populations due to founder and drift types of
effects and between blocks. The between block variation may be due to different experimental
conditions or due to founder effects. These two sources of variation cannot be separated. These

assumptions translate into the following system of equations:
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¢1ij = P1+v16; + by; + ¢4
¢2ij = B2 +V20; + by + ¢

$3ij = B3 +¥30; + b3; + c35, (A4.1a-c)

where the y: (£ = 1-3) are the fixed effects due to selection, the 4 are the random population effects

and the ¢; are the random block effects. An important statistical test will be to determine if the y; are

significantly different from zero. If so, this will indicate that the selection treatment has a statistically
significant effect on the regression model parameter.

Fecundity decreases substantially with age in these populations, which suggests that we

should model within population variance as a function of mean fecundity. The general formulation

is

bl

Var(eijk) = azgz(ﬁijk, Vijk, 5),

where @, = E(Y;jk|bi, €;). In this analysis we used g(.) = | y|’, where dis estimated from the data.

The b, were assumed to be distributed as,

bi"-’N (O,

The c; are assumed to be distributed as,

Ci~N (0,

Y, 0 0
0w, OD

0 0 W,

Z;, 0 0
& 7, o0 D
0 0 Zs,
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The maximum likelithood techniques used to estimate the model parameters and test their significance
are reviewed in Pinheiro and Bates (2000, Chapter 7). These techniques were implemented with the
non-linear mixed effects package in R (version 1.6).

Lastly, using the parameter estimates from the model, the height of the late-life fecundity

plateau is

Py = @1+ P203. (A4.2)

Since  is a non-linear function of the three estimated parameters, its variance was estimated using

the delta method (Mueller and Joshi 2000, pg. 83). The variance in plateau height is then,

Var(@,) = Var($,) + ¢5Var(P,) + ¢3Var(Pz) + 293Cov(P,§,) +

20,C0v(P1P3) + 20,P3C0v(P2P3). (A4.3)

Asymptotic 95% confidence intervals on the plateau height, ¢y, are estimated as, ¢y +

1.96 ’Var(qi;). The variances and covariances in equation (A4.3) are estimated from the non-linear

least squares procedures.
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Appendix — Chapter 6

Methods for the Simulations used in Figure 6-2.

A single set of Gompertz parameters were used for all of these simulations, .4 (0.0725346)
and a (0.22891005). Using these Gompertz parameters, 1,000 random ages-at-death, d, were
generated using the inverse transform method (Fishman 1996), 4; =In[1-aln(1-U)/ Ao, whete 7 =
1..,1000 and U; ~ uniform (0,1). To each 4, expetimental etror €; was added where & ~N(0,6%) . The

various values of 62 are given in the figure.

Methods for the Simulations used in Figure 6-3.

The mean vector of the Gompertz parameters was g = (A,0). We assumed these parameters
had a multivariate normal distribution on a natural log scale, with £ = Coy[ln(u)]. We took N samples,
X, (= 1,..,N) such that In[X] ~ MVN (In(p), X). These IN samples constitute one cohort. If £ = 0,
then the population should obey the Gompertz equation, if 2 # 0, then there is heterogeneity in the
population and the possibility of a mortality plateau if the variation is sufficiently large.

For each X; we computed a random age-at-death using the inverse transform, In[1-auln(1-
U)/Ajo, where U; ~ uniform (0,1). From these ages-at-death we computed two-day mortality rates.
For the simulations with variation in both .4 and o we assumed Coz[In(A),In(at)] = 0. The parameter
values used were p = (0.0725346, 0.22891005), N = 1028. X varied as described in the text. The

simulations were programmed in R, version 2.40.
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Appendix — Chapter 7

Population Genetic Model

Suppose we have k-alleles, A, ..., A, with frequencies xi, ..., xx. Each allele is associated
with an age-specific survival phenotype, p; = (b1, ..., pa), where the total number of adult age classes

is d. The relationship between genotype and phenotype is for homozygotes,

AAi= pi (A7-1)

and for heterozygotes

AA= py=> { p } =max(ps, py). (A7-2)

In other words the heterozygotes were assigned the maximum survival exhibited by either of their

constituent alleles.

Fitness for genotype 4.4, w;, was determined by the largest root of the Lotka equation,

wijs —
Zse o lsijms =1,

where /; is the product of the age-specific survival probabilities. Allele frequency change was then

determined by the standard theory. Thus, the frequency of allele-/ in the next generation, X, is given

by,
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x == (A7-3)

b

where the marginal fitness of allele-7, w;, is defined as ), j Xjwi; and the mean fitness, W, is YiXiw;.

Computer Simulations

The life history of the simulated organism had nine pre-adult age-classes and 10 adult age
classes. The initial adult mortality was given by the Gompertz equation (Equation 2-1) with .4= 0.01
and o = 0.4. All new mutants affected four adjacent age-classes. The first affected age, D, was selected

at random. With probability 0.5 age-specific survival of the most common allele’s survival phenotype,

i, would be altered to create the mutant phenotype,

Pac + (1= pay) {;} (AT-4)
1+exp[T]
otherwise,
c1+(cz—cq)
N Bt ML S T A7-
Pik {1+exp[cz;l]} ( 7 5)

where s = D+2, ¢ = -2, and 7 = D, D+1, .., D+3. If the correlation in changes was positive then =
0.1 and o = 0, otherwise ¢= 0.05 and o = -0.025. Equations A7-4 and A7-5 were used to generate

Figures 7-1 and 7-2. The initial frequency of these mutants was set to 10°.
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After each mutant was created, allele frequencies were iterated over 50,000 generations by

ik |xi—xil

. <

Equation A7-3 or until the stopping condition was satisfied. The stopping condition was,

10712, At the end of this process, any allele with a frequency of less than 10 was considered lost.
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Appendix — Chapter 8

Heterogeneity-in-o. Parameter Estimation

The observations consist of recorded deaths at times, 4, 4, ..., %. The deaths observed on day
Ly, dtm, are presumed to have occurred between times 7,1 and #,. If the initial number of adults in the

cohort is N, then the observed mortality between times 4,.1 and 7, s,

u(ty) =dg, /[N - Tz 1d, ]

The model estimate of mortality for the same time interval is,

At A k) =1—2m

bl
Ptm-1

where p, is calculated from Equation 8-2. The least squares estimates are simply the values of A, a,

and £ that minimize the function,

i=k [M(ti)—ﬁ(ti,A,a,k)]z
Zi:l { Var[u(t)] }

The minimization was carried out with the gp#zm R function, which implements a Nelder-Mead
procedure that doesn’t require function gradients. Numerical integration of Equation 8-1 utilized the

distrExcIntegrate R function found in the distrEx R package (Ruckdeschel et al. 2000).
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Distribution of Age-at-Death

Each population was characterized by three parameters from the heterogeneity-in-o. model,
A, @, and £ (see Equation 8-1) and the sample size IN. One sample consisted of N ages at death. For

each of the N individuals in the sample an age dependent Gompertz parameter, ¢ &, was generated

using the rgamma R-function (with shape=4 and scale =1/£) to generate the gamma random variable
€. The age at death was generated from generated using the inverse transform method (Fishman 1996),

In[1-éaln(1-U)/A]/¢éd, U ~ uniform (0,1). A total of 100 samples were generated for each Drosophila

population. Only one sample was generated for the Medfly populations.

Heterogeneity-in-a. Model Fit to Drosophila Data

The data for the heterogeneity-in-a model fit to Drosophila are presented in figures A8-1 to A8-4.
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Figure A8-1. The line is the least-squares non-linear fit of the heterogeneity-in-o. model to the observed O population
mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% confidence
limits.
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Figure A8-2. The line is the least-squares non-linear fit of the heterogeneity-in-o. model to the observed B population
mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% confidence
limits.
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Figure A8-3. The line is the least-squares non-linear fit of the heterogeneity-in-o. model to the observed CO population
mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95% confidence
limits.
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Figure A8-4. The line is the least-squares non-linear fit of the heterogeneity-in-o. model to the observed ACO
population mortality. The circles show the observed two-day mortality at each sampled age along with binomial 95%
confidence limits.
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Appendix — Chapter 9

Application of the EHF Model to Drosophila

Results from individual fecundity and survival records. The four parameter EHF model
(Equation 9-7) was fit to individual data as well as the five, six and seven parameter variants of
Equation 9-7 (data from Rauser et al. 20052). The success of the four models was then compared
using the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and a cross-
validation index. We looked for the model that consistently had the smallest value of AIC, BIC and
the cross-validation index. To compute the cross-validation index we divided the raw data in half. One
half was used to estimate the model parameters. We then computed the mean predicted sum of squares
with the second half of the data set. This process was repeated 100 times with different random
partitions of the raw data. The average values of the cross-validation index are reported in Table A9-
1.

Table A9-1 The model fitting results for three different data sets that included individual fecundity
and survival records and four different EHF models. The lowest (best) value for each criterion is bold.

Model Criteria CO141 CO1- CO13
4-par AIC 4.14 4.55 5.17
BIC 4.67 5.12 5.67
Cross-validation 3.93 6.33 9.92
S-par AIC 4.32 4.28 5.05
BIC 4.98 4.99 5.68
Cross-validation 5.01 5.20 11.48
6-par AIC 4.34 4.37 4.83
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BIC 5.14 5.22 5.58
Cross-validation 5.12 6.63 10.57
7-par AIC 4.29 4.95 4.33
BIC 5.23 5.94 5.21
Cross-validation 4.59 6.10 10.23

Results from individual survival records and group fecundity records. Except for one
case out of the ten examined, the four-parameter model (Equation 9-7) had the smallest values of
both AIC and BIC, as shown in Table A9-2. Accordingly, we focused on this model in our detailed
analysis of the CO data.

Table A9-2. Summary of the stochastic fecundity model statistics. The four- (“4-par”) and five-

parameter (“5-par”’) models use fixed widths of 10 days. The lowest values of AIC and BIC are shown
in bold face for each cohort.

Model parameter CO1 CO2 CO3 CO4 CO5
4-par AIC 100.1 80.55 76.19 63.72 97.10
BIC 100.8 81.16 76.64 64.20 97.85
5-par AIC 100.6 81.20 82.49 63.64 102.23
BIC 101.5 81.96 83.21 64.25 103.17
6-par AIC 100.1 81.02 76.78 63.49 98.38
BIC 101.2 82.10 77.65 64.22 99.50
7-par AIC 101.1 80.76 76.54 63.97 98.84
BIC 102.4 81.83 77.55 64.82 100.15
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