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The theory of density-dependent natural selection is perhaps the most success-
ful union of population genetics and ecology. This union has had a long history.
The evolutionary consequences of different types of population-size regulation
were discussed by Dobzhansky (1950), and population-genetics models in which
fitness depends on total population size were developed by Wright (1960). How-
ever, MacArthur and Wilson (1967) were the first to explore systematically the
consequences of evolution at extreme densities and to derive a theoretical frame-
work for life-history evolution.

The heuristic arguments of MacArthur and Wilson were formalized in a number
of studies in which population size and allele frequencies at a single locus were
explicitly modeled (Anderson 1971; Charlesworth 1971; King and Anderson 1971;
Roughgarden 1971; Clarke 1972). The most common approach in these modeling
efforts was to assume that the fitnesses of alternative genotypes were linearly
decreasing functions of total population size. The slope and intercept of these
linear functions were determined by the parameters r and K, which varied be-
tween genotypes. The models predict that for populations kept at low densities,
well below carrying capacity, natural selection favors genotypes with the highest
value of r; hereafter, this is called r-selection. In populations at carrying capacity,
genotypes with the highest value of K are favored; this is called K-selection.
Clearly, if the genotype with the highest r also has the highest K, then the outcome
of evolution does not depend on the population’s ecology. However, if there
exists a trade-off between r and K traits, then the outcome of evolution depends
critically on population ecology. In populations kept continually at low densities,
high-r and low-K genotypes will predominate because of the assumed trade-off,
whereas the opposite will be true in populations close to saturation densities.

If this theoretical framework is correct, then three predictions follow. Popula-
tions that have evolved in low- and high-density environments should be differ-
entiated with respect to density-dependent rates of population growth. The low-
density population should have higher rates of population growth at low densities
relative to the high-density population; just the opposite should be true at high
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population densities. These predictions, which are most closely tied to the formal
theory of r- and K-selection, have been tested only twice. Results contrary to
expectations were observed in Escherichia coli (Luckinbill 1978), but Drosophila
melanogaster (Mueller and Ayala 1981a) yielded consistent results.

The formal theory of density-dependent natural selection has been associated,
unfortunately, with an expansive verbal theory (Pianka 1970; review in Stearns
1977). The verbal theory attempts to identify phenotypes that are causally related
to r and K and then use the predictions concerning the evolution of these parame-
ters to predict the evolution of these correlated phenotypes. Thus, the theory of r-
and K-selection is considered by many to make specific predictions concerning
the evolution of phenotypes such as body size, age-specific survival and fecun-
dity, and developmental time (Taylor and Condra 1980; Barclay and Gregory
1981; Luckinbill 1984).

Much of the logic behind the verbal theory is found to be faulty upon closer
examination. For instance, the verbal theory predicts that K-selection should
favor an iteroparous life history and r-selection should favor a semelparous life
history. Yet, this prediction is at odds with some formal models of selection in
age-structured populations, in which natural selection at carrying capacity is
predicted to favor increases in fecundity and survival at earlier ages (Charles-
worth 1980, p. 211). Models that lead to the evolution of different age-specific life
histories require high juvenile survival relative to adult survival or vice versa,
rather than the presence or absence of density-dependent population regulation
(Murphy 1968; Charnov and Schaffer 1973). Whether natural selection favors high
fecundity and low juvenile survival or low fecundity and high juvenile survival
depends on which life stage is subject to density-dependent regulation, rather than
on the mere presence or absence of density dependence (Iwasa and Teramoto
1980).

Given these substantial problems with the verbal theory of r- and K-selection, it
is reasonable to ask if the formal theories that assume logistic fitness functions can
be used to predict the evolution of phenotypes other than density-dependent rates
of population growth. The answer is probably no. To develop a theory that
accounts for the evolution of body size or competitive ability, models with the
relevant ecological phenomena must be developed. The drawback of such a
modeling process is that the relevant ecological details probably differ between
taxa.

It has become increasingly clear that very general models of population dynam-
ics, like the logistic model, are inappropriate for certain types of organisms. For
instance, many populations of sessile marine invertebrates are limited by free
space on which larvae may settle. Qualitatively different models are needed to
describe the dynamics of such populations (Roughgarden et al. 1985). Likewise,
the dynamics of many plant populations require models that account for the
competitive effects of close neighbors (Pacala and Silander 1985). Attempts to
model density-dependent natural selection in variable environments with the
logistic and related models have yielded odd results. For instance, depending on
the model of population dynamics used, natural selection could cause a population
to become more stable or less stable (Turelli and Petry 1980; Mueller and Ayala
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1981b). Christiansen (1984) has argued that evolutionary models should use ex-
planatory models of population dynamics rather than phenomenological models
such as the logistic. These explanatory models attempt to incorporate important
events in the life history of an individual.

In light of these considerations, the present paper develops a model of popula-
tion dynamics and evolution in food-limited environments by taking into account
many details of Drosophila ecology. These models may be applicable to insects
and animals other than Drosophila; however, since the ultimate goal is to test the
theoretical predictions with data from Drosophila, the discussion focuses on this
genus, particularly D. melanogaster.

In addition to limiting available food, crowding larvae and adult Drosophila has
a variety of consequences, such as increased concentrations of wastes (Botella et
al. 1985) and limitation of suitable pupation sites (Chiang and Hodson 1950; De
Souza et al. 1970; Mueller and Sweet 1986). This study concentrates on the effects
of food limitation since a great deal is known about the effects of food on fitness
components, and experimentally, food is a variable that is relatively easy to
control.

THE ECOLOGICAL RECURSION

The properties of density-dependent population growth in food-limited environ-
ments are investigated first. Where possible, the ecological components of this
model are illustrated by observations of laboratory populations of Drosophila
melanogaster. The origin and maintenance of these populations is described
elsewhere (Mueller and Ayala 1981a). The details of the collection of the experi-
mental results will be included in a later paper describing tests of the present
theory.

Viability

The effects of food availability on viability, or the survival from newly hatched
larva to adult, has been studied in painstaking detail by Bakker (1961). Models of
viability in food-limited environments consistent with Bakker’s results have been
developed by de Jong (1976) and Nunney (1983). Nunney’s model, which accu-
rately describes his own data on the viability of different genotypes and sexes of
Drosophila melanogaster, is adopted in its entirety; it will also be described fully
because it is a crucial component of the total model.

Assume a population that reproduces and has resources renewed at discrete
intervals. Any excess food at the end of a generation is assumed lost. Let n, be the
number of eggs present at time t. Let the fraction of eggs that hatch to become
young larvae and compete for food be V. If the total amount of food available for
the Vn, larvae is constant, say B mg, then each larva receives an average of B/Vn,
mg of food. As a result of environmental or perhaps genetic differences between
individuals, the actual amount of food consumed by a single individual may be
more or less than the average available to the population. In fact, let the distribu-
tion of food consumed by individuals follow a normal distribution with mean B/Vn,
and variance (B/Vn,)*¢?, as shown in figure 1. Individuals must consume at least m
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Fic. 1.—The distribution of food consumed by Vn, larvae in an environment with B mg of
food. The density-independent viability of eggs is V. Only larvae that consume more than m
mg of food survive.

mg of food to pupate successfully. Thus, the viability of the Vn, larvae is propor-
tional to the hatched area of the curve.

Transform food consumed into standard units, y, by subtracting the mean and
dividing by the standard deviation in figure 1. Then, the viability, W(Vn,), of
young larvae is given by

Wevn) = | e(ndy. M
where x = [(mVn,/B) — 1)/o, and &(y) is the unit-normal density function,
2m) ™ exp(—y?/2).

The proportion of 100 newly hatched first-instar larvae that survive to become
adults has been determined at a variety of food levels. The techniques used in
these experiments are similar to those of Nunney (1983). Results from experi-
ments on one population carried out on three separate occasions are shown in
figure 2. Predicted viabilities from equation (1) for three different values of m are
also shown. The parameter values used were chosen as biologically reasonable
and do not represent least-squares estimates from the data in figure 2. The figure
illustrates that equation (1) is sufficiently flexible to describe empirical results
accurately. Decreasing the value of m increases viability, especially when food is
in short supply. When food is abundant, nearly all larvae survive, except those
that die from density-independent factors accounted for by V, and decreasing m
has negligible effects on viability.
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Fic. 2.—Each diamond represents the fraction of 100 first-instar larvae that survived to
become adults at various food levels. The data are for a K — 1 population (described in
Mueller and Sweet 1986). The curves are predicted viabilities from equation (1) for V = 0.75,
o = 0.35, and three values of m in units of 10™* g.

Larval Competition and Female Fecundity

Increased competition among larvae results in a reduction in the size of the
emerging adults, as well as in a reduction in viability (Marks 1982). This reduced
size is presumably due to the limitation of available food (Bakker 1961). This
effect is important to the dynamics of a population (Prout and McChesney 1985),
since smaller females lay fewer eggs (Chiang and Hodson 1950; Robertson 1957,
Mueller 1987).

The relationship between female size and food consumed is readily apparent
from studies in which food level is carefully controlled (Bakker 1961). Figure 3
shows the average thorax lengths of females emerging from the same experiments
reported in figure 2. It is evident from figures 2 and 3 that the effects of limited
food on female size are expressed over a greater food range than are the effects on
viability. Thus, when 100 larvae are provided =70 mg of yeast, viability remains
unaffected (see fig. 2) but female size continues to increase substantially.

Assume that the function s(b) describes the size of adult females that have
consumed b mg of food. Although all larvae that consume more than m mg of food
survive, it is evident from figure 1 that they do not all consume the same amount of
food. Thus, there should be considerable variation in female size when food is
limiting. The average size of the emerging females, 5(Vn,), can be predicted using
the distribution of food consumed by surviving larvae as

00

5(Vn) = W'I(Vnz)J s(B(oy + 1/Vn]d(y)dy. 2

X
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Fic. 3.—Each diamond represents the average thorax length of adult females from the
experiment described in figure 2: A, model 1; B, model 2. The curves represent the predic-
tions from equation (2) with s(b) = a, + a,{l — exp[—a(b — m)]}, where a4 = 0.5, a; =
0.623, a, = 1700, and the remaining constants are as in figure 2. Curves are shown with
various values of m (units of 10~ g).
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One question, for which no empirical evidence exists, concerns the relationship
between the minimum amount of food necessary for successful pupation, m, and
female size. I have decided to model this relationship in two different ways,
although it is not unreasonable to assume that the actual behavior of Drosophila
populations lies somewhere in between. In the first case, called model 1, assume
that all populations have the same s(b) function, and the ability to pupate success-
fully on less food is thus accomplished by reducing the size of the resulting adult
(see fig. 44). Model 2 assumes that the minimum adult size is the same for all
populations. Thus, populations that require less food to pupate successfully do so
by processing food more efficiently. The s(b) curves for populations with different
m’s in model 2 are just rigid translations of a single curve (see fig. 4B). In figure
3A, the three curves are the predicted average sizes of females from equation (2)
and model 1 for the same three values of m used in figure 2. The particular
function used in figure 3 is actually a modification of the functional response of a
predator exhibiting satiation (Roughgarden 1979, p. 443). This function reaches a
minimum adult size when the food consumption is m and asymptotically ap-
proaches a maximum adult size. It appears to give an adequate description of the
empirical data and has been used in all numerical work in this study. Figure 3B
shows the predicted values for model 2. In figure 3A the bottommost curve is due
to the smallest value of m, whereas in figure 3B it is due to the largest. The
increased viability that results when m is reduced is due to the survival of very
small flies in model 1. Thus, the average size of surviving females actually
decreases with decreasing m even though viability increases (see fig. 34). Model 2
behaves quite differently. Viability still increases with decreasing m, but average
female size increases (see fig. 3B). This occurs because, under model 2, decreas-
ing m implies increasing efficiency; thus, even though the amounts of food con-
sumed by each female remain unchanged, populations with smaller m turn that
food into additional biomass.

To complete this section, a function is needed to translate female size into
fecundity: f[s(b)]. The mean fecundity of all females, f(Vn,), is given by

=]

fvn) = W_I(Vnz)[ fslBloy + D/Vnlté(y)dy. (€)

29

Figure 5 shows the total number of eggs laid during the first week of life as a
function of female size for the K — 1 population. The curve drawn in figure 5 is the
least-squares approximation for a line through the data transformed by taking the
log of the egg numbers and the thorax length. These data were collected using
single male-female pairs in 8-dram vials that were transferred daily. Even the
smallest females (thorax length, 0.68 mm) can lay about 20 eggs per day. Such
high fecundity is incompatible with population stability in these models, and
hence the effects exerted by adults on female fecundity (see next section) play an
important role in population stability.

Adult Density and Female Fecundity

A number of studies have documented dramatic declines in female fecundity
with increasing adult density (Pearl 1932; Bodenheimer 1938; Robertson and Sang
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FiG6. 4.—Two possible relationships between minimum food and minimum adult size: in A,
model 1, smaller values of m imply that larvae are able to pupate at a smaller size; in B, model
2, the minimum adult size is constant, and smaller m is achieved by greater larval efficiency.
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F16. 5.—Total number of eggs laid during the first week of adult life by females from the
K — 1 population as a function of thorax length. The curve is predicted from the relationship
In(egg number) = 6.041 + 2.644In(thorax length).

1944; Chiang and Hodson 1950). A consistent observation has been that female
fecundity declines most rapidly at very low adult densities, whereas at moderate
to high densities changes in female fecundity are almost imperceptible (Prout and
McChesney 1985; Mueller 1986). Even this slight density dependence at high
densities can have substantial consequences for population stability and hence
should not be ignored (Mueller 1986). Let G(N,) reflect the effects of adult density,
N,, on female fecundity. By convention, let G(2) = 1. In the numerical work that
follows, a one-parameter hyperbolic function will be used: G(N,) = (1 + 2a)/(1 +
aN,). In figure 6, relative fecundity is shown as a function of adult density. An
important feature of this function is the rapid decline in fecundity at relatively low
densities.

The Recursion for Egg Numbers

Results from the previous sections can now be used to construct a first-order
nonlinear difference equation for the number of eggs at time ¢ + 1:

00

Mt = GO | FlstB@y + DIVAL60)dy Vi, @

where adult numbers at time ¢ are given by
N; = W(Vn,) Vn, . (5)

Equation (4) is multiplied by % since only half the adult population contributes
eggs to the next generation.
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Fic. 6.—Relative fecundity as a function of adult density predicted by the hyperbolic
model for three different values of the parameter a.
The equilibrium number of eggs in the population, #, may be defined implic-
itly as
A= VzG[W(Vﬁ)Vﬁ]L fAslB(ey + 1)/Viltd(y)dy Vi, (6)

where £ = (mVA/B — 1)/o. The stability of the equilibrium requires that |\| < 1,
where

N = 1 + AG'(WIG(H) + AVGHH' ()2,
H'(A) = L f'{sB(ay + DIVA}d(y)dy — fislBlof + 1)/VAl}d(£)mV/Bo,

and prime denotes differentiation with respect to n,. It has proved difficult to
derive a simplified expression for 7 and A even when a simple approximation to
the normal density function such as 1 + cos(x) (—m =< x = =) is used. Thus,
discussion will be limited to results obtained numerically from equation (4).

All numerical work was programmed in Pascal and used double-precision real
variables with about 15 significant digits. The integral in equation (1) was approxi-
mated with a polynomial expansion (Johnson and Kotz 1970, p. 55, eq. 27).
Evaluation of equation (3) was performed by Romberg integration (Phillips and
Taylor 1973, p. 136). The implementation of Romberg integration used here
successfully integrated the unit-normal density function with an accuracy of more
than 9 significant digits.

For the numerical results reported, the functions of food versus size in figure 3
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and of size versus fecundity in figure 5 have been used. The effects of adults on
fecundity have been modeled with the one-parameter hyperbolic function de-
scribed previously. The two parameters that have the greatest effects on the
equilibrivm population size and stability are m and a. In figure 7, the isoclines of
equilibrium egg number are shown for models 1 and 2. For both models, decreas-
ing a increases the equilibrium egg numbers (see fig. 7). Smaller values of a imply
less adult density dependence on female fecundity. When a = 0, female fecundity
is independent of adult density. Consequently, more eggs should be laid by a given
adult population with decreasing values of a.

As m decreases, a greater fraction of the larval population survives. Such
decreases in m should increase the adult equilibrium population size: this result is
observed (not shown here). The effects of decreasing m on equilibrium egg
numbers is more complicated. When m is decreased in model 1, the adult popula-
tion size increases; yet, the average size of females decreases. Thus, their fecun-
dity is, on the average, less. The larger adult population size reinforces this effect
by further decreasing the fecundity of females. The result is decreasing equilib-
rium egg numbers with decreasing values of m (see fig. 74).

The results of decreasing m on equilibrium egg numbers are quite different for
model 2. Adult population size is larger because of smaller values of m, and the
females are also larger and more fecund (see fig. 3B). Thus, the decline in fe-
cundity that results from a large adult population size is more than compensated
for by the increased efficiency and size of the adults. Consequently, in figure 7B
the equilibrium egg numbers increase with decreasing m (a held constant).

Figure 7 shows points in the a-m plane, which separates populations with stable
equilibria from those with unstable equilibria. It has not been verified that lines
joining these points also separate stable from unstable combinations of a and m.
When the equilibrium (6) is unstable, the population may exhibit a variety of
behaviors, depending on the parameter values, which have been described for
other nonlinear difference equations (Roughgarden 1979, chap. 18). These include
low-order cycles and behavior indistinguishable from random environmental
noise. For both models, some level of adult regulation of female fecundity is
clearly necessary for stable population dynamics (see fig. 7) because of the high
fecundity of a single, small female. The dependence of population stability on m is
quite different for the two models. Both models become unstable if m is very
large. Recall that, when m is large, larval survival is low and the adult population
size is therefore small. However, the females in the adult population will be rather
large and the adult effects on fecundity reduced because of the small adult
population size. As adult numbers decline, the slope of the hyperbolic function
regulating fecundity increases dramatically (see fig. 6). If the adult numbers
become too small, because m has become too large, the regulation of adult
fecundity becomes sensitive to small changes in population size and ultimately
causes the population to become unstable.

Very small values of m cause instability in model 1 but not in model 2. As m
decreases, larval survival increases and the adult population size increases. Ex-
amination of figure 6 shows the hyperbolic fecundity function to be flat at high
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densities. Consequently, population stability should not be affected by adult
density-dependent effects on female fecundity. In figure 3A, one can see that at
low food levels per larva (typical of an equilibrium population), the slope of the
average size function increases with decreasing m. This is not the case for model 2
(see fig. 3B), where these lines are parallel. Thus, at low values of m under model
1, female size and hence fecundity is sensitive to small changes in egg numbers
and ultimately will destabilize the population if m is made sufficiently small.
There are clearly large regions of parameter space, in figure 7, that predict
stability under model 1 and instability under model 2, and vice versa. It thus seems
reasonable to expect that, if the parameter m is allowed to evolve, the outcome of
evolution on population stability may differ drastically between models 1 and 2.

NATURAL SELECTION

The consequences of natural selection at high population density are examined
next by allowing genetic variation in competitive ability and the parameter m. In
the preceding section, each population was assumed to consist of a single compet-
itive type. Assume here that individuals may differ in their ability to consume
limited food because of genotypic differences (although sex may also influence
relative competitive ability; Nunney 1983).

If there are » competitive types in a population, let o; be the competitive ability
oftypei(i =1, ..., n), which occurs with frequency g;, and 3g; = 1. If the mean
competitive ability of individuals in the population is & = Ja;g;, then the average
amount of food consumed by type-i individuals is Ba,;/Vn,a. Clearly, if o; > @, then
type-i individuals consume more food than the average individual; the converse is
true if o; < a. When the competitive types are simply different genotypes in
Hardy-Weinberg equilibrium, their frequencies may be obtained from the vector
of allele frequencies, p,. Allowing for different competitive types in the population
means that both fecundity and viability depend on density and frequency. This
dependence is emphasized by rewriting these functions, f(Va,, p,) and W(Vr,, p,).

It is clear from this formulation that populations monomorphic for different
competitive types have the same equilibrium population size as defined by equa-
tion (6).

Evolution of o

The evolution of competitive ability will be studied by assuming that a single
locus with two alleles controls variation in o as summarized by the first four rows
of table 1. With such variation, the egg recursion is modified to

ey = 1/ZG(]Vt)F(Vnt, p,) W(Vnn Pz)VVnz- )

If we suppress the arguments of the fecundity and viability functions, then the
mean fecundity is F = 33,;p;p,f;;, and the mean viability is W = 33,;;p,p;W;;. The
genotypic values for fecundity and viability for heterozygotes are given by

Wi, = L d(y)dy, ®



DENSITY-DEPENDENT GROWTH AND SELECTION 799

TABLE 1

PopPuLATION-GENETICS MODELS

GENOTYPE
GENOTYPIC
VALUES AA, ALA, AA;

Frequency i 2p1p2 p3
Viability Wu(Va,, p) WiV, p) War(Vr,, o)
Fecundity Ve, p) fiz(Vne, py) farVn,, p)
Relative competitive ability o a2 Ao
Minimum food required my my my;
where x;, = (nVn,a/Bay; — 1)/o and

- 1 _ .

Sz = Wpa J fslBayxoy + D/Vaaltd(y)dy; ©

X12

fecundity and viability for homozygotes are analogous to equations (8) and (9).
Allele-frequency dynamics are governed by the recursion

pi = pil[(WF),/WF + W,/W1/2, (10)

where W, = Sp;W,;, (WF), = 3p;W,;f\;, and WF = 3p,(WF),. The right-hand side
of equation (10) may be interpreted as the current allele frequency times the
relative marginal fitness of the A, allele averaged over both sexes. This equation
is a special case of the model of fertility and viability selection of Nagylaki (1987,
eq. 76).

To study the evolution of competitive ability we examine the stability of
boundary equilibria. Specifically, assume that p, = 1 and that the population is at
a stable equilibrium, 4. We seek conditions that permit the increase of A alleles
when they are rare. Under these conditions the linearized dynamics of the A,
allele are given by

p1 = (P1W12/2W22)[U%12/J%22) + 11, (1

where W,-j, fou are the equilibrium survivorship and fecundity functions evaluated
at n = A and p, = 1. From equation (11), the condition for A, to increase when
rare is

Wisfio + Wiafa > 2Warfa. (12)

If ay5 > aj,, then making use of equatlons (8) and (9) and the equ1valent equa-
tions for homozygotes shows that Wy, > W, and Wi, f 1o > W fzz, which en-
sure that condition (12) holds. Thus, natural selection favors increased competi-
tive ability (increased values of a), and overdominance (a2 > ag;,0a2,) ensures
a protected polymorphism (Prout 1968).

From inspection of equations (8) and (9) it is clear that the intensity of selection
for increased o increases with population size. However, comments from the
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preceding section imply that a population that becomes fixed for a superior
competition genotype will have its carrying capacity unchanged. In addition,
absolute viability will remain unchanged. Thus, although « is under strong selec-
tion pressure at high population density, it has no effect on the equilibrium
numbers of eggs or adults. Similar results have been noted previously (Slatkin
1979; Anderson and Arnold 1983; Asmussen 1983).

The complicated dependence of WU and f,, on allele frequencies precludes an
explicit derivation of equilibrium allele frequencies. A characterization of an
equilibrium that is related to single-locus viability theory can be derived. First,
assume that_there exists an equilibrium population size, #, and allele frequency,
Pi. Let W,,, f ; be the genotyglc viabilities and fecundmes evaluated at the equlhb-
rium. Now, let W; = W /W and (WF); = W; ,J/WF where W = SSp,p;Wy.
Finally, for each genotype define § ; = (WF); + Wj;, where ; is the sum of the
relative fitnesses of males and females of genotype A;A;. An equilibrium for
equation (10) will be

D1 = (W — $)/QuUz — Y1 — ¥22), (13)

where the {’s play the role of viabilities in single-locus viability models. The
equilibrium (13) will be called viability-analogous after similar terminology in-
troduced by Uyenoyama et al. (1981).

When there is only genetic variation in the o’s and a;; = «y,, then the ;s in
equilibrium (13) can be replaced by o;’s yielding the equilibrium p; = 0.5 (see the
Appendix). When ay; # ay», the equilibrium is expected to be ‘‘close’ to

P1 = (anapr — anap)/(aagy + anay — 20q102)) . (14)

Numerical results have shown that the true equilibrium is always greater than
equation (14) although, as explained in the Appendix, this may not always be the
case.

The gross effects of competition on viability and female size can be seen in
figures 8 and 9. Figure 8 shows the viability of F; progeny from three populations
that have been kept at low density for 130 generations. When larvae from this F,
population compete with a stock homozygous for the white (w) allele, their
viability declines dramatically at low food levels (most-intense competition).
Likewise in figure 9, the size of females from this same population is shown in the
presence and absence of the white-eyed competitors. At low food levels, female
size decreases noticeably when competitors are present. At high food levels,
viability and female size are relatively unaffected by the presence of competitors.

Evolution of ‘m’

Now assume that the genetic variants in table 1 differ according to the minimum
amount of food required for pupation only, as shown in row 5 of table 1. As
before, consider first a population fixed for the A, allele and derive conditions that
allow A; to increase when rare. Equation (12) is still the correct inequality for
predicting an initial increase of A, although W;; and f;; will be different because of
the assumption that genetic variation is present in the m’s and not in a.

For both models 1 and 2, the A, allele increases when rare if my, < mo,.



b4 > >
> >
> b
L4

VIABILITY

o ¥ T T T T T T T T T T T
30 50 70 90 110 130 150

YEAST (mg/100 larvae)

FiG. 8.—Viability as presented in figure 2 for the r-F, population (described in Mueller and
Sweet 1986). Open triangles, only r-F, larvae; solid triangles, half of the larvae were r-F, and
half white-eyed larvae.

1.1

x
1_
(]
E
£ 3
= M
2
a
Y a 3
x | a
§ 0.8 . X A
2 a & v?’
L 48 x ¥
s v
0.7 -
v"
v
0.6 T T T -1 T T T T L T T T
30 50 70 90 110 130 150

YEAST (mg/100 larvae)

FiG. 9.—The average size of females from the experiment illustrated in figure 8. Symbols as
in figure 8.



802 THE AMERICAN NATURALIST

Overdominance yields a protected polymorphism. Thus, natural selection at high
population density favors decreasing m, which has the effect of increasing viabil-
ity in models 1 and 2. However, as a population evolves a lower m in model 1, the
average size of a female should decline. This is because all the additional sur-
vivors are larvae that have consumed very little food and are correspondingly
smaller (see fig. 3A). Model 2 predicts quite different results for female size. In
model 2 all females with smaller values of m are also more efficient at turning food
into biomass. The result is that average female size increases as evolution de-
creases m.

Distinguishing between models 1 and 2 is an empirical matter. These results do
highlight the earlier comments concerning the faulty logic of the verbal theory,
which predicts that natural selection should favor increased body size at high
population densities. Clearly, the ecological details of how viability, fecundity,
and body size interact with population density must be specified before the course
of evolution can be reasonably evaluated.

Decreasing m via natural selection has a variety of effects on equilibrium egg
numbers and stability. In both models, equilibrium adult numbers are expected to
increase with decreasing m. Under model 1, however, the equilibrium number of
eggs may actually decrease. In addition, a population that has a stable carrying
capacity may become unstable if m becomes sufficiently small under model 1.

With only genetic variation in m and with m;; = my;, the ;’s in equation (13)
can be replaced by m; to yield

Pt = (M — mp)l(my + my — 2myy),

which is 0.5 in this example. When the homozygotes have unequal m’s, then the
equilibrium (13) should be close to p§. Furthermore, if ni;; > my, > my,, then p; <
pi;and if ms> > myy > my,, then p; > p§ (see the Appendix). The magnitude of the
differences between p; and p§ depend on the numerical details of the problem.

The Joint Evolution of o and ‘m’

The evolution of both o and m is studied by allowing the single locus in table 1
to have pleiotropic effects on both these parameters. The novel feature of this
model is the possibility of antagonistic pleiotropic effects. Such an assumption
would require genotypes that are superior competitors to be inefficient and need
large amounts of food to pupate successfully. The boundary problem of interest,
then, is to derive conditions for the increase of A; when myy < my; and a1 < axs
or when my; > my, and o1, > a,,. To ensure that Wy, > W,,, it is necessary that
212 < %57, Which is satisfied if

Mmiplmyy < apslon, (15)

for both models 1 and 2. However, for the initial increase of A, the additional
requirement that W, f > Wy fzz must be satisfied. For model 1, this implies

|| fstBasatoy + Dvisaiomay > | fistBey + DVemIdy; (16)
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TABLE 2

STABILITY OF THE A, FIXaTION

GENOTYPE CHANGE IN A,
GENOTYPIC
PARAMETERS AA, AlA; AA; Increase Decrease
o '™ o 1.1
m 10~ 2 x 1074 3 x 1074
Evolution according to
Model 1 o, = 1.08 o, = 1.06
Model 2 o, = 0.95 o, = 0.92

Note.—The initial frequency of A; was 0.01 and @ = 0.3. All other parameter values are the same as
in figure 3.

and for model 2,

ﬁ As[Bay(oy + DIViaz + (ma — mpp)lid(y)dy

29

o 17)
>L Sfs(Bloy + D/IVALYO(y)dy .

For model 2 it is evident that even if £, < £,,, the inequality (17) may not be
satisfied. To evaluate inequality (17) the size function would have to be specified.
The same problem arises for model 1 when o> < ax and m, < m,,. A sufficient
condition for the increase of A; with model 1 is inequality (15) and m, > m,,. This
does not turn out to be a very useful condition in many instances. The sorts of
trade-offs in m and o necessary for initial increase or polymorphism are quite
different for model 1 and model 2 because changes in m produce larger fitness
differences in model 2 than 1. This effect is illustrated in table 2. In this example,
a population is nearly fixed for the A,A, homozygote, which is a superior com-
petitor but inferior with respect to m. The value of «;, that allows the increase
of A, alleles is then approximated from numerical iteration of equation (10). It
is clear from table 2 that model 1 requires a much higher value of «;, than does
model 2, since the fitness advantage of a low m in model 1 is not nearly as great as
in model 2.

Table 3 shows the equilibrium values of viability, fecundity, and allele frequen-
cies for models 1 and 2. These examples illustrate that a polymorphism described
by equation (13) may be maintained without overdominance in m or o. Genotypes
must, however, show some trade-off in their competitive ability and minimum
food requirement. Another characteristic of the equilibria shown in table 3 is that
each population maintains substantial additive genetic variation for m and o.
Populations characterized by such polymorphisms could be expected to respond
rapidly to changing environments in which the fitness effects of m and o were
weighted differently than in the present model.
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TABLE 3

PoLYMORPHISM RESULTING FROM ANTAGONISTIC PLEIOTROPY

MobEL MoDEL
PARAMETER PARAMETER
VALUES 1 2 VALUES 1 2
n 100 109 D1 0.237 0.693
o 1.05 0.85 Wi 0.993 0.992
o 1.08 1.05 Wia 0.984 0.984
5753 1.10 1.10 W 0.964 0.967
my, 104 104 F,, 2.59 2.64
m, 2 x 1074 2 x 1074 Fy, 2.69 2.80
ma, 3x 1074 3 x 1074 Fa 2.79 2.63

Note.—All other parameter values are the same as in table 2.

DISCUSSION

The model developed here describes density-dependent effects on the viability
and fecundity of individuals. Density affects fecundity in two ways: through
competition for food and adult size (hence, the fecundity of females is affected),
and by modulating the number of interactions between adults. Natural selection in
such environments favors the increase in competitive ability for food although
such changes do not result in permanent changes in the equilibrium number of
eggs or adults.

Natural selection also favors genotypes that can successfully pupate on less
food. In one model, this is achieved by larvae eating less and pupating at a smaller
size. In the second model, larvae pupate on less food by becoming more efficient
at using the available resources. No single prediction emerges from this theory
concerning the evolution of adult size at high densities. This result is contrary to
the standard predictions of the verbal theory of - and K-selection (Pianka 1970;
Southwood 1976).

Models 1 and 2 make very different and perhaps extreme assumptions about the
pleiotropic consequences of alleles that affect the parameter m. In model 1 there is
a “‘cost’’ of increased survival. This cost is extracted in female fecundity and is
accomplished by extrapolating the existing relationships between food consumed
and size and between size and fecundity. In model 2 there is no cost to reductions
in m. Other assumptions could have been explored. The cost could have been less
extreme than assumed in model 1, or the reduction in fecundity could have been
accomplished without a reduction in size. The predictions concerning the evolu-
tion of adult size would probably continue to be sensitive to these other possible
assumptions. Without strong empirical evidence favoring any particular assump-
tion, we have not pursued these additional possibilities.

The existence of genetic variation with pleiotropic effects on m and « is sug-
gested by empirical studies. Drosophila melanogaster larvae may become better
competitors for food by increasing the number of cephalopharyngeal retractions
made per minute while feeding (Burnet et al. 1977). Larvae that are fast feeders
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pass food more quickly (Burnet et al. 1977) and are more active (Sewell et al. 1975)
than slow feeders. Thus, it is possible that a correlated response to increased a is
increased metabolic rate and reduced efficiency of assimilation (as a result of the
faster ingestion rate; Scribner and Slansky 1981). These correlated responses
would almost certainly lead to increased values of m.

Gurney and Nisbet (1985) have developed continuous-time, density-dependent
models of population growth that explicitly incorporate larval competition and its
effects on adult fecundity. Because the present models differ from Gurney and
Nisbet’s in a number of minor and major details (presence or absence of adult
effects on fecundity, individual variation in food consumed), comparison is dif-
ficult. The present models have the advantage of being more congruent with the
ecology of laboratory Drosophila populations.

At this point, it is worth summarizing what is known about density-dependent
natural selection in Drosophila. My colleagues and I have undertaken a long-term
study of six replicate populations: three kept at low population density, called
r-selected, and three kept at high densities, called K-selected. After eight gen-
erations, the populations had become differentiated with respect to density-
dependent rates of population growth (Mueller and Ayala 1981a). This observa-
tion was consistent with predictions of the formal models of density-dependent
natural selection (see, e.g., Roughgarden 1971). These differences in rates of
population growth also imply that the carrying capacity of adult K-selected flies is
greater than the carrying capacity of r-selected flies (contrary to the claims of
Stearns 1984). Additional work has shown that under crowded larval conditions,
the K-selected populations survive better and produce larger adults than the r-
selected populations (T. Bierbaum, Mueller, and F. Ayala, unpubl. results). It
now seems clear that part of the increased larval survival of the K populations can
be attributed to the evolution of increased pupation height (Mueller and Sweet
1986). However, the behavioral differences in pupation-site choice cannot explain
the differences in adult size in crowded cultures.

Clearly, evolution consistent with model 2 could offer a plausible explanation
for the size and viability differences observed in the empirical studies. Testing
these ideas requires collecting information on survival and size as a function of
food level similar to the study of Nunney (1983). In addition, the appropriate
experiments could also yield estimates of a.

SUMMARY

The action of density-dependent population growth is modeled through the
effects of limited food. Scramble competition for food affects viability and adult
size, which are correlated with the fecundity of females. Adult effects on fecun-
dity are also explicitly modeled. In the two submodels considered, changes in the
minimum amount of food necessary for successful pupation lead to (1) changes in
the minimum size of an adult with no change in overall efficiency or (2) constant
minimum size but changes in the efficiency of food use. The resulting population
dynamics of the two submodels are qualitatively different. For both submodels,
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population stability requires some degree of adult effects on female fecundity for
parameter values typical of Drosophila.

When genetic variation is present for competitive ability and minimum food
required, natural selection at equilibrium population size favors increasing com-
petitive ability and decreasing the minimum food requirement. Evolutionary
changes in the competitive ability of a population do not affect equilibrium
population size. Decreases in the minimum food requirements typically increase
the equilibrium adult population size but have variable effects on equilibrium egg
numbers, depending on the submodel examined. Biological evidence suggests that
competitive ability and minimum food requirements may be positively correlated.
Genetic models with this antagonistic pleiotropy can maintain allelic variation
without overdominance in either character. Furthermore, contrary to established
verbal theory, there is no consistent prediction concerning the evolution of aver-
age body size. An advantage of this theory is that parameters of interest may be
easily estimated in laboratory populations of Drosophila.
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APPENDIX

This appendix derives some simplified expressions for equation (13).
Evaluation of equation (13) for model 1 and genetic variation only in m yields

[ oas + [ vy
pAl - 2 12 . (Al)

’922 'QZZ %
L d(y)dy + L SNy dy + J

1 ﬁll
A ¢(y)dy+L S o(y)dy

Repeated application of the mean-value theorem and some algebra yields
(ma — m) QW) + &(W")
(M — mp)[QW) + 6W)] + (my — mp)QZ) + &Z')

where f(D)d(y) = Q(), £12 = (W, W') = %p, and £y = (Z, Z') = £14. If my; = my,, then
W = Z, W = Z', and the equilibrium allele frequency is given by

by = (A2)

pf¥ = (mn — mp)/(my + myp ~ 2myy). (A3)

However, if m;; > myp, then Q(Z) + &(Z') > QW) + &(W’) and p, < p¥. Similar
arguments require that, when m;; < my,, p) > pf.

When genetic variation exists in the m’s and model 2 applies, the analysis is somewhat
more complicated. If the fecundity function is replaced by Taylor’s polynomial plus
remainder (Phillips and Taylor 1973, p. 38), then the equilibrium allele frequency is

P1 = (myp — mp)A + A)/[(my — mp)A + A") + (my — mp)(L + L], (Ad)
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where
A= QW) + &(W),
L =Q2) + &2),

o

A= Bcj FsIBy + DIVA + [alhé(y)dy / Vi,

%

L' = Bo L FsIBoy + DIVA + Lulbé()dy / Vi,

f'() denotes differentiation with respect to m;; — mj,, and 0 < {; < m; — my,. Certainly,

when my; = my,, equation (A4) equals p}¥. When m;; > my,, there is no guarantee that {;; >

{2; but for m,, sufficiently close to mj,, then {;; = {,,, in which case p; < p¥, as before.
When genetic variation exists in a, the equilibrium p; reduces to

b1 = Alen' — apY)/[A(en' — ap) + L@q! + aphl. (AS)

A and L are complicated functions and they are equal when a;; = a3. However, in-
equalities such as aj; = ay, are insufficient for evaluating the relative magnitudes of A and
L, without specifying the specific fecundity function and additional parameter values.
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