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A fundamental problem in population ecology has been the development of
simple quantitative models of single-species population growth (Gilpin and Ayala
1973; Pomerantz et al. 1980; Hastings et al. 1981; Mueller and Ayala 198156). In
discrete time, these models take the general form

N, = g(N,_1), ¢y

where g(N,) is some nonlinear function and N, is the number of individuals,
usually adults, in the population at time ¢. With organisms such as Escherichia coli
and Paramecium there is no ambiguity about which life stage equation (1) refers
to. A population of Drosophila, on the other hand, may consist of eggs, larvae,
pupae, and adults in a single generation, and their numbers may all be different.
Since adults are the most conspicuous life stage of many organisms, including
Drosophila, and the most easily manipulated, population ecologists have almost
always let N, represent adult numbers. Although natural populations of
Drosophila usually exhibit overlapping generations with essentially continuous
reproduction, it is possible to enforce a discrete regimen of reproduction on
laboratory populations and, hence, to use models such as equation (1) to describe
population dynamics in these laboratory environments.

Even though the adult life stage can be shortened to a day or less, it is
impossible, even in the laboratory, to eliminate the preadult life stages of
Drosophila. In a very interesting paper, Prout and McChesney (1985) examined
the effect of these preadult life stages on population dynamics when adults were
the usual census stage. Prout and McChesney noted that, for Drosophila, the
fecundity of females depends on their preadult larval density and that empirical
evidence indicates no one-to-one correspondence between adult density and the
density these adults experienced in the larval stage. Under these conditions they
arrived at the surprising result that population dynamics based on adult-to-adult
observations are biased. In particular, estimates of the population’s stability at
carrying capacity can be severely biased when adult transitions have been used to
estimate population dynamics. The determination of this bias requires the as-
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sumption that stock populations have been kept at carrying capacity. If this is not
true, then the bias may not be calculated even in theory. Prout and McChesney’s
own data seem to indicate that the eigenvalues governing stability may indeed be
less than — 1. Thus, the considerable variation in the size of their running popula-
tions may be caused by the nature of the density-regulating mechanisms rather
than by stochastic forces alone (May 1974; May and Oster 1976). Such results call
into question the conclusions of Mueller and Ayala (19814) and Thomas et al.
(1980). They observed that the vast majority of Drosophila populations examined
have stable population dynamics; these results, however, were based on observa-
tions of adult-to-adult transitions. In addition, deviations from logistic population
growth (Ayala et al. 1973; Mueller and Ayala 19815) may result from a bias in one
particular method of observing adult-to-adult transitions.

It does not appear that the bias noted by Prout and McChesney can be ‘‘cor-
rected’’ in the studies of Mueller and Ayala and of Thomas et al. Although the
theoretical results of Prout and McChesney seem unassailable, it is the experi-
mental procedures that are subject to criticism. In this note I hope to show that
Prout and McChesney’s own data support, most strongly, the conclusions of
Mueller and Ayala and Thomas et al. An unambiguous resolution of this problem
may require the unpleasant task of observing egg-to-egg transitions.

The analysis of Prout and McChesney (1985) considered only fully discrete
populations. The studies of Mueller and Ayala (1981a) and Thomas et al. (1980)
both used a modification of this procedure called the serial-transfer system (STS).
It is likely that the generic problems discussed by Prout and McChesney also
apply to the STS. Aside from these problems, two quite different methods have
been used to analyze population stability in the STS. The method employed by
Thomas et al. (1980) I call the intuitive method, and the technique I have proposed
(Mueller and Ayala 1981a,b) may be called the kth-order difference-equation
technique. Although similar qualitative results have been reached using both
methods, this agreement may have been largely fortuitous. In the last section of
this paper I show that these techniques need not agree and that the kth-order
difference-equation technique should thus be favored.

PROUT AND MCCHESNEY’S MODEL

Prout and McChesney (1985) assumed that egg-to-adult survival, S(-), and
female fecundity, F(-), depend on the egg density in any generation. Thus, a
recursion in the number of eggs at time ¢ + 1, n,,, can be written

n,o1 = Y2F(n,) S(n,) n, . 2

The evidence for such dependence is abundant (Chiang and Hodson 1950; Robert-
son 1957; Prout and McChesney 1985). The number of adults at time ¢, N,, is
S(n,)n,. It should be noted that with the population dynamics described by
equation (2) it is impossible to express N, ; as a function of N,. If the equilibrium
number of eggs is denoted by k, then the eigenvalue governing the stability of
equation (2) given by Prout and McChesney (1985) is

A=1+ kF(k)S' (k) + kS(k) F'(k), 3)
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TABLE 1

Sropes (X 107%) oF VARIOUS SURvIVAL FUNCTIONS FOR THREE EGG
DENSITIES

EGG DENSITY (PER Y2-PINT CULTURE)

MobDEL 1600 2100 2600

Linear -2.80 —2.80 —2.80
Exponential —2.04 —1.54 -1.19
Hyperbolic —-1.42 -1.02 -0.77
Empirical estimate -1.01 -1.01 -1.01

Norte.—Data from Prout and McChesney 1985, figure 3A.

where the prime denotes differentiation with respect to n,. If this eigenvalue has
an absolute value greater than 1, the population may exhibit cyclic or chaotic
dynamics.

Estimation of the Slope of the Fecundity and Survival Functions
in the Vicinity of the Carrying Capacity

Linear, hyperbolic, and exponential functions were used to describe observa-
tions of survival and of female fecundity over a broad range of egg densities (Prout
and McChesney 1985). Standard regression techniques were then used by Prout
and McChesney to estimate the parameters of each function. The slopes, S'(k) and
F'(k), can then be estimated by plugging in the appropriate parameters and k. If
the underlying function is a poor mimic of the actual biological phenomenon and
many data points are collected far from the carrying capacity, these predicted
slopes may be quite inaccurate. This implies, of course, that the estimate of \ will
be inaccurate.

This conjecture was tested as follows. From figure 34 in Prout and McChesney
(1985), the last eight data points that covered egg densities of 1600-2600 per Y5-
pint culture were used to estimate the slope of the survival function empirically;
that is, a straight line was fit to these data. This slope was then compared to the
predicted slopes from the three functions fitted to the complete data set (table 1).
Both the exponential and hyperbolic functions reasonably approximate the ob-
served slope in this region, but the hyperbolic function is perhaps more accurate.
The linear function is clearly the least accurate with a slope nearly three times too
large in absolute magnitude.

The fecundity data were analyzed similarly using 16 points in the range of 1600-
2000 eggs from Prout and McChesney’s figure 5A (table 2). Again, the exponential
and hyperbolic functions do an adequate job, with a slight edge to the exponential
function. The linear function is quite bad, however, being greater than two times
the observed value in absolute magnitude.

These results call into question the accuracy of any eigenvalue estimated from a
linear survival or fecundity function. Since the slopes of these linear functions
appear to be too large in absolute magnitude, at least at high egg densities, they
are liable to produce eigenvalues from equation (3) that are too large in absolute
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TABLE 2

SropEs (X 1073) oF Various FEcunpiTy FuNcTions For THREE EGG
DENSITIES

EGG DENSITY (PER 2-PINT CULTURE)

MobEL 1600 1800 2000

Linear —-5.70 -5.70 -5.70
Exponential —-3.32 -2.72 -2.22
Hyperbolic —2.43 -2.10 —1.83
Empirical estimate —2.42 —-2.42 —2.42

Note.—Data from Prout and McChesney 1985, figure SA.

magnitude. In fact, every function in Prout and McChesney’s table 4 that yielded
an eigenvalue less than — 1 had at least one linear component. The worst function,
which yielded A = —1.86, consisted of a linear survival function and a linear
fecundity function! It is entirely reasonable to discount the linear functions be-
cause of these inaccuracies and hence to conclude that their data do not appear to
produce an |\| > 1.

Effect of Adult Density on Female Fecundity

Although Prout and McChesney’s theoretical results demonstrate that eggs are
the natural census stage, they chose not to observe egg-to-egg transitions because
of the inherent difficulties of such a procedure with Drosophila. Instead, they
attempted to examine in detail the parts of the life cycle that show density
dependence and then to reconstruct the entire life cycle from these components.
At least two serious problems seem to arise with this technique.

The first problem lies with the estimation of the carrying capacity. When egg-to-
egg or adult-to-adult transitions are used, a direct empirical estimate of the
carrying capacity is possible, for example, the density at which egg (or adult)
numbers stay constant. The estimation of population stability depends critically
on the population’s behavior in the vicinity of the carrying capacity. From the
components technique, the carrying capacity is estimated indirectly by iterating
equation (2).

If one looks at figures 1A and 1B in Prout and McChesney (1985), the average
adult carrying capacity of these running populations is apparently in the range of
360-370. However, their models predict adult carrying capacities, K, in the range
of 538-637. Prout and McChesney suggested that for certain models K approaches
the maximum population size. If the population is cycling, it spends most of the
time below K and hence gives rise to the observed discrepancy. Other possible
reasons for this discrepancy are discussed below.

The second problem with the components technique is that it may be incom-
plete. That is, a particular life stage showing density dependence may be over-
looked. I now consider the effects of ignoring one seemingly innocuous life stage
on the estimate of population stability.
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TABLE 3

EquiLiBriuM EGG NUMBER (k), EQuiLiBRIUM ADULT NUMBER (K),
AND EIGENVALUE (A') FOR THREE SLOPES OF THE
FECUNDITY-VERSUS-ADULT-DENSITY FUNCTION, F'[kS(K)]

SLoPE k K A
0.0 1282 577 -0.82
-1.927 x 107* 1226.2 564.5 -0.79
-9.000 x 1074 914.6 483.0 0.014

Note.—Values calculated from equations (4) and (5) in the text.

Many workers (Pearl 1932; Bodenheimer 1938; Robertson and Sang 1944;
Chiang and Hodson 1950) have shown that adult density exerts a strong influence
on female fecundity at low densities and that this effect is greatly diminished at
moderate and high adult densities. Prout and McChesney’s (1985) own data on
female fecundity at densities of 50-600 adults per Y2-pint culture are entirely
consistent with these previous findings. That is, at these moderate to high densi-
ties, per capita fecundity hardly changes at all and density certainly exerts no
statistically significant effect. In fact, their data indicate a slight decline in female
fecundity with increasing adult density. Even these very small effects can have a
significant impact on the estimated stability eigenvalue.

First consider a new model of population dynamics that incorporates the effect
of adult density on female fecundity,

Neryr = F(Nt) VoF(n,) S(ny) ny . C))

Since Prout and McChesney’s data on female fecundity were recorded at densities
of 50 adults, F(N,) indicates the effect of adult density on female fecundity relative
to that value at N, = 50. For this analysis, let F(N,) be a linear function. Using the
observations from figure 4 of Prout and McChesney (1985), the slope of F(N,) is
~0.00019 (= 0.00078, 95% confidence interval). The eigenvalue for equation (4) is

N =1+ k{F'(k) FlkS(k)]1S(k) + S'(k)F(k) F{kS(k)]
+ F) Sk F'IkSU)ISk) + kS'(OT} .

To evaluate N\’ numerically, the hyperbolic survival function and exponential
fecundity function are used. The results of this analysis are shown in table 3.
Table 3 also records Prout and McChesney’s results for the version of equation (2)
using hyperbolic survival and exponential fecundity. First note that the addition of
adult effects on female fecundity has reduced the adult carrying capacity, which,
although still higher than it should be, has been corrected in the right direction.
Likewise, the magnitude of the eigenvalue has decreased somewhat. Both of these
changes are rather small; thus, ignoring them would seem justified. However, if
the slope of the F(N,) were actually —9 x 10~4, still within the 95% confidence
limits, substantial differences appear. The resulting equilibrium population size
and eigenvalue are shown in table 3. It is clear from this example that biological
significance and statistical significance do not go hand in hand. The uncertainty in

®)
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the slope of F(N,) translates into a fairly large uncertainty in ', and setting this
slope equal to 0 just obscures the problem.

Bias in Methods 1 and 2

Incorporating the adult effects on female fecundity generally decreases, in
absolute magnitude, the eigenvalue governing population stability. This assumes,
of course, that the slope of F(N,) is more likely negative than positive. This result
and the poor performance of the linear survival and fecundity functions force one
to conclude that Prout and McChesney’s experimental results are most consistent
with [\| < 1. However, the incorporation of adult density effects on female
fecundity does not remove the problems inherent in observing adult-to-adult
transitions.

Prout and McChesney discussed the bias inherent in two experimental
methods. Method 1 takes N, adults from a shelf population, presumably at carry-
ing capacity, and records the number of offspring produced in one generation,
N, 1. These values of N, and N, ., are then used to estimate population dynamics.
Method 2 follows the same steps as method 1 except that from the N, ., progeny,
N, adults are again chosen and the process is repeated. In this way an attempt is
made to remove the effects of the variable fecundity of shelf flies. At least in
theory, a single generation does not remove the effects of the shelf flies, and an
infinite number of generations is required. Prout and McChesney actually deter-
mined the bias in estimates of A produced by methods 1 and 2. Numerical
calculations (not shown) of this bias show in general that the bias of method 2 is
less than that of method 1.

It is of some interest to know how these biases are affected by the incorporation
ofadult effects on female fecundity. For instance, if the population’s dynamics are
governed by equation (4), then eigenvalues estimated from data collected by
method 1 have a bias of kS(k) F[kS(k)]|F'(k)|, whereas this bias is kS(k)|F’(k)| when
equation (2) describes the population dynamics. Since F(N,) is less than one for N,
> 50, incorporating the adult effects on female fecundity clearly reduces the bias
for method 1 although certainly without eliminating it. Similar expressions for
method 2 have been derived; however, they are not as readily interpreted. Suffice
it to say that bias is still present in methods 1 and 2 and may be of substantial
magnitude.

One problem not explicitly examined by Prout and McChesney is the degree to
which the bias in methods 1 and 2 may have affected growth curves fitted to such
data. These studies (Ayala et al. 1973; Pomerantz et al. 1980; Hastings et al. 1981;
Mueller and Ayala 1981b) have generally observed per capita rates of population
growth that decline, with increasing density, at rates much faster than linear. This
problem can be examined numerically by using equation (4). For these examples,
the hyperbolic survival and exponential fecundity functions are used. A starting
egg number is specified, and then the adult numbers in that generation, N,, and the
next generation, N, 1, are calculated from equation (4). These two adult numbers
are then used to calculate per capita rates of population growth. Similar rates of
population growth are calculated by methods 1 and 2, assuming that the popula-
tion dynamics are actually described by equation (4) (see Prout and McChesney
1985, Appendix A). These results are shown in figure 1.
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Fic. 1.—Rates of population growth estimated by three different methods. Numerical
values were derived from the hyperbolic survival and exponential fecundity functions of
Prout and McChesney (1985) and the linear fecundity function described in the text. )

It is clear from figure 1 that the bias in method 1 is greater than that in method 2.
Because all the adult flies used in method 1 were kept at high densities, their
fecundity is quite low, and hence their rates of population growth are kept low
even at low densities. Although Thomas et al. (1980) and Pomerantz et al. (1980)
have used method 1, their data differ greatly from the results shown in figure 1.
This turns out to be wholly a consequence of their method for estimating the rates
of population growth in the serial-transfer system (STS, discussed below).

Method 2 appears to have little bias for very low and very high densities but
appreciable bias for intermediate densities. The resulting curve departs substan-
tially from a straight line. Observations of this sort have been made when method
2 has been applied to the STS (Ayala et al. 1973; Mueller and Ayala 19815). A third
parameter, 0, is used in these studies to account for these deviations from logistic
population growth. If the bias exemplified in figure 1 is also present in the STS,
then the observed deviations from logistic population growth may not be nearly so
large as suspected. The only obvious way to clarify this problem is to repeat the
experiments using egg-to-egg transitions.

Egg-to-Egg Recursions

Although it is reasonable to conclude that Prout and McChesney’s data are
consistent with |\| < 1, the only unambiguous way to estimate \ and population
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dynamics is to observe changes in the number of eggs in a single generation. For at
least three reasons, this procedure must be considered seriously.

1. Such a procedure implicitly takes into account all density effects; thus, no
assumption about which life stages are affected by density is necessary.

2. Even if the recursion (4) were exactly true, determining precisely the slope
of the curve describing fecundity versus adult density requires much work,
perhaps more than egg-to-egg transitions require.

3. The equilibrium egg numbers can be determined by direct observation rather
than by relying on predicted values from recursions such as (2) and (4). Further-
more, the stability eigenvalue can be estimated directly from linearized rates of
population growth in the vicinity of & without reference to any particular model
(Mueller and Ayala 1981a).

STABILITY IN THE SERIAL-TRANSFER SYSTEM

The serial-transfer system (STS) consists of m cultures, which can be ordered
by age: 1 wk old, 2 wk old, . . . , m wk old. The youngest culture always contains
the egg-laying adult population. The older cultures contain eggs, larvae, pupae,
and newly emerged adults that resulted from a week of egg laying by the adult
population 2, 3, . . . , and m wk ago. At weekly intervals additions to a fresh
culture are made from the surviving adults from the 1-wk-old population and from
the newly emerged adults from the 2-, 3-, . . . , m-wk-old culture. The oldest
culture is discarded at this time. m is chosen to be small enough to exclude
second-generation flies but large enough to include most of the first-generation
flies; m is typically set at 4 (Mueller and Ayala 1981a—-d), 5 (Ayala et al. 1973), or 6
(Pomerantz et al. 1980; Thomas et al. 1980). It seems reasonable to expect the
rates of population growth in the STS to depend on the number of egg-laying
adults, the total number of progeny produced from each week’s egg laying, and
the time at which these progeny emerge. The STS has the advantage of maintain-
ing an adult population with overlapping generations, and thus perhaps of being
more similar to the natural environment, but it suffers from being rather difficult to
model.

In the studies of Thomas et al. (1980), Pomerantz et al. (1980), and Hastings et
al. (1981), estimated rates of population growth were obtained by assuming that
the surviving adults and all emerging progeny are available simultaneously to
begin the next generation of population growth. This approximation clearly ig-
nores the time structure of the STS and leads to inflated rates of population
growth, especially at very low densities. In figure 2, data from a single population
(Mueller and Ayala 1981c¢) are used to estimate rates of population growth by the
methods of Thomas et al., Pomerantz et al., and Mueller and Ayala (1981b).
Obviously, ignoring the time structure of the STS can lead to substantial differ-
ences in the estimated rates of population growth. Thus, although Thomas et al.
and Pomerantz et al. used method 1 to collect their data and although the results
from the section Bias in Methods 1 and 2 suggest that the resulting growth rates
should be too small, just the opposite is seen because of their method of analyzing
the STS.

For mathematical convenience in the following discussion, let m = 2, although
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Fic. 2.—Rates of population growth in the serial-transfer system for the random heterozy-
gous line of Drosophila melanogaster (Mueller and Ayala 1981c¢). Top curve, the method of
Thomas et al. (1980) and Pomerantz et al. (1980); bottom curve, the method of Mueller and
Ayala (1981b) using the same data.

similar conclusions should be possible for m > 2. Population dynamics in the STS
can then be represented as (Mueller and Ayala 1981b)

N, =f1(Nt—1) +f2(Nt—2)1 ()]

where f,(N,_,) is some nonlinear function that describes adult survival over 1 wk
as a function of density and f>(N,_,) is a nonlinear function that relates the number
of emerging progeny from a 2-wk culture to the original number of egg-laying
adults. Higher-order versions of this model have been used by Mueller and Ayala
(1981a~-d). Note that equation (6) is a second-order nonlinear difference equation.
The “‘intuitive’” method of modeling the STS (Pomerantz et al. 1980; Thomas et
al. 1980) ignores the time structure of the STS and simply uses equation (1). As
discussed in Mueller and Ayala (1981a), the linear population dynamics of equa-
tion (6) can be written as

Nt = + b]N,_l + a, + sz,_z. (7)

The local stability of equation (7) is determined by the roots of the quadratic

A+ A+ by, = 0. €3}
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Fic. 3.—Regions of stability for models of the serial-transfer system in terms of the
parameters b, and b,: hatched area, by the intuitive method, equation (1); dotted area, by the
second-order difference equation, equation (6).

To compare the stability predictions of equation (6) to equation (1), we note that
the intuitive method implicitly assumes that N, = fi(N,_;) + fo(N,—{) = g(N,—1).
This is a reasonable approximation to the population dynamics in the STS when
N,_1 = N,_, (e.g., at carrying capacity), but it deteriorates as the population
moves away from carrying capacity. Thus, in figure 2 the two curves become
coincident as per capita growth rates approach 1. The linear dynamics of equation
(1) can be written in terms of the parameters of equation (7) as N, = (a; + az) +
(by + by)N,_,. The local stability of equation (1) is guaranteed if

|by + byl < 1. 9)

The conditions for a local stability of equation (6) are (Goldberg 1958, pp. 171-
172)1 - b] - b2>0and1 + b] - b2>0,lfb12 + 4b2201fb% + 4b2<0,the
stability conditions are the same as above plus 1 + b, > 0. Thus, for both
equations (1) and (6) the conditions for local stability can be expressed in terms of
b, and b,. Figure 3 shows the range of values that b, and b, may take while
remaining consistent with a local stability of either equations (1) or (6). It is clearly
possible for the intuitive method to predict stability while the difference-equation
approach predicts instability, or vice versa. In addition, over large areas of the
parameter space both methods yield similar results. Unfortunately, unless special
restrictions are placed on the range of b, and b,, the two methods can yield
contrary results concerning the stability of the same population. Since equation
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(6) represents a more detailed accounting of the STS, it seems reasonable to place
more confidence in it when analyzing the stability of the STS.

SUMMARY

The fecundity of Drosophila in the laboratory depends on the level of crowding
during the larval stage. In addition, the function describing the number of adults
produced by an initial number of eggs is not one-to-one. Consequently, the
population dynamics determined from adult-to-adult transitions are likely to be
biased (Prout and McChesney 1985). This result has called into question the
general conclusion that laboratory populations of Drosophila have asymptotically
stable population dynamics, since these observations were based on adult-to-adult
transitions. Prout and McChesney’s own data seem to indicate that eigenvalues
less than — 1 may occur in laboratory populations of Drosophila.

A reexamination of their data actually supports the notion that laboratory
populations of Drosophila have stable dynamics. However, a thorough resolution
of this question will require a determination of the population dynamics by
observing changes in the number of eggs. For populations of Drosophila kept in
the serial-transfer system, it is shown that the two currently practiced methods for
determining population stability are not equivalent. Since the method employing
the mth-order difference equation (Mueller and Ayala 19814) takes into account
the complicated features of the serial-transfer system, it should be the preferred
method.
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