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POPULATION DYNAMICS IN THE SERIAL TRANSFER SYSTEM:
COMMENTS ON HADDON’S MODEL

Haddon (1982) has recently proposed a model of the dynamics of population
growth in the presence of competitors. He prefers this model to others previously
proposed (Ayala et al. 1973; Gilpin and Ayala 1973) because (1) his model
predicts more accurately the observed equilibria and (2) it provides a mechanistic
explanation for nonlinear per capita rates of population growth. The purpose of
this note is twofold. First we show that Haddon’s model is a special case of a more
general model of population dynamics in the serial transfer system. Secondly, we
point out that Haddon’s criteria for preferring one model over another ignore
several important factors.

We shall concentrate on the single species version of Haddon’s model, although
our comments apply with equal strength to the two-species competition equations.
Haddon’s model can be expressed as

N =Ny + fINIK; — f(N)VK, (la)
SfN—s) = Ny explr(K, — N, 5)/K,] (1b)

in which N, is the number of adults present at time ¢; s is_the survivorship of adults
from one census time to the next; r is the intrinsic rate of increase of the species;
K, and K, are the carrying capacities of the juveniles and of the adults, respec-
tively. Equation (1a) is a second-order nonlinear difference equation. In Mueller
and Ayala (1981) we have shown that when cultures are maintained for 4 wk, then
the population dynamics of the serial transfer system can be represented as a
fourth-order difference equation:

N, =f1(Nt—1) +f2(Nt—2) +f3(Nt—3) +f4(Nt—4)- (2

At any time, the total number of adults censused in the serial transfer system
represents contributions from cultures 1, 2, 3, and 4 wk old. The contributions of
these four cultures are represented by the various f;(N,_;) functions. It can be seen
that the models (1) and (2) are related by

SNy = filN—)
f(Nt—2)[KJ — fIN VK = fo(Ni—p) + f3(N—3) + fo(N—y).

Adults that emerge from cultures 2, 3, and 4 wk old are added together and
described by one function in Haddon’s model. Thus model (2) incorporates all the
empirical information available with respect to age structure, whereas Haddon’s
model does not.

We have also shown previously (Mueller and Ayala 1981) how it is possible to
derive an asymptotic per capita rate, Ay, of population growth at a single density.
The analysis requires making a linearization of the general model (2) and then
obtaining experimental data of the appropriate type in order to estimate the

Am. Nat. 1982. Vol. 120, pp. 548-550.
© 1982 by The University of Chicago. 0003-0147/82/2004—0010$02.00. All rights reserved.



NOTES AND COMMENTS 549

constants in the resulting fourth-order linear difference equation. We further went
on to show that A, is not a linear function of density, as required by the logistic
model, and that the deviations from linearity can be well described by the addition
of the parameter 8 to the logistic equation.

It should be emphasized that our analysis (Mueller and Ayala 1981) has two
separate components. The first is the construction of a general model of popula-
tion dynamics in the serial transfer system. The resulting model (2) explicitly
demonstrates that, in general, the adult population size in the serial transfer
system is a function of the population size at four previous time intervals. The
second part of our analysis shows how one can derive a rate of population growth
that is a function of only one density. Using the values thus obtained, we were
able to explore some basic assumptions inherent in some simple models of popu-
lation growth.

Because Haddon’s model is only a second-order difference equation, it is
clearly not adequate as a general model of population dynamics in the serial
transfer system (although it could be appropriate for organisms with two distinct
life stages if these are separately sampled). In addition, we must point out that the
age structure of Drosophila cannot be accounted for in the serial transfer system.
Adults are the only life stages censused and, moreover, the adults in the leading
culture are of various unknown ages. The age structure (partially) incorporated by
Haddon’s model is really an age structure of cultures and not of individual flies;
i.e., the terms in equation (2) are contributions to the population from variable age
cultures, not individuals.

Even though Haddon’s model is inappropriate for the serial transfer system,
still his comments concerning the theta model deserve attention. Haddon feels
that parameters of a model should not only account for empirical observations but
also provide mechanistic explanations. The empirical observations have shown
that per capita rates of population growth are not linear functions of density
(Ayala et al. 1973; Pomerantz et al. 1980; Mueller and Ayala 1981; Hastings et al.
1981). The addition of the parameter 6 to the logistic equation seems to account
adequately for these deviations from linearity (Mueller and Ayala 1981). It is true
that the parameter 6 provides no explanation for these deviations; it is merely a
device for incorporating this empirical fact in a relatively simple model. Certainly,
there can be many phenomena causing these nonlinearities. Schoener (1978) has
shown that nonlinearities may result simply from the mechanism of feeding for a
limited food supply. Gilpin et al. (1976) have suggested that nonlinearity may arise
because quality resources are exhausted first in an environment with heterogene-
ous resources. These and other phenomena may be in operation for different
organisms. The appeal of the theta model is that all such examples might be
described adequately by one model. Nevertheless, as we have previously dis-
cussed (Mueller and Ayala 1981), uncovering the biological mechanisms responsi-
ble for the observations is an important component of understanding population
dynamics and deserves further attention.

Levins (1966) has suggested that we try to maximize the generality, precision,
and reality of any biological model. It is usually not possible to maximize all three
simultaneously (Ayala et al. 1973). Haddon clearly prefers to maximize the reality
of a model. This will be done by sacrificing generality and precision. Clearly the
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special population structure incorporated by Haddon in model (1) or by us (Muel-
ler and Ayala 1981) in model (2) makes these models less general than either the
logistic or the theta models. We submit that when precision is properly defined,
the more complicated models suffer with respect to this criterion also. As we have
previously discussed (Mueller and Ayala 1981), more complicated models of
population growth will almost always yield predicted rates of population growth
(and equilibrium population sizes) that are closer to the observed values, simply
because they use more parameters. As an extreme case, if n+1 distinct obser-
vations are made, one can always construct an nth-order polynomial that passes
through all the observations. More complicated models, however, are liable to
have a much higher mean squared error of prediction. For this reason, an appro-
priate criterion for identifying the most precise model is to select that which
minimizes the mean squared error of prediction (see Mueller and Ayala 1981 for
details). Accordingly, Haddon’s observation that his model yields a more accurate
prediction of the two-species equilibrium is not evidence that his model is more
precise in any meaningful way.

We agree with Haddon’s desire to understand the mechanisms responsible for
deviations from the logistic model. However we do not think that the explicit
incorporation of the mechanisms in models of population growth is either neces-
sary or, in some cases, desirable.
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