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The logistic model, widely used for describing population growth, assumes that
the per-capita rate of growth linearly decreases as the population size increases.
Experimental data, however, suggest that often the per-capita rate of growth is not
linearly related to population density. The theta model removes such linearity
assumption by means of an additional parameter, #; when § =1, the theta model
reduces to the logistic model. We advance a method, the “jackknife” statistic, for
estimating the rate of population growth (the largest eigenvalue and its variance) in
the serial transfer system. Also, we propose a statistical method, PRESS, for quan-
tifying the success of a given model in fitting experimental data. The criterion of
success is the ability of a model to predict accurately new observations. One
advantage of PRESS is that, contrary to what happens with other statistics such as
R?, it tends to make a model less successful as the number of parameters increases
(unless there is a disproportionate decrease in the bias of the new model). We have
studied the rate of population growth in 25 genetically different populations of
Droscphila melanogaster. The theta model provides a consistently better description
of population growth in these populations than the logistic model. Moreover, the
results indicate that the rate of growth is affected by the genetic constitution of a
population.

1. INTRODUCTION

A widely used model describing population growth in a single species is
the logistic model, proposed by Lotka (1924) and Volterra (1931). It
predicts the rate of population growth as

dN/dt = rN(1 — N/K), (1)

where N is the population size, r is the approximate per-capita rate of
increase achieved at low densities, and K is the carrying capacity or
equilibrium population size. The model predicts that the per-capita rate of
increase (N~ 'dN/dt) decreases from near r to O in a linear fashion as the
population size increases; that is, the increase in intraspecific competition
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due to the addition of a new member is the same whether the total
population size is small or large.

This linearity assumption can be removed in a variety of ways. For
example, Schoener (1978) has produced some simple models of single-
species population growth which include exploitative competition and inter-
ference competition. These models predict a faster-than-linear decline in per-
capita rate of increase. Moreover, there is empirical evidence suggesting that
the linearity assumption of the logistic model may often be viclated (Smith,
1963; Ayala ef al., 1973).

More complicated versions of the logistic model are of course, possible,
obtained by incorporating additional parameters into the logistic model (1).
However, biologists are interested in simple models that capture the essential
features of biological phenomena. Consequently, before the logistic model is
-abandoned, the benefits of more complicated models must be quantified in
some meaningful way. Previous efforts have not always done this.

In this paper we ask whether relaxing the linearity assumption of the
logistic model can yield a new model which can more accurately predict the
dynamics of laboratory populations of Drosophila melanogaster. The
robustness of the results is examined by appropriate statistical tests in a large
number of independent populations. The experimental populations differ in
their genetic constitution; hence, we also explore the possible contribution of
genetic differences to population dynamics. A statistical test is described that
determines whether the parameters estimated from the population growth
equations are sensitive to the genetic constitution of populations. This is
important because most theories of density-dependent selection assume that
there is genetic variation in natural population for population parameters
such as r and K of the logistic model (1).

2. PopuLATION DYNAMICS IN A SERIAL TRANSFER SYSTEM

2.1. A General Model of the Serial Transfer System

The Serial Transfer System (STS) of population growth is outlined in
Fig. | (top). It is a discrete system of growth that allows for overlapping
generations in the adult population. Two versions of the STS are possible,
known as Type-1 and Type-2 experiments. In Type-1 experiments, the
population grows until it reaches its carrying capacity, which is thereafter
approximately maintained for the duration of the experiment. Type-2
experiments are used to determine the rate of population growth at a given
density (Ayala et al., 1973).

The procedure used in Type-1 experiments is described in Ayala (1965).
Here, we shall describe in brief outline how the procedure is used with one-
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FiG. 1. The Serial Transfer System of population growth. Type-1 experiments are long-
term populations. Type-2 experiments are used for estimating the rate of a population growth
at a specified density, N*.

week intervals between transfers. The population consists at any one time of
four cultures of various ages. At the time of census, the youngest culture is
one week old and contains egg-laying adults that have survived for one week
since they were introduced in the culture. The remaining three cultures are 2,
3, and 4 weeks old and contain larvae, pupae, and newly emerged adults. At

¢ the time of census, the surviving adults in the youngest culture are counted

and transferred to a fresh culture. At the same time, the newly emerged
adults in the other three cultures are counted and are also transferred to the
same fresh culture to which the adults were transferred; the oldest culture is,
then, discarded. This process is summarized in Fig. | by arrows indicating
transfer of adults from the four old cultures to the one fresh culture. The
adults introduced in the fresh culture are allowed to lay eggs for one week,
when a new census is taken. The procedure is repeated at one-week intervals.

At the time of census, the total number of adults, ¥,, is a function of the
number of adults present in the leading culture 1, 2, 3, and 4 weeks ago. This
relationship can be summarized as

Nt:fl(Nt—I)+f2(NtA2)+f3(Nt~3)+f4(Nt-4)! (2)

where f;(¥,_;) is some unknown function that relates the number of adults
that will emerge from an i-weeks-old culture with the number of adults that
initially laid eggs in that culture. The exact form of these functions is of little
general interest; as we shall show below, the analysis of population growth
rates can proceed by an appropriate linearization of this model.
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2.2. Experimental Determination of Rates of Population Growth at a Single
Density

In order to investigate the usefuiness of models such as (1) we need to
obtain estimates of population growth rates at a variety of densities. This
sort of information can be obtained by STS Type-2 experiments as shown in
Fig. 1 (bottom) (Ayala ef al., 1973). A specified number of adults, N*, are
initially placed in a fresh culture. The suvivors are counted one week later
and the emerging adults from this same culture over the following 3 weeks
are recorded at one-week intervals. Each experiment of this kind yields the
vector (Y, (N¥), Y,(N*), Y5(N*), Y, (N*)), where Y,(N*) =/ (N*) +¢,, and
¢; is a random variable reflecting experimental error. Thus Y{N*) is the
observed number of adults emerging (or surviving in the case of ¥ (N*))
from an i-weeks old culture of egg laying by N adults during one week.
Type-2 experiments can be repeated for multiple independent estimates of a
given f;,(N*) and can be carried out at various densities.

In order to estimate the rate of population growth in the vicinity of N*, we
look at a linear version of (2),

N,:aith+a2Nt72+a3Nt_3+a4Nt,4, (3)

where each a, is a constant per-capita output of an i-weeks-old culture.
Equation (3) is a fourth order homogeneous difference equation. In the case
when all four eigenvalues of this equation are real and distinct, the general
solution to (3) may be written as

N,=c M+ ey Al + ey Ad + e dhs “4)

where the ¢’s are constants which can only be determined if the four initial
conditions are specified. Unfortunately there are no obvious initial conditions
that can be used to obtain an explicit solution to (3). Moreover, these
experiments are done at a variety of densities and it does not seem
reasonable that the initial conditions used at one density will be compatible
with the initial conditions at any other density. However, as ¢ gets large in
(4) a per-capita rate of population growth is obtained that is independent of
the initial conditions. In such case the approximate per-capita rate of
increase will be given by the one positive eigenvalue of (3), N,/N,_, ~4. It
is then possible to determine the weekly change in population size as a
function of N*, as AN/At(N*)= (AN*) — N* = N*(1 — 1).

Smith (1963) encountered a similar situation; ie., where the initial
conditions determine the outcome. In his experiments growing populations of
Daphnia were maintained until a stable age distribution was attained. The
relationship between density and rate of population growth was sensitive to
the initial condition used to start the experiment. Repeatable results were
obtained only when populations had attained a stable age distribution.
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2.3. Statistical Estimation of Rate of Population Growth

If the Type-2 experiments (Section 2.2) are carried out m times at a
density N*, then these m observations, [Y{V(N*), YIV(W*), Y{"(V¥),
YO NS,y [YUO(NVF), YEPO(NH), YIP(NF), YYP(N*)], can be used to
estimate the @’s in Eq. (3). Our procedure will be first to use all the obser-
vations to estimate the ¢’s in (3) and then determine the largest eigenvalue of
the resulting equation. It is also possible to estimate the largest eigenvalue
for each observation and take the average of these m values. The results
obtained by these two methods need not be the same. Given that the eigen-
values of (3) are functions of the population quantities g, it seems more
appropriate to estimate first the a/s and then use these for determining the
eigenvalues.

Therefore, we will estimate each a, by d4,=1/mY " YV/N*,
i=1,2,3,4, where the argument N* has been deleted for simplicity. This
yields one difference equation, N,=d,N,_, +d,N, , +d;N,_;+4,N, 4,
from which an estimate of the largest eigenvalue 1 is obtained. There is,
unfortunately, no simple way to estimate the variance of 7. One approximate
solution is the jackknife statistic (for a review see Miller, 1974; for
applications to population genetics see Mueller, 1979).

In order to calculate the jackknife statistic, the jth set of observations is
deleted and the largest eigenvalue (as described in the previous paragraph) is
calculated using the remaining data. This yields a new value /ALJ-. One can
then calculate m pseudovalues as

s;=md—(m—1D1_, j=12..m

The jackknifed estimate of the largest eigenvalue is simply the mean of these
pseudovalues; 1 = (1/m) Y ;s,. The variance of this eigenvalue is estimated
by Var(l) = (1/m(m — 1)) 3, (s; — )% The pseudovalues may also be used
to estimate m values of AN/A4¢ as N*(sj— 1), j=1, 2,..., m. These values of
AN/ At are necessary for the regression analysis described in the next section.

3. StATISTICAL METHODS

3.1. PRESS

One of our aims is to compare different models that predict the change in
population size as a function of density. As mentioned in the Introduction, it
is important to quantify the success of each model in some meaningful way.
Two widely used statistics that measure how well a regression function fits a
set of data are the proportion of variance explained by the model (R*) and
the mean -sum- of squares-(1/7RSS). R? will increase and (1/n) RSS will
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decrease as more complex elaborations of some basic model are examined.
In the limit, if there are n + 1 observations it is always possible to obtain an
nth order polynomial which passes exactly through all # + 1 points. This
polynomial yields R* =1 and (1/n)RSS =0. Given such direct correlation
between the number of parameters and goodness of fit, it is not clear what
the best model might be. It is obviously necessary to establish criteria for
deciding which model is best.

For the present purposes, we consider the best model that model that can
predict new observations most accurately. The statistic PRESS (Prediction
Sum of Squares; Allen, 1971a) provides a means for quantifying this
property. We will describe this more formally. Consider linear models where
B is the vector of parameters of the regression function (e.g., » and K of (1)).
Similar arguments can be made for nonlinear models also. Suppose we
employ the following partitioning of B = (8,,B,)”. Now let f§ be the least-
squares estimate of B and B be the least-squares under the assumption
B,=0. If & is a vector of independent variables then we have two estimators
of A’8 available: A7f and A7B. It can be shown (Walls and Weeks, 1969)
that Var(A"B) > Var(A’B) whether or not §, = 0. Obviously if B, 0 then
A'B will be biased. Thus the following dilemma exists: the use of A’f as an
estimate of A’B will have a small variance but may be biased, while use of
278 will reduce this bias at a cost of increased variance. The problem is to
strike a balance between variance and bias. In such a circumstance it may be
best to use the estimator with the smallest mean-squarred error since this
equals the variance plus the bias squared. PRESS provides an estimate of the

mean-squared error. Let g(N, B) represent the regression function, where N is -

the observed density and § is the vector of estimated parameters; then,
PRESS is defined for a sample of n observations as

1 & D ai
PRESS =— YUY - g BN

where U is the observed value of AN/A:(N'”) and B~" has been estimated
from the n — 1 observations (U, N),..., (U~ NU=D) (UU+D NU+DY L
(U™, N}, According to the present criterion, the best model is the one
yielding the smallest value of PRESS.

3.2. Variation for Regression Parameters

Suppose a regression model has two parameters which must be estimated;
that is, B = (8,,8,). For model (1), B, corresponds to r and f, to K. In
addition, there are [ independent populations, for which B (e, ... ")
has been estimated. The question arises whether the / values of §, and f,
show significant heterogeneity. In our study, the / populations represent

p—

L
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populations that are genetically different (each is homozygous for a different
second chromosome). If we estimate » and K from Eq. (1) for each of these
populations, the question is whether the- genetic constitution of these
populations has a significant effect on the estimated values of r and X. For
linear models such as (1), an analysis of covariance can be used to answer
this question. Analogous methods do not exist for nonlinear models. Since
we shall be considering, in addition to the logistic model, a nonlinear model
of population growth, we will adopt a method that is applicable to both
linear and nonlinear models.

Suppose we examine the variation of parameter f§; over the / populations.
The arguments that follow are unchanged when parameters other than 8, are
considered; hence, we will drop the subscript 1 in the following discussion.
Let the vector of these [ parameters be f§ = (§7,..., f). For each % we
also have an estimated variance 6;. We assume that B has an multivariate
normal distribution with parameters (B, Z), where Z = diag(c?,...,67). Let d
be some linear combination of the f's, ¢ =3 "'_, h,f” =h"B. Using the
methods of Gold (1963) and Goodman (1964), it can be shown that for all
W, Pla—L<a<é+L]>y, where L=+/Var(d)c and P(x; < ¢)=1y. Thus
this method generates 100y % simultaneous confidence intervals.

To determine whether there are significant differences between the f
values, the order statistics of the ﬂ, have been divided below into three
groups. The choice of three is totally arbitrary. If a 95% simultaneous
confidence interval on the difference between the means of any of these
groups does not include 0, we conclude the f’s are not homogeneous. This
simultaneous inference scheme allows one to “hunt” for contrasts among the
f's that will yield significant differences and still claim that this inference is
being made at the 100y% confidence level.

4, THE MODELS

In addition to the logistic model we will estimate the parameters and
calculate PRESS for the theta model (Ayala er al., 1973; Gilpin and Ayala,
1973):

dN/dt = rN{1 — (N/K)?). (5)

There are several reasons for examining this model. Previous results (Ayala
ef al., 1973) indicate that interspecific competition can be modeled best,
when using the value of R? as a criterion, with analogs of (5). Moreover, the
theta model includes the logistic model as a special case, ie., when 8= 1.
Since our major interest is in relaxing the linearity assumption of (1), the
theta model is a good option, because it allows for inflection points both less




108 MUELLER AND AYALA

than and greater than K/2. The recent models of Schoener (1978) have
inflection poirits always less than K/2.

Only one linear regression need be performed in order to estimate PRESS
(Allen, 1971b) for linear models such as (1). Nonlinear models, however,
require repeated estimation of B~". If each population has »n observations,
then calculation of PRESS for one population requires n iterations of the
nonlinear estimation procedure. This is prohibitively time consuming. The
number of computations can be cut in half by deleting two observations,
(UD NDY, (UD, N, at a time; estimating the new vector of parameters
B on this set of n — 2 observations; and then computing [U® — g(W®,
BEM, [UY — g(WW, B ")]% The bias, if any, introduced by this
procedure would be to generate larger values of PRESS simply because less
information is available for estimating B~ than for estimating $. This
bias will only be present in estimates of PRESS for the theta model. Despite
this bias, the theta model has a smaller value of PRESS most often and,
hence, our conclusions will be unaffected by this bias.

In this study, the parameters of (5) are estimated using the algorithm of
Marquardt (1963). Marquardt’s algorithm wuses a ridge-regression
improvement at each iteration of the algorithm. This is particularly useful
when there is a high degree of correlation between the parameters. Problems
that occur when parameters are highly correlated are (a) round-off errors in
the numerical procedure used may lead to inaccurate results; and (b) the
estimated parameters have a very large variance. Ridge estimators are useful
in combating these problems (Marquardt and Snee, 1975).

The results presented in Section 6 show that r and 6 are negatively
correlated. This correlation is a consequence of the following. At each step
of the nonlinear routine, the following linear regression problem is solved
(Gallant, 1975),

z =xB,
where

z=U—g(N, Bt) + Xﬁts
U=, U9, y»y,

gN,B) = (g™ B, gV, B,
At the rth iteration,

Bt = (Blﬁ"" Bp)a

2507 SN B)

N=NWO
x={x;}=

8=

A S
S
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The next value of § is given by the standard solution to the above problem,
B,,. = (x"x)"'x"z. For model (5), B= (A K, T, it is easy to show, in the
above notation, that

Xpy=(x; —N)rlnN;,—rnK).

This close correspondence between entries in the first and third columns of x
causes r and & to be highly correlated.

5. EXPERIMENTAL TESTS

Drosophila melanogaster flies were collected at Strawberry Canyon,
Berkeley, California. Crosses of individual wild males with males with
balancer stocks produced a number of lines, each homozygous for the
complete second chromosome (see Tracey and Ayala, 1974). A total of 24
nonlethal and nonsterile lines were selected for Type-2 experiments in order
to measure the rate of population growth in each line. Type-2 experiments
were also done with a random-heterozygous line (H) used as a standard or
reference. The H line was produced by placing five virgin females and five
males from each homozygous line in each of 10 cultures. These flies were
allowed to mate at random and lay eggs for the next 5 days. F, progenies
emerging from these cultures were placed in fresh cultures at the various
densities (10, 50, 100, 250, 500, 750, and 1000) used in the experiments. The
F, progenies produced in these cultures were used to start Type-2
experiments. This procedure was repeated three times; i.e., each time that a
new set of replicates was started with the homozygous lines.

As described in Section 2.2, N* adult flies were used to start each
experiment. For each line, N* tock on values of 10, 20, 50, 100, 250, 500,
750, and 1000. Six replicates were made for each homozygous line at each
density, except at 1000 for which only three replicates were done. Exceptions
were line 45, which had only two replicates at density 1000; and line 36,
which had no observations at 1000 and only three at 750. The H line was
replicated 12 times at each density, except 1000 at which only three
replicates were made. Two replicates of each homozygous line (and four of
the H line) were started simultaneously, so that a total of three sets of
replicates were started at different times. The variance between replicates
started at different times was always much greater than the variance between
replicates started at the same time. Most of this increased variance is
probably due to differences between batches of the culture medium, although
variations in incubator temperature and other environmental variables may
have also contributed to this variance.

All experiments were performed in 237 cc (half-pint) cultures with 40 cc of
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a standard cornmeal-molasses—agar medium. The cultures were kept at 23°C
and ca. 70% relative humidity. All adults were between 7 and 14 days old at
the start of each experiment, and had been raised at the same density
condition as the density used in the experiment. An equal number of males
and females were placed in each culture, in order to standardize the
experimental conditions over all lines.

6. RESULTS

Tables T and II give the estimated values of the parameters for the logistic
(1) and the theta (5) model for each homozygous line as well as for the
random heterozygous (F) line. Standard errors and correlation coefficients

TABLE 1

Values of the Parameters (with Their Standard Errors) of the Logistic Model,
Estimated for Each of 25 Genetically Different Lines

Correlation coefficient

Line r K between r and K
H 1.01 £ 0.08 720 £ 16 0.26
1 0.99 + 0.07 850 + 17 —0.07
2 0.67.+ 0.07 850 + 25 —0.09
3 0.54 + 0.10 750 + 37 —0.33
6 1.07 £ 0.10 1000 + 40 —0.50
7 0.59 + 0.06 670 + 21 —0.64
8 0.96 + 0.06 880 + 18 —0.21
9 : 0.85 + 0.08 900 + 27 —0.25
13 0.76 + 0.05 680 + 14 0.60
14 0.97 + 0.06 970 + 24 —0.44
5 1.09 £ 0.07 770 + 13 0.27
18 1.19 + 0.06 1000 + 21 —0.50
20 1.11 £ 0.08 900 + 20 —0.26
23 0.81 + 0.09 740 + 24 0.38
25 1.11 £ 0.10 810 + 19 0.09
30 0.94 + 0.09 620 + 19 0.75
33 0.85 £ 0.10 770 £ 26 0.24
36 0.72 £ 0.34 650 + 10 -0.08
37 1.04 + 0.09 710 + 18 0.52
40 0.77 + 0.08 760 + 21 0.31
42 0.75 + 0.08 940 + 33 —0.36
43 0.64 + 0.09 660 + 28 0.66
45 0.79 + 0.08 660 + 20 0.57
50 1.01 £ 0.05 820 + 12 0.03
52 0.48 £ 0.10 530 £ 45 0.89

St

S
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TABLE 11

Values of the Parameters (with Their Standard Errors) of the Theta Model,
Estimated for Each of 25 Genetically Different Lines

Correlation coefficients

Line r K % ré rK K6

H 3710 £ 5 680 + 13 0.0022 £ 0.0001 —0.61 —0.13 0.06
1 140 £ 7 830 + 20 0.0047 + 0.0004 —0.61 0.07 —0.31
2 170 £ 7 830 + 22 0.0029 + 0.0002 —0.61 0.07 —0.31
3 80 + 12 720 + 30 0.0064 £ 0.0008 —0.60 —0.14 0.10
6 150+ 9 1100 £ 53 0.0045 + 0.0005 —0.63 —0.33 —0.71
7 44 £ 11 610 + 24 0.0108 £ 0.0012 —0.58 —0.32 0.49
8 150+ 6 880 + 21 0.0044 + 0.0003 —0.61 0.15 —0.44
9 250+ 9 900 + 34 0.0022 + 0.0002 —0.62 0.18 —0.49

i3 5248 610 + 19 0.0113 + 0.0009 —0.58 —0.33 —0.50

14 210+ 4 1000 + 20 0.0029 + 0.0001 —0.62 0.29 —0.66

15 130+ 6 720 + 15 0.0062 £ 0.0004 —0.60 —0.13 0.08

8 140 + 4 1100 £ 24 0.0050 + 0.0002 —0.63 0.35 —0.74

20 99+ 6 910+ 24 0.0073 + 0.0005 —0.62 0.19 —0.50

23 100 + 12 690 + 27 0.0063 + 0.0008 —0.66 —0.20 0.21

25 190 + 7 770 + 20 0.0042 £ 0.0003 —0.61 —0.04 —0.12

30 57 + 18 550 + 41 0.0109 £ 0.0019 —0.57 —0.38 0.66

33 180+ 7 720 + 18 0.0040 + 0.0003 —0.60 —0.13 0.07

36 65+ 5 645 £ 15 0.0070 + 0.0005 —0.66 0.09 —0.28

37 140 +7 652 + 15 0.0063 + 0.0004 —0.59 —0.27 0.35

40 99+ 9 713 £21 0.0060 4 0.0005 —0.60 —0.16 0.17

42 82 + 10 955 £ 41 0.0062 + 0.0007 —0.62 0.24 —0.59

43 460 £ 9 610 + 20 0.0013 + 0.0001 —0.59 —0.32 0.49

45 54+ 9 604 + 21 0.0117 £ 0.0011 —0.59 —0.30 0.43

50 136 + 5 795 + 13 0.0054 + 0.0003 —0.61 0.005 —0.19

52 710 £ 11 502 + 24 0.0009 + 0.0008 = —0.57 —0.41 0.74

are also included in these tables. As mentioned earlier, the strong negative
correlation observed for the theta model between » and 6 is expected in view
of the design matrix used in the nonlinear analysis. It should also be noted
that there is, in general, good agreement between the estimates of K from
models (1) and (5), but that the values of r are drastically different.

Large differences between lines with respect to the parameter values are
apparent in Tables1 and II. Multiple contrasts between groups of
homozygous lines obtained by the methods described in Section 3.2, are
shown in Figs. 2, 3, and 4. Significant differences between homozygous lines
exist for all parameters in both models. We believe that these differences are
real phenomena, largely due to genetic differences among the populations.

Table III shows the values of PRESS for each line according to each
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TABLE III

PRESS Values (in Units of 10°) for
the Logistic and Theta Models in Each
of 25 Genetically Different Lines

Line Logistic Theta -
H 7.6 3.7
1 3.7 2.4
2 3.0 1.4
3 7.2 4.6
6 8.4 5.7
7 35 2.6
8 3.0 1.8
9 4.4 3.0
13 2.1 3.1
14 3.0 1.0
15 3.4 2.7
18 2.5 0.9
20 4.1 2.7
23 6.4 5.7
25 6.2 4.1
30 5.8 17
33 7.4 4.2
36 0.4 2.3
37 6.7 39
40 4.2 3.1
42 4.1 2.9
43 5.7 3.0
45 4.8 4.0
50 2.0 1.2
52 1.2 4.2

model. The results are quite clear. The theta model yields a lower value of
PRESS than the logistic model for 22 out of the 25 populations. Although
the difference in performance between the two models is unambiguous, the
study of a single line (one of the three for which the logistic model gives a
lower value of PRESS) might have led to erroneous conclusions. Figs. 5, 6
and 7 show the experimental data along with the predictions derived from
the logistic (1) and the theta (5) model for three homozygous lines (18, 33,
and 36); the theta model fits the observations conspicuously better.
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has concluded that inflection points greater than K/2 are more common. His
analysis includes two Drosophila populations with estimated inflection points
greater than K/2. Given the high level of approximation used in Schoener’s
calculations, it would seem that a general conclusion cannot be reached until
AN/At {means with 95% confidence intervals) as a function of density in line 33. more detaqed analyses, S,uCh %S done in t.he present St}idy’ are avadame' i

The theta model (dot line) fits the experimental data better than the logistic model (dash line). The desirable properties of mathematical models include generality and

precision (Levins, 1966) as -well as simplicity—i.c., having only the
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minimum number of necessary parameters (Ayala ef al, 1973). Models
should also have realism; that is, biological interpretation, in the case of
population ecology. Hence, we are interested not only in a functional
relationship, such as expressed in (5), that may describe “best” the
nonlinearities observed in the experiments, but also in the biological
phenomena responsible for the nonlinearities. Uncovering the underlying
biological processes would make it possible to assess the applicability of
models such as (5) to other organisms and to other populations. At present,
only speculations are available. Schoener (1978) has shown that nonlinearity
may simply result from the mechanism of feeding for a limited food supply.
Gilpin et al. (1976) have suggested that nonlinearity may arise because
quality resources are exhausted first in an environment with heterogeneous
resources. A decision between these and other possible explanations must
wait until experimental tests are performed addressed to ascertain the
biological processes that account for nonlinearity in intraspecific .com-
petition.

There is one major reason why the values of r estimated from the theta
and from the logistic model are quite different. In the logistic model, r
determines the approximate rate of population growth at low densities. In the
theta model, the rate of population growth is determined by the parameter r6.
When 4 is close to 0, the first two terms of the Taylor series expansion of (5)
yield AN/At = rON In(K/N). Thus if one compares 8 values estimated from
the theta model and r values from the logistic, one sees similar predictions of
the growth rate of the populations at low densities.

This study has demonstrated that the growth dynamics of singie—species

populations are sensitive to the genetic constitution of populations. We plan
to explore in future papers the relationships between genetic variation,
Darwinian fitness, and density-dependent selection.
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