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Abstract. Dissecting the molecular basis of adaptation remains elusive despite our ability to sequence genomes and transcriptomes. At
present, most genomic research on selection focusses on signatures of selective sweeps in patterns of heterozygosity. Other research has
studied changes in patterns of gene expression in evolving populations but has not usually identified the genetic changes causing these
shifts in expression. Here we attempt to go beyond these approaches by using machine learning tools to explore interactions between the
genome, transcriptome, and life-history phenotypes in two groups of 10 experimentally evolved Drosophila populations subjected to
selection for opposing life history patterns. Our findings indicate that genomic and transcriptomic data have comparable power for
predicting phenotypic characters. Looking at the relationships between the genome and the transcriptome, we find that the expression of
individual transcripts is influenced by many sites across the genome that are differentiated between the two types of populations. We find
that single-nucleotide polymorphisms (SNPs), transposable elements, and indels are powerful predictors of gene expression. Collectively,
our results suggest that the genomic architecture of adaptation is highly polygenic with extensive pleiotropy.
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Introduction

Experimental evolution is a powerful approach for studying
the phenotypic and molecular changes caused by selection.
Experimental evolution establishes selection on replicated
populations in well-defined environments (Bennett and
Lenski 1999; Garland and Rose 2009). Genomewide
sequencing can provide extensive catalogues of changes in
the frequency spectrum of genetic variants in lab evolved
populations, as well as a portrait of their expression levels
(Remolina et al. 2012; Schlotterer et al. 2015; Mallard et al.
2018). Yet despite recent attempts (Burke et al. 2016; Turner
et al. 2011; Schlotterer et al. 2015; Graves et al. 2017; Hsu
et al. 2020), the study of the genomewide architecture of

adaptation is still in its infancy (Braendle et al. 2011; Topa
et al. 2015; Taus et al. 2017; Kelly and Hughes 2018;
Vlachos et al. 2019). Multiple questions about the molecular
basis of such laboratory adaptation remain unanswered.

Sequences that regulate the expression of neighbouring
genes, so-called ‘cis-regulatory elements’ have been a focus
of many studies on the molecular basis of adaptation. Such
studies are predicated on the hypothesis that cis-regulatory
regions are prime locations that selection targets rather than
changes in protein sequence, to drive adaptation (Carroll
2000; Carroll et al. 2001; Wray et al. 2003; Shapiro et al.
2004). However, it is not yet clear that such changes are
central in adaptation at the molecular level (Hoekstra and
Coyne 2007). Changes in protein-coding regions have been
identified in processes of adaptation (Brideau et al. 2006). It
is also conceivable that changes in distant genomic regions
(trans-regulation), as opposed to local regions involved in
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cis-regulation, might influence transcript abundance and
ultimately adaptation. Dating back to the pioneering work of
Fisher (1930), it has been suggested that natural selection
will limit the degree of pleiotropy exhibited by beneficial
mutants (Orr 2000; Otto 2004). This study explores the
relative rarity of pleiotropic effects.

Another topic that has been discussed with regard to the
molecular basis of adaptation is the role of transposable
elements (TEs) in phenotypic change. TEs have been studied
extensively with regard to their impact on the genome
(Chenais et al. 2012; Stapley et al. 2015; Van’t Hof et al.
2016). However, it is not clear to what extent TEs underpin
adaptation. Some have concluded that, in ever-changing
environments, TEs might play a considerable role in a
population’s ability to adapt (McClintock 1950; Casacuberta
and Gonzalez 2013), and there are clear examples that
support the hypothesis that TEs underlie phenotypic varia-
tion (Van’t Hof et al. 2016). Nevertheless, there is again
some uncertainty about whether TEs drive adaptation and
phenotypic change in the context of complex traits.

Selection can lead to a wide array of reproducible changes
in the genome (Topa et al. 2015; Graves et al. 2017; Taus
et al. 2017; Hsu et al. 2020). In addition, there have been a
handful of studies that focus on reproducible changes in the
transcriptome between populations that have differing
selection regimes (Remolina et al. 2012; Mallard et al. 2018;
Barter et al. 2019). However, the relative importance of these
two kinds of -omic differentiation in the molecular
machinery of adaptation is not clear. Only an integrated
analysis encompassing genomic, transcriptomic, and phe-
notypic data can properly address the relative predictive
power of each type of molecular differentiation. Further, by
having all three types of data in one experimental system of
sufficient power, we can test the pattern of connectivity
between each level of information (genome, transcriptome,
phenotypes), and elucidate whether the flow of information
from the genome to the phenotype is simplistic (one gene to
one transcript to one phenotype), polygenic (many genes
affecting one transcript affecting one phenotype), or more
like a network (many genes affecting many transcripts
affecting multiple phenotypes) (vid Wright 1980).

Machine learning is a widely used tool across numerous
fields of study (Sebastiani 2002; Krizhevsky et al. 2012). In
particular, machine learning tools are well-suited to the task
of parsing causal patterns involving large amounts of data
(de Los Campos et al. 2013; Petersen et al. 2016; Mueller
et al. 2018; Schrider and Kern 2018). As such, they are
potentially well suited to parsing the molecular machinery
underlying adaptation (Venier et al. 2022), especially when
that machinery is complex. The hope is that a combination
of high-throughput sequencing, machine-learning tools, and
well-characterized life-history characters might help us to
understand how genetic variation underpins adaptation
generally, and thereby provide some resolution for the issues
about the molecular biology of functional evolution adduced
above.

Here, we study the interplay between genomics, tran-
scriptomics, and life history traits in 20 experimentally
evolved Drosophila melanogaster populations. Of these
populations, 10 have been selected for accelerated devel-
opment, while the remaining 10 have been selected for
postponed reproduction (figure 1). For all these populations,
we have genomic data (Graves et al. 2017), female tran-
scriptomic data (Barter et al. 2019), and measures of several
key life history traits (Burke et al. 2016), which show how
these populations have become differentiated over time
(figures 2 and 3). In this study, we use genomic and tran-
scriptomic data to infer which genes and genomic regions
might be causally linked to age-specific mortality and
fecundity, two key components of biological fitness. We then
evaluate which type of data, genomic or transcriptomic, is
most useful when developing predictive models with
machine learning. Next, we use different genomic features
(e.g. SNPs, TEs) to examine which of them are more pre-
dictive when linked to changes in gene expression across the
transcriptome. In particular, we test whether or not TEs are a
central driving force in adaptation. We also test whether cis-
regulation plays a major role in functionally influencing the
transcriptomes. Finally, we evaluate the pleiotropic network
model of Sewall Wright (1980). The specific machine
learning approach we employ is the fused lasso additive
model, or FLAM (Petersen et al. 2016), which previous
theoretical work suggests is well suited to the task (Mueller
et al. 2018).

Materials and methods

Experimental populations

The populations used in this study were subjected to two
selection regimes which differed with respect to age-at-re-
production (Rose et al. 2004; Burke et al. 2016; Graves et al.
2017). Each selection regime was applied to two sets of five
populations, each with known distinct evolutionary histories
(figure 1). The ACO and AO populations, collectively called
A-type, were selected for accelerated development and have
a generation length of 10 days. The CO and nCO popula-
tions, collectively called C-type, have a generation length of
28 days.

Genomic data

We used genomewide SNP, TEs, and structural variant data
previously published by Graves et al. (2017). The structural
variant data were limited to regions between 0.15-kb and
10-kb long. Genomic extraction and sequencing details are
provided in Graves et al. (2017). We also used the same read
mapping protocols, but with a more recent version of the D.
melanogaster reference genome (Dmel v6.14). The new
version of the SNP table can be found in the Dryad directory
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created for this project (data underlying this article are
available in the Dryad Digital Repository, at https://doi.org/
https://doi.org/10.7280/D1ZT3D). To determine which
SNPs would be used in our FLAM analysis, we followed the
procedures described by Mueller et al. (2018). Briefly, we

ran the CMH test as described by Graves et al. (2017) along
with the same permutation procedure to identify significantly
differentiated SNPs. This resulted in a list of 4211 differ-
entiated SNPs spread across all major chromosome arms.
Next, we divided each chromosome arm into discrete 50 kb
windows starting at position 1 on each chromosome and then
discarded any windows that contained less than three sig-
nificantly differentiated SNPs between population types.
Lastly, for each of the remaining windows, we recorded the
position within each window with the smallest p-value based
on the CMH test results. This resulted in a list of 194
positions that serve as representatives of the 50 kb regions
that met all of our criteria. These positions and their asso-
ciated SNP frequencies were then used as inputs in our
analyses. In some of these analyses, we also used the dif-
ferentiated structural variants and TEs described in Graves
et al. (2017).

Given the magnitude of statistically significant SNPs
versus other structural variants, our data sanitization process
was only applied to this one genomic feature class. None of
the structural variants had thousands of statistically differ-
entiated elements. While there is a small amount of clus-
tering in each remaining feature class, it is much lower than
the total original set of differentiated SNPs. For example, of
the 71 differentiated TEs, there is only one pair of TEs less
than 50 kb apart. Therefore, we used the total list of dif-
ferentiated structural variants and TEs as presented in Graves
et al. (2017).

Transcriptomic data

We used previously published stranded PE 75 RNA-seq data
corresponding to day 14 and day 21 from the egg (Barter

Figure 1. Twenty-population selection history. All treatments in the study share ancestry. Each colour represents a different selection
regime and population type (A and C). A-type populations have a 10-day life cycle, while the C-type populations have a 28-day life cycle.

Figure 2. Age-specific phenotypes for 20 large cohorts, one for
each of 20 populations. (a) Female age-specific daily mortality
(Burke et al. 2016). (b) Female age-specific fecundity (eggs per
female-day). Orange circles in both graphs represent A-type
populations while blue triangles represent C-type populations.
The black vertical lines represent the age of the populations when
sequenced for the transcriptomics work.
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et al. 2019). Details about extraction, sequencing, and read
mapping are given in Barter et al. (2019). Briefly, after
mapping sequencing reads, alignment post-processing was
performed with SAMtools v.0.1.19 (Li et al. 2009). Read
counts per gene and population were done using HTSeq
v0.6.1p1 (Anders et al. 2013). For each sample, per gene
read counts were normalized using the default DESeq2
settings (Love et al. 2014). Genes showing normalized count
values greater than 4 in at least 8 out of 10 populations,
within at least one of the treatment types, were kept and the
rest were discarded. With these normalized gene count val-
ues, we used the linear mixed effects model featured in
Barter et al. (2019) to determine which genes were differ-
entially expressed between our two selection regimes while
accounting for any block effects that may be associated with
different rounds of extraction and sequencing (R Core Team
2018). Statistical significance for differential expression of
any given gene was set at a 5% false discovery rate (FDR)
for *4000 tests, i.e., the number of expressed genes that
passed our filtering criteria (Benjamini and Hochberg 1995).
The normalized gene count values for the differentially
expressed genes were then used as inputs in our analyses.

Phenotypic data

We relied on age-specific adult mortality and fecundity data
for the 10 A and 10 C populations (Burke et al. 2016).
Mortality and fecundity data were available over the entire
adult lifespan of the flies. In our analyses, we focussed on
average fecundity and log-transformed mortality measures
taken over 3-day intervals. The mortality data were

specifically log-transformed due to the fact that a portion of
the mortality values were extremely low and FLAM would
otherwise treat these low values as 0, instead of fitting the
low values.

FLAM analyses

Experimental laboratory evolution typically results in the
differentiation of many genes and multiple phenotypes (Rose
et al. 2004; Remolina et al. 2012; Burke et al. 2016; Graves
et al. 2017; Phillips et al. 2018; Kezos et al. 2019; Fabian
et al. 2021). Documenting these phenotypic and genetic
differences is generally straightforward, especially with
populations that have been selected for many generations
with different culture regimes. Some of the differentiated
gene regions (such as SNPs) may affect several phenotypes
and thus exhibit pleiotropy. Some genes may only have
effects on a single phenotype. Even gene regions which are
pleiotropic may not have measurable impact on all the
phenotypes which have become differentiated due to adap-
tation to the novel laboratory environments.

To determine which of the many differentiated regions
influence a specific phenotype, we used a statistical learning
tool called the FLAM (Petersen et al. 2016; Mueller et al.
2018). The criteria used to select our causative loci are those
that minimize the penalized objective function derived by
Petersen et al. (2016, eq. 5). At each informative SNP, for
example, FLAM builds a step function that describes the
relationship between SNP frequency and phenotype. This
step function does not have to follow a straight line and can
mimic a variety of nonlinear relationships. Statistical

Figure 3. Chromosomal distribution of molecular differences between the two treatments. Each bar shows the position of differentiation
across the genome and transcriptome. From top to bottom, each panel shows differentiation in SNPs, TEs, deletions, duplications,
expression differences on day 14 (T14), and expression differences on day 21 (T21), respectively.
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learning tools do not rely on the classic hypothesis testing
paradigm in which the distribution of a test statistic is
quantified under a null hypothesis. Instead, statistical
learning tools make qualitative or quantitative predictions,
and the accuracy of these predictions is assessed with test
sets of data, e.g., data not used to tune the statistical learning
tool. In extensive computer simulations, Mueller et al.
(2018) showed that, if environmental variation was not too
severe, FLAM could reliably distinguish between gene
regions that affected a phenotype (causal genes) from those
that were differentiated but did not influence the phenotype
(noncausal). This ability improved with the number of
populations tested. When FLAM is presented with two
groups of highly differentiated loci, one of which is causal
for a phenotype and the other is not, FLAM can use even
subtle differences among replicates to distinguish between
these two groups. Standard linear model techniques are
unable to do this. Mueller et al. (2018) demonstrated that
there are two important issues that can interfere with the
inference that a SNP is a true biological signal; (i) linkage
and (ii) high levels of environmentally induced phenotypic
variation. Linkage could make the true biological signal
anywhere from 10 to 100 kb away from the identified SNP
(Mueller et al. 2018). High levels of environmental variation
reduce FLAM’s ability to separate causal from noncausal
differentiated loci.

In principle, a single run of FLAM will be limited to
finding no more than N causal SNP’s, where N is the total
number of independent populations. However, we imple-
mented a permutation procedure that may expand the list of
causative loci above N (Mueller et al. 2018). In the present
study, a total of 100 permutations of the columns of genetic
data were done and the final list consisted of genetic variants
which occurred at a frequency of at least 50% of the fre-
quency of the most commonly chosen variant, similar to
what was tested in Mueller et al. (2018).

Results

Predicting age-specific mortality using genomics
and transcriptomics

We investigated the relationships between phenotypic,
genomic, and transcriptomic data (figures 2 and 3; Material
and Methods) by analysing previously collected data from
the same populations for the different data types of interest.
Both the genome and the transcriptome have the ability to
predict some life-history phenotypes, in that they both
contain information that ultimately impacts a phenotype, but
here we ask whether one of them has more predictive power
than the other. Using FLAM, we evaluated whether genomic
or transcriptomic data contribute more (i.e., they are chosen
more frequently) as predictors in the model, which might
suggest which type of -omics is more relevant for under-
standing the molecular basis of adaptation. To address this,

and with the purpose of predicting mortality at days 14 and
21 from egg between the two population types, we per-
formed three different analyses in which we used different
types of differentiation data between treatments as predic-
tors: (i) 194 genomic differentiated regions at the SNP level;
(ii) normalized expression levels of 539 (day 14) or 625 (day
21) differentially expressed genes; and (iii) both (see
Methods for details).

To begin, genomic regions chosen by FLAM are not
simply the most differentiated regions with the lowest
p-values among the A and C type populations. As previously
shown (Mueller et al. 2018), FLAM eliminates many highly
differentiated SNPs if their pattern of variation within dif-
ferentiated groups does not follow the pattern of phenotype
variation.

The results were consistent across comparisons using both
days of transcriptomic data (figure 4; table 1) (figure 1 in
electronic supplementary material at http://www.ias.ac.in/
jgenet/). Neither day 14, (7/194 vs 7/539 test for equality of
proportions, p = 0.087), nor day 21, (6/194 vs 8/625; test for
equality of proportions, p = 0.17) had a sparse set that pre-
fers one type of -omic data over the other. Additionally,
when both genomic and transcriptomic sets were combined
into one set of input predictors, we once again found that
neither genomic nor transcriptomic data were consistently
preferred.

We found that both kinds of -omic data contribute to the
predictive model (figure 4). The model does not appear to
strongly favour one type of -omic data over the other. For
both day 14 and day 21 mortality, we found potential pre-
dictors from both genomic and transcriptomic data. There-
fore, it seems ill-advised to use only one type of -omic data.
The reason why one type of -omic data may perform better
for some phenotypes but not for others is not apparent at this
time.

The predictive power of the transcriptome for later-age
phenotypes

Unlike the genome, the transcriptome is subject to change
over the course of an organism’s life, most notably during
developmental transitions. Nevertheless, in D. melanogaster,
after eclosion, cell division and tissue remodelling are
minimal compared to previous stages of its development
(Smith et al. 1970), which is well reflected in the relative
stability of the transcriptome and proteome (Arbeitman et al.
2002; Casas-Vila et al. 2017).

We used the expression levels of differentially expressed
genes from day 14 and day 21 as predictors of mortality and
fecundity at days 14–35. For each test of prediction of a
phenotype we used a stratified 5-fold cross-validation
methodology in order to accurately test said predictive
capability. Our data were fractured into two parts: 16 pop-
ulations were used as a training set and the remaining four
populations were used as a testing set. Each testing set
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consisted of two populations from treatment A and two
populations from treatment C, and this process was repeated
five times to ensure each population was represented in a
testing set. We tested both age-specific mortality and
fecundity data as outcomes and the expression values from
predictors at each age as inputs.

With each specific fit, we used expression levels from the
test set of populations to predict their phenotypes and
compared those predicted phenotype values to the observed
phenotypic values. In order to measure the predictive quality
of our models, we used the coefficient of determination, R2,
which represents the proportion of variance in phenotypic
outcomes that has been explained by the transcriptomic data
in the model. Let yi (i= 1, …, n) be the observed phenotypes
in the test set, ŷ is the set of predicted results from our
models fit to the training set, and �y is the mean of the yi, then
R2 is calculated as,

R2 y; ŷð Þ ¼ 1�
Pn

i¼1 yi � byið Þ2
Pn

i¼1 yi � yið Þ2
:

In more simple terms, R2 is 1 minus the residual sum of
squares divided by the total sum of squares. R2 was calcu-
lated between predictions derived from FLAM and the actual
phenotypic data (figure 5). Since the predictions are based on
an independent data set it is possible for the predictions, the
ŷ, to fit worse than the mean �y. This possibility can then
result in negative values for R2 which we occasionally see.

We find that the transcriptomic data predicted mortality at
all ages quite effectively (average day 14 R2 = 0.906, day 21
R2 = 0.898; figure 5). There was no consistent preference for
either day of transcriptomic data with respect to predictive
accuracy. Models derived from day 14 transcriptomic data
had an average R2 of 0.91 with a 95% confidence interval of
0.86–0.96. Models derived from day 21 transcriptomic data
had an average R2 of 0.90 with a 95% confidence interval of
0.85–0.94. Additionally, we compared predictions made
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Figure 4. Candidate predictors in predicting age specific mor-
tality at day 21 from genomic SNP data, transcriptomic data, or a
combined dataset of both. In all cases, specific elements selected
and used in predictive models by the FLAM algorithm are
labelled with a black box. The first and second column shows
what is selected when statistically differentiated SNPs and
transcripts, respectively, are used as the input data. In the third
column, both types of data were combined into a single, larger
dataset where both types of -omic data can be selected in the
same predictive model.

Table 1. Comparative performance among genomic and tran-
scriptomic differences between the two population types in pre-
dicting adult trait divergence

Phenotype

Number of predictors*

SNP differentiated
regions

Differentially
expressed genes Both

Mortality at
day 14

10 6 6

Mortality at
day 21

17 8 16

Fecundity at
day 14

4 4 9

Fecundity at
day 21

0 2 0

*According to FLAM.
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from transcriptomic data to predictions made from genotypic
data. Accuracy for predictions from genotypic data might
appear consistently lower than those from transcriptomic
data, but its average R2 of 0.86 with a 95% confidence
interval of 0.78–0.93 for the overall period corroborates the
earlier claim from the previous section that both the genome
and the transcriptome have comparable predictive power.

The patterns of a strong phenotypic prediction for age-
specific mortality do not hold true for age-specific fecundity
(figure 2 in electronic supplementary material). FLAM could
only create a consistently decent fit from both sets of gene
expression data for days 14 and 35. As there is no differ-
entiation between the A and C populations’ age-specific
fecundity values for days 17–25 (figure 2, Burke et al.
2016), it would make sense that FLAM was unable to create
accurate predictive models for that time period. Meanwhile,
fecundity at days 14–16 and days 35–37 show highly sig-
nificant differences (p=2.03 9 10–5, and 1.11 9 10–5

respectively, Burke et al. 2016). Correspondingly, the only
days that models generated from both day 14 and day 21
transcriptomic data had any amount of moderate success
were day 14, with an R2 of 0.44 and 0.52 respectively, and
day 35, with an R2 of 0.39 and 0.77 respectively. Even the
best days for predicting age-specific fecundity fall short of
the precision of age-specific mortality predictions.

However, the difference between the accuracy of the
mortality and fecundity results is not simply a function of the
levels of differentiation between mortality and fecundity.
Phenotypically, both mortality and fecundity have points of
extreme differentiation. FLAM can very accurately predict
mortality at all ages with both days of transcript data. On the
other side, FLAM could not accurately predict fecundity
across all the time points of differentiation, and even when it

could provide accurate models, the accuracy was far lower
than that of the models predicting age-specific mortality.
Overall, the fecundity result serves as a negative control,
demonstrating that FLAM’s use of test data to quantify
predictive ability will not result in overfitting.

Unbiased approach to predicting transcriptomic expression
using genomic features

Transcription is shaped by both local regulatory sequences
(cis-) and distantly encoded regulatory factors (trans-) (Wray
et al. 2003). Although we do not focus on detailed mecha-
nisms of gene regulation here, we used different types of
genomic features (SNPs, TEs, and structural variants) as
predictors and each individual transcript’s expression phe-
notype as outcomes. By doing this, we tried to assess how
well those genomic features performed as predictors for the
expression of each differentiated transcript. First, we inclu-
ded each type of genomic feature (e.g. SNPs) separately to
characterize their effects on the transcriptome. Subsequently,
we combined all genomic features to determine which
characters were the strongest determinants of mRNA
abundance.

In our first analysis, we uncovered numerous interactions
between the genomic variants and expression levels (fig-
ure 6; figures 3–9 in electronic supplementary material.
These interactions often involved predictor loci located on
chromosomes different from that in which the differentially
expressed transcript resided. The average number of causal
candidate predictors varied depending on the time point (day
14 and day 21) and on the type of genetic variant (table 1 in
electronic supplementary material).

Our results show evidence of extensive pleiotropy, in
which single differentiated genomic regions are reliably
contributing to the prediction of expression among numer-
ous genes (day 14: mean (l) = 12.39, standard deviation (r)
= 8.57; day 21: l = 14.87, r = 12.42). Conversely, we see
that the differentiated expression of a single gene is pre-
dicted by numerous differentiated genomic loci, including
many that are located on different chromosomes (day 14: l =
4.47, r = 2.68; day 21: l = 4.56, r = 2.85). Although we see
many interactions between the genome and the transcrip-
tome, all these interactions should not be considered ‘regu-
latory’ per se due to the fact that the genomic differentiated
regions between population types are 50-kb long, and the
mechanistic details of how these regions are potentially
affecting gene expression remain unknown. In the next
section, we also show that gene regions that affect only one
phenotype may appear to be pleiotropic and thus our count
of pleiotropic regions may include false positives.

We examined the location of each differentially expressed
gene in relation to their genomic predictors to determine
whether or not these predictors could potentially exert their
effects in cis. We distinguish between putative cis-local
(\25 kb from centre of predictor genomic region) and

Figure 5. R2 values between predicted and observed mortality
phenotypic values at all age. We compare how well transcriptomic
and genetic predictors can predict phenotypes. The values shown
correspond to the comparison between the actual phenotypic values
and the predicted phenotypic values from our test sets. Statistically
differentiated SNPs, and transcriptomics data from day 14 and day
21 were used as predictors while age-specific mortalities were used
as outcomes.
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cis-long range (C25 but\150 kb from centre of predictor
genomic region) effects, as the latter are more common than
previously thought (Ghavi-Helm et al. 2014). Each differ-
entially expressed gene was then checked for any overlap
with cis-local and cis-long range genomic differentiated
regions found to have predictive power. The process was
repeated for TEs and for duplications. We found a very
limited number of both predictor genomic regions that fell
within the cis-locale of each differentially expressed gene
and predictor genomic regions compatible with long range
cis-effects, although the latter were more prevalent than the
former (table 2). This supports the notion that trans-effects
are more prevalent than cis-effects.

In our second analysis, we combined 194 differentiated
SNP regions, 71 differentiated TE insertions, 323 differen-
tiated small indels, and 69 differentiated duplicated regions
into a single set of 657 total potential predictors for differ-
ential expression (figure 7). Across 624 genes with differ-
entiated expression, we found 974 candidate SNPs, 1803
candidate indels, 1011 candidate TEs, and 114 candidate
duplications (figure 7). Importantly, these numbers include
the fact that a singular feature could be incorporated in more

than one gene expression prediction model. As an example,
one TE insertion was used in 71 different gene expression
models.

One way to express the relative importance of each
genomic feature type would be to compare the proportions
of the total number of causal candidates with a null
hypothesis ratio of all proportions being equal to their
starting input ratio from the full dataset. Small indels (323/
657 vs 1803/3902 test for equality of proportions, p = 0.173)
did not differ from the null hypothesis proportions. SNPs
(194/657 vs 974/3902 test for equality of proportions,
p = 0.015) were slightly underrepresented while duplications
(69/657 vs 114/3902 test for equality of proportions,

Figure 6. Interactions between predictive SNP regions and differentiated transcripts at day 21 across the D. melanogaster chromosomes.
Each line maps a predictive SNP region to a transcript for which the SNP region accurately predicts expression. The colour of the line
denotes from which chromosome the genomic region originates. The genomic regions are classified as 50 kb windows which contained at
least three differentiated SNPs. The transcripts are those classified as significantly differentiated for quantitative expression.

Table 2. Number of genomic candidate causal predictors for dif-
ferential gene expression located in cis at different distances.

Day

SNP
windows TEs Duplications

Day
14

Day
21

Day
14

Day
21

Day
14

Day
21

Cis-local (\25 kb) 0 0 2 1 2 5
Cis-long range
(\150 kb)

11 5 7 5 5 12

Figure 7. Chromosome distribution of candidate genomic features
when all the different individual datasets are combined into one
singular dataset. Each bar shows the position of a candidate
element, and the height represents how many different predictive
models it was involved in. From top to bottom, each panel shows
predictive candidate TEs, SNPs, duplications and deletions.
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p\ 2e-16) were moderately underrepresented. Consequen-
tially, TE insertions (71/657 vs 1011/3902 test for equality of
proportions, p\ 2e-16) were overrepresented by this test.

All four classes of data found their way into predictive
models for transcriptomic expression. While there is some
suggestion of a greater effect size of a random individual
transposable element vs a random element of a different data
type, the overall contribution of each data type as a whole
remains consistent between small indels, SNPs, and TEs.
Ultimately, this indicates a greater utility for these three
genomic data types as predictors as opposed to the value of
duplications.

Comparing the accuracy of predicting transcriptomic
expression across four classes of genomic data

From each of the previous analyses, we used each predictor
list to determine the accuracy of our FLAM analyses by
compiling training and test sets for each set of individual
transcriptomic expression prediction from genetic data sim-
ilar to how the training and testing sets were generated for
the predictive power of the transcriptome. We found that all
datasets have similar average R2 values between the actual
expression values and the predicted values from the test sets
(figure 8; figures 10–16 in electronic supplementary mate-
rial). The SNP data gave averages of 0.482 and 0.423 R2

values between the true expression values and the predicted
expression for day 14 and day 21, respectively. The trans-
posable element data gave averages of 0.419 and 0.4044 R2

values between the true expression values and the predicted
expression for day 14 and day 21, respectively. The insertion
and deletion data gave averages of 0.478 and 0.517 R2

values for day 14 and day 21, respectively. The duplication
data gave averages of 0.343 and 0.336 R2 values for day 14
and day 21, respectively. Lastly, the combined dataset of the
four feature types gave an average of 0.505 R2 values for day
21.

Another way to interpret these results is to look at the
numbers of the most accurately predicted transcript expres-
sion rather than a simple averaging (figure 9; figure 17 in
electronic supplementary material). We have chosen
thresholds for R2 of 0.6 and 0.8 to demonstrate the relative
utility of the four genomic classes in our dataset in predicting
transcriptomic expression. While somewhat arbitrary, this
nonetheless does create a useful segmentation investigating
both less stringent and more stringent possibilities. The
results are consistent with the above approach. Duplications
show very little utility as predictors, having only a couple
dozen genes predicted at the lower threshold, and extremely
few at the more stringent one. Both SNPs and TEs see a
moderate amount of success as predictors, while indels stand
out as having the greatest number of well predicted genes.
Notably, predictions of gene expression data from day 21
(figure 9) show a greater separation between indels and SNP/
TEs than predictions of gene expression data from day 14
(figure 17 in electronic supplementary material) which show
those three classes in a tighter grouping.

In contrast to the raw number of TEs selected as useful
predictors for gene expression, here the accuracy measure-
ment tells a slightly different story. TEs had some of the
lowest accuracy prediction scores, while small insertions and
deletions had some of the highest. Even more interestingly,
when all genomic features were compared together the
average R2 value was consistent with the R2 value for indels
on the same day. This might also suggest some kind of
saturation effect either in the raw number and type of pre-
dictors or in the amount of replication in this study.

While different in their nuances, comparing the different
accuracy measurements convey the same qualitative result as
looking at the raw numbers of predictors chosen; TEs and
small insertions/deletions could be of specific interest in
future work due to their relatively high inclusion rates in
predictive models as well as their accuracy measurements.
At the same time, other types of genomic data cannot nec-
essarily be ruled out.

Testing FLAM’s ability to detect pleiotropy

Mueller et al. (2018) did not examine the ability of FLAM to
specifically detect pleiotropy. To evaluate this possibility, we
performed a set of simulations, building upon our earlier
work but this time incorporating pleiotropic effects of a
single gene region on two phenotypes. The purpose of this
new set of simulations was to evaluate the frequency with
which noncausal gene regions would be included as pleio-
tropic as well as determining how well FLAM detects
pleiotropy.

Simulated datasets were configured using the same
approach as that of Mueller et al. (2018). Basically, the
approach utilized populations that show major genetic and
phenotypic differences mimicking populations that had
undergone adaptation to different environments. The

Figure 8. R2 between predicted value and actual value for each
differentially expressed gene. R2 values were calculated using the
predicted expression of each differentiated gene from SNP
frequencies and the actual expression values of each differentiated
gene at day 21. Each R2 value was plotted at the location of the
differentiated gene above. High positive correlation signifies the
FLAM model accurately predicted the actual phenotypic value.
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simulations reported here consisted of 20 populations, with
10 having a low phenotypic value and 10 having a high
phenotypic value. Within the replicated high and low pop-
ulations there were low levels of genetic variation (13
SNPs). Two phenotypes were modelled. Phenotype-1 was
determined by SNP-1 and SNP-2 while phenotype-2 was
determined by SNP-1 and SNP-3. SNPs 4–13 were differ-
entiated but did not affect either phenotype. Additionally,
there were 1987 neutral gene regions which showed only
random variation between populations (Mueller et al. 2018).
If we let a single population’s SNP frequencies at SNPs 1–3
be x1, x2, and x3 respectively then phenotype-1 was equal to
(x1? x2)/2?e, and phenotype-2 was equal to
exp x1 þ x3 � 2ð Þ= x1 þ x3ð Þ½ � þ e, where e is a random
number chosen from a normal distribution with mean zero
and standard deviation 0.005.

A database consisted of these two phenotypes for each
population and estimated SNP frequencies, x̂1; x̂2; x̂3, which
reflected sampling error from a standard pooled sequencing
experiment (Mueller et al. 2018). Our results are based on
100 independent databases. The patterns of phenotype vs
SNP frequency change in a single database using the two
causal and two randomly chosen noncausal SNPs show
extensive overlap (figure 10).

We compared FLAM to linear regression models. We
tested all possible linear models with combinations of up to
13 SNPs. The best model was chosen by comparing the
mean squared error from test data created from five-fold
division of the 20 observations. FLAM correctly identified
both causal loci between 71% (phenotype 1) and 88%
(phenotype 2) of the time. The best linear model correctly
identified both causal loci only half as often (35% and 44%).
The application of FLAM following our 50% rule (Mueller
et al. 2018) shows that 80% of the time the single pleiotropic
SNP is correctly identified and 64% of the databases

analysed incorrectly included a causal, nonpleiotropic SNP
(SNP-2, and SNP-3) as affecting both phenotypes (fig-
ure 11). The best linear model correctly identified the
pleiotropic locus only 51% of the time. The nonpleiotropic
causal SNP was incorrectly identified as pleiotropic in 24%
of the databases. A differentiated, noncausal SNP (SNPs
4–13) had only a 20% chance of being identified as a

Figure 9. Comparing the number of accurate transcriptomic predictions for each class of genomic data from models constructed for each
of the 625 differentiated genes identified on day 21. The height of the bar represents how many different transcripts passed a given accuracy
threshold for a single classification.
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Figure 10. Comparison of simulated differentiated SNPs. A
randomly chosen database (out of 100) with a total of 20
populations. The triangles are the causal SNPs. The pleiotropic
SNP has black fill. The coloured circles are from two out of 10
noncausal SNPs chosen at random. Each colour identifies a single
SNP from each of the 20 simulated populations.
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pleiotropic SNP (figure 11) with FLAM and a 9% chance
with the best linear model. No neutral SNPs were classified
as pleiotropic.

These results (figure 11) suggest FLAM is likely to find
real pleiotropic genes but may also erroneously include
genes which affect only one phenotype and to a much lesser
degree may occasionally include genes which have no effect
on either phenotype. Thus, the list of pleiotropic gene
regions returned can be expected to have false positives.

Comparing FLAM to linear models in phenotypic predictive
accuracy

Given the strong phenotypic differentiation (figure 10), it
would seem easy to predict phenotypes from genetic data
with the standard tools of linear regression. We next evalu-
ated, data from the present study, whether FLAM is superior
to standard linear regression methods in its predictive power.
We repeated the stratified 5-fold cross validation methodol-
ogy from the analysis on later-age phenotypes once again to
accurately test the predictive capability between models. We
generated a predictive model for FLAM and linear models
from a subset of the data with 16 populations, called training
data, and then predicted phenotypes on the remaining four
populations, called test data. This was repeated for
nonoverlapping sets of test data. We then calculated the R2

value between predicted and observed phenotypes.
We used FLAM and linear models to predict mortality at

day 14 and day 21. The number of genes selected for the
linear models was the same number of genes FLAM had
selected on those focal days: seven genes for day 14 mor-
tality and eight for day 21 mortality. We did not use the
linear models to choose genes. Instead, we used two dif-
ferent sampling methods, (i) random genes––100 random

samples of seven genes out of 539 differentiated genes were
chosen to predict day 14 mortality and 100 random samples
of eight genes out of N differentiated genes were chosen to
predict day 21 mortality, (ii) lowest p-value––only the seven
most differentiated genes (as judged by p-value from the
CMH test) were used. With these predictor genes we used
the R function regsubsets (leaps package) to examine all
possible subsets of these genes to find the best model. The
best subset incorporated three genes and was chosen to fit
the corresponding linear model. The R2 value for the linear
models involving a selection from random genes was aver-
aged from all R2 values across all 100 random samples.

FLAM had the largest R2 when predicting all eight ages
on day 21 data and the largest R2 on seven of the eight ages
on day 14 data (figure 12; figure 18 in electronic supple-
mentary material). The difference between FLAM and the
other linear predictors was greatest at the focal ages of 14
and 21. Also notably, when using the day 21 transcripts with
the lowest p-value as predictors of age-specific mortality, the
linear model performed well at later ages, but poorly at the
earlier ones while FLAM performed consistently across all
ages. The strong differentiation of the C and A type popu-
lations can explain the high R2 across all models and days,
but FLAM, as a nonlinear model, manages to better capture
the patterns of the dataset than even the best linear models.

Discussion

Having two clearly defined sets each of 10 experimentally
evolved D. melanogaster populations in conjunction with a
full suite of genomic, transcriptomic, and phenotypic data
for both sets of populations has enabled us to piece together
how these three levels of biological machinery interact with
one another. Specifically, the 10 A-type populations are
clearly differentiated from the 10 C-type populations across
the genome (Graves et al. 2017), across the transcriptome
(Barter et al. 2019), and in age-specific mortality and
fecundity (Burke et al. 2016). Conversely, there is little
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Figure 11. Frequency of identification by FLAM and the best
linear model for different SNP categories. Probability of identifi-
cation of SNPs as pleiotropic based on 100 randomly generated
databases, each with 20 populations, one pleiotropic SNP, two
nonpleiotropic causative SNPs, and 10 differentiated noncausal
SNPs.

Figure 12. R2 values between predicted and observed mortality
based on models fit to transcriptomic data from age 21.
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differentiation between the populations within a single set of
10 populations for all three sets of data. Lastly, these two
sets of populations are closely related, despite their marked
differentiation at all three levels, genomic, transcriptomic,
and phenotypic.

When examining the predictive power of transcriptomic
variation in explaining phenotypic differentiation, we found
that the transcriptomic data at day 21 accurately predict
mortality for all ages after day 21, which is consistent with a
relatively stable transcriptome once the individuals of a
given population type have reached sexual maturity. Since
the transcriptome data did not result in accurate predictions
of fecundity for most ages, we were unable to make any
inferences about the relative stability of transcriptome effects
on fecundity at later ages. This may have been due to the fact
that fecundity is not differentiated between the two treat-
ments at all life stages, or that the environmental variation is
too large relative to the genetic differentiation. As it stands,
transcriptomic data may only accurately predict phenotypes
at ages for which the phenotype is differentiated.

Further, when comparing the genome and the transcriptome
in predicting phenotypic outcomes, we find that there is no
clear evidence concerning which type of -omic data is pref-
erentially selectedwhen searching for predictors, as both kinds
of data are used by the machine learning algorithm to predict
phenotypic outcomes as well as outputting similar levels of
accuracy in said predictions. This suggests that future studies
should consider adding information from differential expres-
sion surveys to increase the analytical power of molecular
differentiation for predicting phenotypic outcomes.

We investigated the physical patterns among differentiated
genomic regions between populations that were good pre-
dictors for differential expression and the actual differen-
tially expressed genes. Although these regions may have
predicted the expression of a differentiated gene, they should
not be considered necessarily specific regulators for the
gene. Some of these differentiated genomic regions may
contribute to the regulation of gene indirectly through their
effects on some of the other differentially expressed genes. It
is specifically uncertain whether these regions have evolved
solely for their effects on transcript regulation. In addition,
the location of each predictive genomic region was not
restricted to the cis-locale of the differentially expressed
genes. In fact, almost all predictive genomic regions were
not found in the cis-locale of those genes, with a more
prevalent role of long-range cis effects, which undermines
the hypothesis that cis-locale evolution is a primary driver of
adaptation (Carroll et al. 2001; Shapiro et al. 2004). Our
results instead support the view that transcriptome differ-
entiation during adaptation is affected by many sites across
the entirety of the genome, highlighting the importance of
trans-effects at the intraspecific level, which concurs with
previous findings obtained with other approaches such as
eQTL mapping and GWAS (Hill et al. 2021).

We used different genomic features (SNPs, TEs, small
duplications, short insertions/deletions) to determine

whether there was a particular genomic feature with
enhanced predictive power in relation to differential gene
expression. When examined individually, SNPs, TEs, and
indels all maintained higher accuracy metrics both on aver-
age R2 and when comparing the number of genes that class
highly predicts. On the flipside, duplications performed
poorly, having the lowest average R2 and having only a few
strongly predicted genes. When all genomic features were
used simultaneously, the machine learning models chose all
types of genomic features. However, the candidate fre-
quency of duplications showed a depression in its relative
frequency corresponding with an increase in the frequency
of TE candidacies. In the case of TEs in particular, our
finding does support their importance as a driving force in
adaption (Stapley et al. 2015; Van’t Hof et al. 2016), but we
would additionally like to stress the general importance of
SNPs and indels as useful genomic features in these pre-
dictive models.

This lack of predictive power from small duplications is
unlikely to be an artifact of the algorithm and models given
the low amount of clustering between duplications and other
genomics features. Consequentially, this means that the
genomic regions that consistently have the highest predictive
power across all transcripts do not contain small
duplications.

In combining genomic, transcriptomic, and phenotypic
data, we were able to investigate whether these three bio-
logical levels generally follow a simplistic one-to-one,
polygenic many-to-one, or network many-to-many pattern of
connectivity (vid Wright 1980). The best predictors for each
phenotype, whether genomic or transcriptomic, span the
genome. This, at first glance, supports the idea of polygenic
functional variation, in that numerous loci affected most
phenotypes. Notably, differentiated genomic regions pre-
dicted the expression levels of multiple transcripts, while
conversely each transcript’s expression level was predicted
by numerous genomic regions. The complexity of the
interactions between the genomic and transcriptomic levels
(figures 6 & 8) substantiates the need for machine learning
tools to parse the molecular foundation of adaptation. Such
complex patterns are not amenable to detection by the
otherwise unaided human mind.

Contrary to the predictions of Fisher (1930) and Orr
(2000), recent work has suggested that moderate levels of
pleiotropy are common (Wagner et al. 2008; Frachon et al.
2017; Hämälä et al. 2020; Rennison and Peichel 2021) and
higher levels of pleiotropy are associated with increased per-
trait effect size (Wagner et al. 2008; Wang et al. 2010).
Hämälä et al. (2020) suggest pleiotropy will be common
when a population is far from its adaptive optimum as are
the experimental populations in this study. The present paper
likewise supports the hypothesis that pleiotropy may be an
important component of adaptation even in complex
organisms.

Different forms of machine learning have already been
used to study how the genome responds to selection. Tools
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varying from hidden Markov models (Kern and Haussler
2010), soft/hard inference through classification or S/HIC
(Schrider and Kern 2016), and deep learning (Sheehan and
Song 2016) have all been used to infer the effects of
selection at a genomewide scale. These models primarily
focus on discovering hard sweeps and soft sweeps
throughout the genome, utilizing genomic data.

Here we have shown that FLAM allows us to determine
which differentiated genomic regions or differentially
expressed genes between two population types are the best
predictors of specific patterns of phenotypic differentiation,
whether or not selective sweeps have occurred. FLAM
machine learning also allowed us to address long-standing
and unanswered questions about the molecular foundations
of functional adaptation. In addition, FLAM has enabled us
to treat the transcriptome as a phenotype of the genome, and
thereby locate some of the regions of the genome that
influence the levels of each differentiated transcript. In other
words, FLAM can explore the molecular basis of adaptation
during replicated experimental evolution, rather than just
locating regions of hard or soft sweeps.

Currently, we only have the full suite of genomics, tran-
scriptomics, and phenotypic data for 20 populations. As
shown previously (Mueller et al. 2018), 20-population anal-
ysis is barely sufficient for detecting causal loci, and by no
means will detect the full range of causally important sites in
genomes undergoing adaptation. Ideally, the number of pop-
ulations used in analyses of this kind should approach 100.
Only at such high levels of replication is it plausible that this
experimental strategy will reveal a high proportion of the
genomic sites that are involved in the response to selection.
Although having the full suite of all three types of data is ideal,
just having genomic and phenotypic data in additional popu-
lations would result in a drastic increase in our power to detect
causal loci. With the addition of more experimentally evolved
groups of populations, we can approach the level of 100
populations, at which point thorough penetration of the
genomic complexity of adaptation should be achievable.
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