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Abstract

In this paper we develop predictions from models of life-long demographic heterogeneity. These predictions are then compared to

observations of mortality in large laboratory populations of Drosophila melanogaster. We find that the demographic heterogeneity models

either require levels of variation that far exceed what would be considered biologically plausible, or they predict a much larger number of

very old individuals than we actually observe. We conclude that the demographic heterogeneity models are not reasonable explanations of

demographic patterns and are weakly motivated biological models.
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1. Introduction

1.1. Late-life mortality rate plateaus

It has been known for some time that human mortality

rates plateau at advanced ages (e.g. Greenwood and Irwin,

1939; Gavrilov and Gavrilova, 1991). Gompertz himself

suggested that his model of mortality would not apply to

people aged 60 to 100 years (Gompertz, 1872). Recently,

mortality plateaus have been found in a large number of

other organisms (Carey et al., 1992; Curtsinger et al., 1992;

Vaupel et al., 1998).

Olshansky and Carnes (1997) review the historical

explanations for the departures from exponential mortality

rate increases at advanced ages. One currently popular

explanation for this phenomenon has been lifelong hetero-

geneity in robustness. Suppose that all individuals die at a

rate that follows an exponentially rising probability with

age, as given by the Gompertz equation

uðxÞ ¼ AexpðaxÞ; ð1Þ

where u(x ) is the mortality rate at age-x, A is the age-

independent parameter, and a is the age-dependent

parameter. Further, suppose that there is life-long hetero-

geneity in these mortality functions, such that more robust

subgroups survive to later ages, slowing the rate of decline

in average survival probabilities at late ages among large

cohorts. At advanced ages the remaining individuals from a

cohort are expected to be so robust that the mortality rate

becomes a very shallow function of age, resembling a

plateau. We describe the heterogeneity as lifelong because

differences between individuals are in place when adulthood

begins and after that time do not change (Vaupel et al.,

1979). This is a special type of heterogeneity and should not

be confused with simple genetic or environmental variation

(Carnes and Olshansky, 2001). More recently demographic

models have been proposed that permit mortality rates to

stochastically vary continuously with age (Weitz and Fraser,

2001).

What has been lacking is an explicit analysis of lifelong

heterogeneity theory. Recently Service (2000a) and Pletcher

and Curtsinger (2000) have explored the behavior of several

variants of the heterogeneity model. Variables that have

been of little interest to demographers (e.g. Vaupel et al.,

1979), such as variance in mortality rates, are treated

explicitly by Service, Pletcher and Curtsinger, giving us our
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first opportunity to examine heterogeneity theory with care,

at least as a theory considered in the abstract.

As a predictive, falsifiable theory, lifelong heterogeneity

has already been evaluated elsewhere (e.g. Khazaeli et al.,

1998; Drapeau et al., 2000; also see Mueller et al., 2000;

Service, 2000b; Arking and Giroux, 2001; Drapeau, 2002).

Khazaeli et al. found that populations of fruitflies from

highly controlled larval environments that should produce

adults with reduced life-long heterogeneity, showed pla-

teaus as frequently as populations lacking these environ-

mental controls. Drapeau et al. (2000) found that genetically

robust populations did not experience increases in the age of

onset of plateaus as predicted from basic theory. In this

article we expand our previous theoretical and experimental

work with a more detailed examination of the statistical

properties of the heterogeneity models and some exper-

imental tests that follow from these statistical properties.

1.2. Variance in mortality rates

Variances in estimated mortality rates are important for

several reasons. We are not going to know the component

terms of the heterogeneity model, that is the rates of ageing

of individuals, so we have to study its properties indirectly,

using variances inter alia. If particular patterns of variation

are unique to heterogeneity models they could serve as a

means of testing this theory.

Here we dissect the variability that arises in a standard

cohort mortality assay. We do this because most exper-

imental evidence testing heterogeneity models comes from

large cohorts followed throughout adult life. This design is

also used in computer simulations that generate mortality

patterns under varied conditions.

For instance, if we start with a genetically variable

population (Fig. 1), it is possible that mortality rates will vary

due to genetic variation that affects the values of A and a of

the Gompertz equation. Even if we select a single genotype

and make many copies of it, mortality rates in this genetically

homogeneous cohort will vary due to environmental-

developmental factors that affect individuals (Fig. 1). We

call these developmental factors, since it is presumed that

their effects are in place at the time the organism starts to age.

As with genetic variation, this environmental variation may

presumably affect both A and a.

Proponents of heterogeneity theories suggest that this

variation will be present even in controlled laboratory

studies of inbred organisms (Fukui et al., 1996). Conse-

quently, as a practical matter it would be impossible under

Fig. 1. Sources of variation in mortality rates. In a population where the underlying dynamics of mortality are governed by the Gompertz equation, variability in

estimated mortality rates may be due to genetic variation, environmental/developmental factors, experimental error, and sampling variation.
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this theory to have an entire population that aged according

to a Gompertz model with one set of A and a parameters.

But certainly on a computer we can create such a population

to trace the other sources of variation in estimated mortality

rates, as we have illustrated in Fig. 1.

Suppose we have N0 individuals that age according to a

Gompertz equation with one set of parameters. At various

time intervals t1, t2, …, td, the number of survivors

ðNt1
;Nt2

;…;Ntd
Þ are recorded and this information is used

to estimate the mean mortality rates �̂mm�mmðtiÞ (Fig. 1). The

observed number of deaths in any time interval in a real

experiment will always be subject to some level of

experimental error ðwt1
;wt2

;…;wtd
Þ that may increase or

decrease the mortality rate from its expected Gompertz

value. In Drosophila experiments, for instance, adults are

transferred to fresh vials at regular intervals and it may be

appropriate to consider the experimental errors independent

identically-distributed random variables with a mean of 1.

However, in experiments where flies are housed in a single

cage over the course of the experiment the quality of that

environment may degrade over time, due to accumulating

wastes on the side of the cage or other factors that change

with time. The experimental error terms in this case may

depend on time, be autocorrelated, and may not have a mean

of 1. Finally, since all experiments rely on finite samples

there will be binomial sampling error at each time interval.

The mortality estimate is the mean of Nti
observations that

are either 0 or 1 (1 ¼ dead, 0 ¼ alive) at each time interval.

Note that the binomial sampling will only hold in the

biologically unrealistic case of no genetic or environmental

variation. In all other (real) cases the population will be a

mixture of binomial distributions corresponding to the

different probabilities of death due to different genotypes

and environmental-developmental types. The properties of

these mixed distributions can depart substantially from the

binomial. For instance consider a population with mixed

binomial distribution (sometimes called a Lexian distri-

bution) with a mean probability of success equal to p, and a

variance of p values equal to u2. If we take a sample of size

N, the number of successes is expected to be Np, as we

would expect from the standard binomial, but the variance

will equal Np(1 2 p ) þ N(N 2 1)u2 (Johnson and Kotz,

1969, p. 78). Thus, the variance is substantially inflated over

the binomial variance unless the variance of p-values, u2, is

quite small. Thus, attempts to tease apart different

components of variance in a genetic analysis of mortality

rates should not assume binomial sampling (cf.Shaw et al.,

1999).

1.3. Heterogeneity and variation in mortality rates

The best developed model of heterogeneity supposes that

individuals vary in their age-independent mortality par-

ameter (Vaupel et al., 1979). Individuals at the onset of adult

life vary in frailty. We may suppose that frailty is measured

by a random variable z. The probability of death of each

individual is then governed by the Gompertz model with

parameters a, and A0 ¼ zA: Of course as individuals age

they die and the remaining population would have relatively

fewer individuals with very large values of A0: Thus, we

expect the distribution of z to change with age. Let z(x )

represent the random variable z in a population of

individuals aged x time units. Vaupel et al. (1979) showed

that if z has a gamma distribution with parameters l and k

and mortality follows the Gompertz equation then z(x ) has a

gamma distribution with parameters l(x ) and k where,

lðxÞ ¼ lþ Aa21½expðaxÞ2 1�: ð2Þ

In the special case of z with mean 1 and variance s2 then the

variance of z(x ) is given by

Var½zðxÞ� ¼
s2

{1 þ s2Aa21½expðaxÞ2 1�}2
: ð3Þ

The variance of u(x ) is simply u 2(x )Var[z(x )]. It is clear

from Eq. (3) that as the population ages (x increases) the

variance in frailty, Var[z(x )], decreases as one might expect.

However, the variance of u(x ) has a factor of u 2(x ) in front

of it, which is increasing exponentially with age. Conse-

quently Var[u(x )] will generally increase with age.

Service (2000a), Fig. 3b) displays a graph showing the

relationship between Var[ln(u(x ))] and age. These results

were derived from simulations that included genetic and

environmental variability in both A and a, together with

sampling error. This curve shows a hump that Service

attributes to environmental-developmental heterogeneity,

suggesting that an interesting way to test the heterogeneity

theory would be to look for these humped curves from

replicate measurements of mortality. But, as we will show,

the patterns displayed by Service are largely due to binomial

(or mixed binomial) sampling variation (Fig. 1) and have

little to do with the heterogeneity model.

1.4. Plan of this study

Past work on life-long heterogeneity models has focused

on fitting heterogeneity models to demographic obser-

vations post hoc rather than developing testable predictions

that would enable us to evaluate the validity of heterogen-

eity theory. In this paper we develop testable predictions

based on life long heterogeneity theory and then compare

these predictions with data obtained from large replicated

cohorts of Drosophila melanogaster. We begin by con-

sidering the variance in mortality rates in aging cohorts, and

find that binomial sampling variance dominates the age-

specific pattern. We continue by deriving predictions

concerning the number of deaths that will occur at

extremely late ages, according to the lifelong heterogeneity

model. Actual data from large Drosophila cohorts demon-

strably fail to match these predictions.
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2. Materials and methods

2.1. Computer simulations

We used computer simulations to study the variance in

mortality rates due to several different random factors. In

our computer simulations both A and a varied. The deaths of

individuals in a cohort of 1250 individuals were simulated

following Service (2000a). For each individual two random

variables, z1 and z2, were chosen. z1 had a lognormal

distribution with a mean of 28.57 and variance of 0.766

while z2 was sampled from a gamma distribution with mean

1 and variance of 0.0021. The mortality rates of that

individual were then determined by a Gompertz equation

with A ¼ exp(z1) and a ¼ z2a0.

A random time of death for this individual was then

generated by the inverse transform method (Fishman, 1996,

p. 149) as ln(1 2 aln(1 2 U )/A )a, where U is a uniform

random number on (0,1). Gamma random variables were

generated from the GKM1 algorithm of Fishman (1996) and

the RGS algorithm of Best (1983). Lognormal random

variables were generated from the Pascal version of the

function gasdev (Press et al., 1992, p. 289). In simulations

with no genetic variation, simulations for a given cohort size

were repeated 100 times and the variance in lnð �mðxÞÞ

estimated from these 100 values. In the simulation with

genetic variation, we used the same conditions as Service

(2000a), 24 cohorts of 1250 individuals each, repeated a

total of 10 times.

2.2. Fly populations employed for experimental

measurements

All stocks used in these experiments were ultimately

derived from a sample of the Amherst, Massachusetts, Ives

population that was collected in 1975 and cultured at

moderate to large population sizes since (e.g. Ives, 1970).

Individual populations have been subjected to a series of

selection regimes. Each of the four stocks differs in their age

of last reproduction and consists of five outbred replicate

populations (Fig. 2). The four stocks are B125, O125,

CO125, and ACO125. The ACO and B populations have an

early age of last reproduction (9 and 14 days respectively),

the CO populations have an intermediate last age of

reproduction (28 days) and the O populations have a late

last age of reproduction (70 days, see Fig. 2).

These populations have each been maintained for more

than 100 generations at effective population sizes . 1000.

Together, these populations define a spectrum of selection

on the age of reproduction, and thus a spectrum of patterns

for the age-specific force of natural selection. It is probably

the case that natural populations are more variable than lab

populations and thus could in principle generate more life-

long heterogeneity. However, since mortality plateaus

are seen in genetically homogeneous lab populations,

the populations and environments used here should be

sufficient to test predictions of heterogeneity models.

We also measured mortality in all possible hybrid

populations of the five B-populations. Every pair-wise

combination of the cross Bi £ Bj (both i and j varying from 1

to 5) was performed and non-hybrid cross progeny were

handled in the same manner as hybrid cross progeny.

Rearing was parallel for two generations prior to assay.

Densities were standardized among fly cultures. All cohorts

were assayed for mortality by complete census of deaths

every other day, similar to the mortality assays described

above. Sample sizes were approximately 880 per cohort per

sex, with a grand total of 43,937 flies.

2.3. Collection of fly mortality-rate data

The protocol used here closely matches that of our earlier

study (Drapeau et al., 2000). For each replicate population,

at least 80 8-dram glass banana-agar-corn syrup food vials

each containing 60 ^ 5 eggs were prepared. On the ninth

and tenth days after the egg collection (but within a 24-hour

period), all eclosed adult flies were sexed and placed into

new food vials in groups of 24 (12:12 male:female) which

would be used to start the mortality assay.

Adult survival was determined and living flies were

transferred to new vials with fresh food every other day.

Any flies that were living but irretrievably stuck to a part of

the vial were scored as dead two days later. When necessary,

flies within replicates were recombined among handling

vials in order to maintain a density of approximately 20

flies/vial, to rule out any possible density effects on

mortality rates. This procedure resulted in adult densities

Fig. 2. The derivation of Drosophila stocks used in this experiment. Lines

indicate the source population of each line and how the age of reproduction

has changed over time.
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varying between 12 and 24. For a culture that can support

a carrying capacity of nearly 300 adults this is a very small

range of adult densities, a range that is expected to have

negligible effects on mortality rates (cf. Nusbaum et al.,

1993; Carey et. al., 1993, 1995; Graves and Mueller, 1993,

1995; Curtsinger, 1995a,b; Khazaeli et al., 1995,1996).

Survival assays were continued until every fly was dead. We

used high cohort sizes (at least 1000 individuals per

replicate) in order to reduce sampling variance in our

estimations of mortality rates (Pletcher, 1999; Promislow

et al., 1999) (see Table 3 for sample sizes).

More detail on the mortality patterns in these

populations, and analysis with respect to evolutionary

theories of late-life mortality (Mueller and Rose, 1996;

Rose and Mueller, 2000), are presented elsewhere (Rose

et al., 2002).

3. Results

3.1. Age-specific variance in B and O-populations

Previous work has documented large differences between

the B and O populations for a; so we focus attention on

those populations here. If there were zero deaths in any time

interval we set the mortality rate to 1 over the number of

survivors at that age class. We followed this procedure in

the computer simulations in the next section also. Since the

patterns of age-specific variance were very similar between

sex and populations within a selection treatment (B vs. O)

we have averaged the variance over sexes and similar

populations. We also only estimated variance at ages where

we had survivors across all populations. This reduced our

ability to see the variance patterns at advanced ages. Since a

whole population is used to estimate a single mortality rate

the variances are among population means. This is

important to keep in mind, since we will derive theoretical

variances between individuals later.

In Fig. 3 we see that the B-populations show a peak in

variance at very young ages. The O-populations, which have

a much lower value of a than the B-populations, show a

corresponding increase in the age of the first peak for

mortality variance (Fig. 3). We also see a rise in variance

late in life for the B-populations. Between these peaks, the

variance is relatively constant. Likewise the late rise in

variance in the O-populations occurs at a more advanced

age, but the variance remains relatively flat at intermediate

ages.

The general trend from both the B and O-populations is a

peak in variance at an early age and at a very late age, with

relatively constant variance at the intermediate ages. The

difference between the B and O-populations is that the early

and late peak start at younger ages in the B-populations

compared to the O-populations.

3.2. Results of analytical and simulation work

We now develop some analytical results for the Vaupel

et al. (1979) model that allows heterogeneity-in-A, in order

to determine the expected patterns in age-specific variance

for this model. It is fairly easy to show that Var[ln

(u(x ))] ¼ Var[ln(z(x ))]. This variance refers to the variance

between individuals within a population. If we computed

the variance between mean mortalities in populations each

of size N, then this variance would be equal to,

Var[ln(u(x ))]N 21. We now build on Vaupel et al.’s work

to derive the density function of the log transformation of

the random variable z(x ). If we simplify the notation, our

problem is to determine the density function of the random

variable y ¼ ln(z ). This can be accomplished by recalling

that the relationship between the density function of y

( fY(y )) and z ( fZ(z )) is,

fY ðyÞ ¼
dexpðyÞ

dy

����
����fZðexpðyÞÞ

(Mood et al., 1974, p. 200). In particular if z has a gamma

distribution with parameters l and k then the density

function of ln(z ) is,

lkðeyÞke2ley

GðkÞ
: ð4Þ

We can use Eq. (4) to estimate E[ln(z(x ))] and

Var[ln(z(x ))]-and hence the Var[ln(u(x ))]-by letting

l ¼
1

s2
þ

A½expðaxÞ2 1�

a

and k ¼ 1/s2. If we assume mortality rates obey the

Gompertz model with heterogeneity in A, we can use the

observed patterns of mortality in the B and O populations to

estimate the parameters of this model. We have used

Fig. 3. The variance of the natural log of mortality as a function of age. Both

sexes and 10 populations were used to estimate the variance in the O-

populations. Both sexes and 25 populations were used to estimate the

variance for the B and B-hybrid populations. The solid lines near the x-axis

are the predicted levels of variation from the heterogeneity-in-A model.

These were calculated from Eq. (4) and individual estimates of the model

parameters given in Table 1.
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estimates of A, a, and s2 for each B and O population (see

Section 3.4 for details of the estimation procedure) to

numerically estimate the variance in mean log mortalities

due to variation in A alone. Before describing these results

we give details of these numerical methods. Since the

gamma function in Eq. (4) can get quite large, we first

computed the log of the density function before placing that

result in an exponential function to get Eq. (4). We used

Romberg integration (the QROMB procedure described in

Press et al., 1992, p. 140) to numerically integrate the

density function. Polynomial interpolation with 10 ten

points was used in this implementation. This increased the

accuracy noticeably over five interpolating points. The

allowable error estimate for this procedure was set to 1026.

The first result we obtained is that in an infinite

population the variance between individuals for the natural

log of mortality rates is constant with age (Fig. 4). It is clear

from Eq. (3) that the Var½zðxÞ� goes to zero with increasing

age. This is due to the scale of z, which must be a positive

number. At advanced ages the only survivors have very

small values of z and thus the numerical value of the

variance gets very small. However, on a log scale there is no

such change in variance as can be seen from the example in

Fig. 4. This result appears to contradict Pletcher and

Curtsinger (2000) who suggest that this variance will

decrease with age (see their Fig. 1). Pletcher and Curtsinger

did not derive the distribution or density function of their

randomly varying mortality rates. Rather they relied on a

Taylor series approximation of variance derived from the

population mean mortality. Their differentiation of this

equation was with respect to only one source of variation,

the genetic variation, but not the environmental variation.

We took our numerical estimates of variance and divided

by the total number of individuals alive at each age, in each

population to get an estimate of the variance in mean

mortality. We then compared these theoretical results to the

observed variance in the B and O populations. In Fig. 3 we

have illustrated the theoretical variance with solid lines.

Heterogeneity in A will at best make a very small

contribution to the total variation except possibly at the

oldest ages where only a few individuals are still alive. In

Fig. 3 the solid curve for the B-populations starts to rise at

age 40 days. In the O-populations the variance is very small

(on the x-axis) at essentially all ages shown. We next used

computer simulations to study the variance of lnð �mðxÞÞ when

the a parameter is also varied.

3.3. Magnitude of the different sources of variation

At very young ages, there are often no deaths between

consecutive age classes using the values of A and a provided

by Service. Service (2000a) followed the practice of setting

these zero values to 1 divided by the number of adults at the

start of the time interval. Examination of Fig. 3a in Service

(2000a) reveals many values of log mortality at a boundary

of -3.1, which corresponds to log(1/1250). The consequence

of this type of truncated distribution is an apparent reduction

in variance. Our first simulation (Fig. 5a) shows the variance

in log mortality rates in a population with no variation in A

and a. Thus, we are looking at sampling variance only. The

variance peaks at about 10–15 days. The low variances

before this peak correspond to the days when many

populations appear not to vary since they all have zero

observed deaths.

Our next two simulations show the effects of sampling

variance plus environmental-developmental variation in A

(Fig. 5b) and environmental variation in a (Fig. 5c). The

most important conclusion is that the broad pattern is

dominated by sampling variation. There is very little effect

of within-population variation in A and a. This is in line

with the results from the previous section. This conclusion is

emphasized in Fig. 5d, which shows the results when three

sources of variation are considered -sampling variation,

variation in A, and variation in a- compared to just sampling

variation (from Fig. 5a).

In each of the simulations shown in Fig. 5a–d there is a

rapid decline in variance after the first peak and then a

second peak at day 45–50. Let the estimated mortality

rate at one of the young ages be p, then Np will have a

mixed binomial distribution (assuming N individuals alive at

the start of the time interval). Var[ln( p )] is approximately

Fig. 4. The distribution of ln(z(x )) at two different ages in the B1 male

population. At ten days the mean values of z is about 1 while at 80 days it is

3.5 £ 1028. At both ages the variance is the same, 1.86.
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p22VarðpÞ ¼ ð1 2 pÞp21N21 þ ðN 2 1ÞN21u2p22 ø d21þ

u2p22; when 1 2 p ø 1 and d is the number of deaths in the

time interval. Since d increases rapidly from very young

ages (5–15 days) into the middle ages (20–30 days), the

variance declines rapidly in this age range. After this rapid

decline in variance during ages 30–40, there are periods of

relatively constant variance as we might expect from the

analytic results derived earlier. The variance starts to

increase again at later ages as the total number of survivors

becomes low and thus the sampling variation increases, so

when p ø 0.5, Var½lnðpÞ� ø N21u21=4 which grows quickly

at small values of N.

We next consider the effects of genetic variation. Service

(2000a) allowed the mean values of A and a to vary between

genetically different lines. In Fig. 5e we show the results from

Fig. 5d (dashed line) along with the results after making the

mean value of A andaone standard deviation smaller and one

standard deviation larger than the means used in the previous

simulations. Between-line genetic variation shifts the peaks

to the left or rightbutmaintains the same general pattern that is

due to sampling variation. In fact it is the late life peak that is

shifted most by the between-line genetic variation. In Fig. 5f

we have reproduced the simulations of Service by sampling

24 computer-generated genetically variable lines. The results

prior to day 40 closely resemble Service’s results. Service did

not see the variance peaks late in life due to additional

constraints on his simulations. Service (2000a) required that

at least 10 individuals be alive at the start of each age class to

estimate mortality. Additionally, Service computed the

between-line variation only at ages where all 24 lines had

survivors, which effectively eliminates the older age classes

from his analysis. Our analysis suggests that variation

between individuals within populations for either A or a

does not lead to substantial changes in the variance of

ln(mortality) with age at least for the sample sizes and

parameters values used here.Theobserved patterns ofService

(2000a) are largely a consequence of sampling variation in

estimated mortality rates or the effects of artificially truncated

distributions on the estimates of variance.

We conclude from these analyses that, except for

unrealistically large populations, observed laboratory pat-

terns of age-specific variance in mortality rates will be

dominated by sampling variance. There is little hope of

detecting patterns that arise from different demographic

heterogeneity models that may be present in infinite

populations (Pletcher and Curtsinger, 2000), given the

degree of replication in most laboratory experiments.

These predictions are consistent with observed patterns

in the B and O-populations (Fig. 3). Both populations show

the variance peaks at early and late life predicted from our

Fig. 5. The variance of ln[mortality rates] between replicate populations as a function of age. The values used in all these simulations were: A ¼ 0.00019,

Var[ln(A )] ¼ 0.766, a ¼ 0.193, Var[a] ¼ 0.0021. Mortality rates were determined from a Gompertz equation with either (a) only sampling variation, (b)

sampling variation and variation in the A parameter of the Gompertz, (c) sampling variation and variation in a of the Gompertz, (d) sampling variation and

variation in both A and a of the Gompertz, (e) the same as (d) except the high lines are one standard deviation greater than (d) and the low lines are one standard

deviation smaller than (d), (e) average variation over 24 genetically different lines when within population variation is like (d).
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simulations. Since the value of a in the O-populations is

much less than in the B-populations, our simulations predict

that the peaks in the O-populations should be displaced

towards older ages, which they are.

3.4. Tests of the life-long heterogeneity models using

survival patterns

3.4.1. The heterogenity-in-A model

When there is variability in the A parameter of the

Gompertz equation, Vaupel et al. (1979) have derived the

average mortality at age-x as,

�mðxÞ ¼
AexpðaxÞ

1 þ s2Aa21½expðaxÞ2 1�
: ð5Þ

This model is sometimes called the logistic model

(Promislow et al., 1996). Two observations point to

environmentally generated variation in A as a reasonable

form of the heterogeneity model. First, populations that are

highly inbred, and therefore likely to have little genetic

variation, show plateaus (Fukui et al., 1993). Secondly,

several environmental perturbations that have demonstrable

effects on longevity only seem to affect the age-independent

parameter of the Gompertz (Nusbaum et al., 1996; Joshi

et al., 1996).

As a test of the lifelong heterogeneity theory, we

estimated the parameters of Eq. (5) in ten populations.

Mortality data from these ten populations were collected at

the same time using the same experimental protocol.

Accordingly we would expect levels of environmental

variation to be identical in each population. The ten

populations tested consist of five populations called B’s

and five called O’s described above. All ten populations

were originally derived from the same source population but

have been subject to different regimes of age-specific

selection (Rose, 1984). There is now substantial genetic

differentiation between these populations. Nusbaum et al.

(1996) showed that there were no significant differences

between the B and O populations for A of the Gompertz

equation but that there were significant differences for a.

We estimated the parameters of the logistic model, Eq. (5),

A, a, and s2 using maximum likelihood techniques

described in Mueller et al. (1995), treating Eq. (5) as a

density function (Table 1). Of course fitting this model to

our data doesn’t show that the model is valid. It merely

provides us with an estimate of the model parameters under

the assumption that the model is valid. Fitting the mortality

data from large cohorts reveals significant differences in s2

between the B and O populations (two-way ANOVA,

p ¼ 0.00084, see Table 2).

These results seem difficult to reconcile with a theory

based on environmental heterogeneity in A. One might

argue that there is also genetic variability in A and that there

is substantially more variation in the B populations than in

the O’s. This argument is difficult to accept since

the selection that has taken place has apparently not affected

the mean value of A and the effective population sizes in the

two populations is roughly equal. Thus, we don’t expect to

have lost more variation in the O populations due to direct

selection on A or by loss from genetic drift. If anything, the

B populations have undergone a larger number of

generations since splitting from the O’s and might be

expected to have less variation that the O’s.

In studies with Drosophila, several environmental

variables are known to affect longevity and presumably

mortality rates. These include mating status (Maynard

Smith, 1958), nutritional status (Chapman and Partridge,

1996; Chippindale et al., 1993), and presence of urea in the

adult food (Joshi et al., 1996). Estimates of Gompertz

parameters for the experiments varying levels of food and

urea have shown that only the A parameter of the Gompertz

is affected and this presumably accounts for the differences

in mortality between cohorts receiving different food levels

(Nusbaum et al, 1996).

From the estimates of s2 in Table 1 we can ask if the

levels of variation in A0ð¼ AzÞ required to fit the datasets are

reasonable. If we focus on the B-males, as an example,

Table 1

The estimated parameters of the logistic model for five B and five O

populations. The estimates were obtained by the maximum likelihood

technique without approximation as described in Mueller et al. (1995)

Population Sex A a s2

B1 Males 0.00183 0.268 1.09

B2 0.00531 0.185 0.524

B3 0.00178 0.298 1.06

B4 0.00140 0.272 1.11

B5 0.000759 0.245 1.10

O1 0.000660 0.0984 0.813

O2 0.000887 0.0924 0.469

O3 0.00105 0.0841 0.669

O4 0.00124 0.0674 0.335

O5 0.000833 0.07997 0.607

B1 Females 0.00134 0.325 2.02

B2 0.00569 0.172 0.905

B3 0.00195 0.290 1.82

B4 0.00673 0.166 0.972

B5 0.00243 0.244 1.50

O1 0.00141 0.0822 0.586

O2 0.00293 0.0686 0.299

O3 0.00277 0.0692 0.364

O4 0.00296 0.0657 0.497

O5 0.00181 0.0750 0.532

Table 2

The analysis of variance for s 2 obtained from the heterogeneity-in-A model

(Table 1)

Source d.f. Sum of squares Mean square F p

Population 1 1.58 1.58 16.8 0.00084

Sex 1 0.031 0.031 0.33 0.57

Sex £ population 1 0.163 0.163 1.73 0.21

Error 16 1.51 0.0941
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the average variance of z (s2) is 0.976 (Table 1). Since z has

a gamma distribution with a mean of 1 and a variance of

0.976, 95% of the values of z would be between 0.023 and

3.73 (Fig. 6, shaded area). Thus, the largest and the smallest

value of A0 differ by a factor of 162. We need to recall that

this large level of variation is mostly environmental and

arises in experimental populations where all efforts have

been made to make the environment as constant as possible.

This type of variation also results in very different age-

specific mortality rates motivating our earlier claim that the

observed number of deaths has a Lexian distribution. For

instance, B1 males produce a 95% confidence interval on z

of (0.017,3.48). This means that the 95% confidence interval

on probabilities of mortality between day 10 and day 11 is

(0.00052,0.101).

When food levels are purposely changed from ad lib to

low levels (DR) in these same populations of B-males, the

mean value of the A-parameter changes by only a small

fraction of the variation that is supposedly present in these

populations (Fig. 6). The heterogeneity in A theory requires

that subtle environmental forces, that can’t be controlled

even in the laboratory, produce variation in the age-

independent Gompertz parameter that is 80 times greater

than the mean variation that is produced by brute force

intervention in diet.

3.4.2. The heterogeneity-in-a model

We call the second heterogeneity model ‘heterogeneity-

in-a’. In this model the age-dependent parameter, a, is a

random variable equal to z ~a: The random variable, z, has a

gamma distribution with a mean of one and variance equal

to k 21. The mean instantaneous mortality rate for

individuals aged-x under the heterogeneity-in-a model is

(Pletcher and Curtsinger, 2000),

�uðxÞ ¼
ð1

0

Azk21expð ~azx 2 fðx; zÞÞdzð1

0
zk21expð2fðx; zÞÞdz

ð6Þ

where fðx; zÞ ¼ kzþAð ~azÞ21½expð ~azx2 1Þ�: The expression

for f(x,z ) given here corrects a typographical error in

Pletcher and Curtsinger (2000).

Using Eq. (6) we can get estimates of the parameters of

this model, A, ~a; and k, using maximum likelihood

techniques, as we did for the heterogeneity-in-A model.

These estimates reveal much smaller variances for the

gamma random variable, z. For the O-males the average

variance that is observed is 0.037. The interval 0.66 to 1.42

includes 95% of the values of z, roughly a two fold

difference between the smallest and largest. Natural

selection for late-life reproduction can lead to genetic

changes in populations that affect the age-specific parameter

of ageing. Thus, the value of ~a in the B-males is roughly

twice as large as O-males (0.21 vs. 0.081) and females also

show a two-fold difference (0.19 vs. 0.067).

This heterogeneity-in-a model assumes that a small

portion of the population will have very small values of a

and will be very long lived. One possible sign that this

model does not work well is that it requires very long lived

individuals due to the assumption of heterogeneity in a. An

indication of possible problems is revealed in Service

(2000a). In his simulations, when a was varied he generated

populations with average longevities of 50 days, which is

reasonable for Drosophila, but simulated maximum life-

spans of 365 days, which are unknown for this species.

To study this further, we have used the maximum

likelihood estimates of A, ~a; and k to simulate deaths in

large cohorts for the heterogeneity in a model. We have

averaged the results of these simulations across the five

replicate populations within a selection treatment for each

sex (solid lines in Fig. 7). Along with these predictions the

actual probabilities of living beyond a specific age are

shown in Fig. 7 (circles). While the model does a good job at

young ages we see that at advanced ages, especially in the

longer lived lines, the model predicts more survivors than

we typically see.

We have tested this late-survivor prediction of the

heterogeneity models with observations from the B, O, CO,

and ACO populations. Since male and female data are

analyzed separately there are a total 40 populations

analyzed (2 sexes£4 selection regimes£5 replicates). With

the estimated values of A, ~a; and k for each of the 40

populations we simulated deaths of 100,000 individuals

following the procedures used in Fig. 5. For each population

the frequency of individuals that lived longer than some

critical age were determined.

We also determined from our survival data the observed

numbers surviving beyond these critical days. The results

from the five replicates were pooled and the observed

Fig. 6. The shaded portion shows the range that 95% of the z values would

fall in for the average B-male population. This also represents the relative

range for the different A0A’-values. The value of A0 for B-males fed ad lib

food is arbitrarily put at one then the relative reduction in A0 due to dietary

restriction (DR) is shown on the figure.
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numbers were compared to the expected number from the

heterogeneity-in-a theory. To determine if the expected

frequencies were too large, we determined the 5% and 1%

limits to our observed numbers from binomial sampling

theory (Table 3). While we stated earlier that real

populations are likely to be mixed binomial samples we

believe the simple binomial distribution will be adequate

here. First of all there are few surviving adults in the real

population so the number of different p-values is likely to be

small. Secondly, these extremely long lived individuals are

all more likely to have similar probabilities of survival

because deaths have reduced the variation of p (at least on a

linear scale), making u2 very small.

These results show that for five out of eight comparisons

the heterogeneity-in-a model predicts an excessive number

of very old individuals. This suggests that some funda-

mental feature of the heterogeneity-in-a model is flawed.

4. Discussion

In biology, one of our most important organizing

principles is adaptive evolution by natural selection. Natural

selection rests on genetic variation, differential survival or

reproduction, and transmission of genetic information from

parent to offspring. Many profound ‘why’ questions in

biology can be answered with simple principles of

evolutionary biology, including questions in the fields of

aging and demography. Unlike evolutionary theories

of demography, the lifelong heterogeneity theories do not

rest upon such well-established principles of biology. The

lack of a mechanistic basis for these heterogeneity theories

also makes it difficult to design critical experiments to test

heterogeneity theories. The only support for these theories

comes from their ability to mimic the post hoc patterns of

mortality seen in biological populations. This is a weak form

Fig. 7. The probability of surviving beyond a certain age in four different populations and both sexes. The probability scales are not identical for all figures. The

solid circles are the observed probabilities in each group while the solid lines are the values predicted by the heterogeneity-in-a model. Since the model

predictions are based on simulated, finite numbers of deaths, they do not always produce smooth curves especially at the advanced ages.
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of support for models in biology since there are often many

post hoc models with these properties (Mueller and Joshi,

2000, Chapter 1).

4.1. The heterogeneity models

Nevertheless, in this paper we have shown that the

heterogeneity theories are demonstrably flawed. Most

importantly, the limited predictions that can be derived

from them are not corroborated, as summarized in Table 4.

The heterogeneity-in-a theory predicts too many long-lived

individuals. This shortcoming is even more telling when we

recall that populations that have too few long-lived

individuals are the same ones used to estimate the

parameters of these post hoc heterogeneity-in-a models.

The heterogeneity in A models require extraordinarily high

levels of between-individual variation. The known biologi-

cal mechanisms of generating differences between individ-

uals for the A parameter only account for a small fraction of

the variation needed by this model.

An advantage of models that have no mechanistic basis

for their equations is that a failure to fit a particular body of

data is only an invitation to add higher-order terms, or new

mathematical functions, to the theory. For example, the

failure of the heterogeneity theory to predict a deficiency in

extreme late-life deaths could be met by the use of an age-

dependent mortality function that produces a steeper

acceleration in the mortality rate at very late ages. In the

history of science, such stratagems are well known (Popper,

1968), one use of them being the Ptolemaic epicycles added

to save the geocentric model for the astronomical universe.

Heterogeneity theory may continue to survive, but its

practitioners will probably resort to progressively more

elaborate model tinkering over the course of repeated

empirical failures.

4.2. Evolutionary models

We have proposed an evolutionary model to explain

mortality plateaus (Mueller and Rose, 1959), hereafter

referred to as the Mueller–Rose theory. The Mueller–Rose

theory relies on the joint forces of natural selection and

random genetic drift. It is postulated that throughout most of

the adult life span natural selection molds the patterns of

adult mortality. Since the force of natural selection declines

with age (Charlesworth, 1980) mortality rates increase

Table 4

A summary of experimental tests of models of heterogeneity and natural selection. Results that are inconsistent with these predictions are called ‘negative’ and

those consistent with the predictions are ‘positive’

Theory Prediction Result Reference

Heterogeneity Reduction of early life variability should

reduce appearance of plateaus

Negative Khazaeli et al., 1998

Heterogeneity Selection to resist stress should affect

characteristics of plateau

Drapeau et al.,

2000 Negative

Drapeau et al., 2000;

Mueller et al., 2000

Heterogeneity Number of survivors in extreme age-classes Negative This paper

Heterogeneity Similar variance in different populations raised

in the same environment

Negative This paper

Evolution Decrease in age of onset of

plateau with early life selection

Positive Rose, et al., 2002

Evolution Increase in age of onset of

plateau with late life selection

Positive Rose, et al., 2002

Table 3

Number of flies with longevities greater than the critical age. The observed numbers for each population are polled from the five replicates. The confidence

levels are based on the observed numbers and the expectations from binomial sampling theory. The expected numbers for the heterogeneity-in-a model are

based on the separate maximum likelihood estimates for each sex and population

Population Critical age (days) Sex Sample size Observed number . critical age Expected number

ACO 60 Males 12,444 8 9

CO 60 Males 11,987 1346 1613**

O 100 Males 8854 23 53.1**

B 40 Males 4867 49 41.9

ACO 60 Females 14,084 1 3.8

CO 60 Females 12,361 739 804*

O 100 Females 10,037 2 28.6**

B 40 Females 5,143 99 138**

*Probability of observed numbers this large or greater ,0.05; **probability of observed numbers this large or greater ,0.01.
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exponentially with age due to genetic mechanisms like

mutation accumulation and antagonistic pleiotropy. The

theory further supposes that at some advanced age selection

becomes so weak that random genetic drift becomes the

more important evolutionary force. At that age and at later

ages mortality remains high but shows no trend, since all

ages are equivalent from the perspective of selection and

drift. Quantitative support for this theory was derived from

computer simulations.

Several authors have criticized the Mueller–Rose theory.

In addition, there are now several alternative evolutionary

models that have been used to analyze mortality plateaus.

We provide a brief review of these theories and critiques

below.

4.2.1. The Mueller–Rose theory fails to identify the true

stationary states

Wachter (1999) has criticized the Mueller–Rose theory

suggesting that the plateaus observed in our computer

simulations were simply transient states of a stochastic

process. The true stationary states, according to Wachter,

show exponential increases in mortality with age. It should

be noted that the transient plateaus that observed by

Mueller–Rose exist for the equivalent of millions of

generations. It is also not clear from Wachter’s work if

the stationary states he identifies could be reached in a

biologically meaningful period of time. In fact his only

justification for interest in the stationary states rather than

long lived transient states is that a theory that relies on

transient states is ‘unappealing’.

There is no reason to suppose that any environment

would remain constant for millions of generations. As

environments change, gains made in age-specific survival

would be lost and the process of adaptation would begin

anew, preventing them from reaching a stationary state.

Many scientists have noted the importance of environmental

heterogeneity in short and long term evolution (for instance

see Gillespie, 1991, for a detailed treatment of this type of

theory in molecular evolution).

Wachter’s analysis only considers the special case of

mutations that affect one age-class at a time, presumably

because more realistic models were mathematically intract-

able. The Mueller–Rose theory concentrated on mutations

that affect broad windows of contiguous age-classes.

Charlesworth (2001) has recently shown that mutation

accumulation models can lead to mortality plateaus,

consistent with our findings. However, Charlesworth points

out that pleiotropy is needed to generate these plateaus. In

particular he assumed that mutations have both an age-

specific effect and a pleiotropic non-age-specific effect. The

non-age-specific effect is important for generating these

plateaus. Charlesworth’s conclusions suggest that Wach-

ter’s results may not hold for Mueller–Rose models with

broad pleiotropic effects.

4.2.2. Alternative models use entropy as a measure of fitness

rather than r

Demetrius (2001) developed an evolutionary model to

explain the existence of mortality plateaus that uses a

demographic statistic called entropy to predict the outcome

of evolution, as opposed to the intrinsic rate of increase used

in the Mueller–Rose and Charlesworth theories. Demetrius

shows that the partial derivative of entropy with respect to

age-specific survival is positive late in life but negative in

mid-life, if population size is regulated. He suggests,

without proof, that the age-specific pattern of entropy-

sensitivity predicts that late life mortality should plateau.

However, his results are also consistent with actual declines

in late life mortality. The Mueller–Rose theory does not

predict declines in late-life mortality. Thus, distinguishing

between the utility of these contrasting evolutionary

theories rests on empirical patterns of late-life mortality.

One can find occasional reports in the literature of

unreplicated populations that show declines in mortality late

in life (e.g. Carey et al., 1992). However, the broad pattern

that has emerged by considering many species and

replicates of similar populations is that mortality rates

plateau at late life; they do not decline (Rose et al., 2002).

Thus, existing empirical evidence is not consistent with the

theory developed by Demetrius.

4.2.3. The Mueller–Rose theory rests on special

assumptions or artifacts

Pletcher and Curtsinger (1998) suggest that our method

of generating mutants artifactually leads to mortality

plateaus. They assert that without these artifacts, late-life

mortality would go to 100%. They support their arguments

with computer simulations. These simulations assume that

there is no reproduction at the late ages where mortality

rises to 100%. None of the examples used to develop the

Mueller–Rose theory make this assumption. Contrary to

their assertions the alternative methods for generating

mutants described by Pletcher and Curtsinger do result in

mortality plateaus. Finally, Pletcher and Curtsinger derive

theoretical results that suggest that the Mueller–Rose

models will always equilibrate mortalities at intermediate

levels. However, as pointed out by Wachter (1999) and Rose

and Mueller (2000) these derivations rely on several

incorrect assumptions.

4.2.4. Variants of the heterogeneity theories can explain

plateaus

Weitz and Fraser (2001) develop a model that assumes

individual mortality rates are random variables. Thus, an

initially homogeneous population may develop heterogen-

eity since every individual experiences a different combi-

nation of random variation that alters their age-specific

survival. The model assumes there is a linear increase in

instantaneous mortality rates with age, so it assumes, rather

than explains, Gompertz-like kinetics, unlike the evolution-

ary models (Mueller and Rose, 1996; Charlesworth, 2001).
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Their model also assumes that mortality rates are subject to

perturbations from uncorrelated Gaussian noise with a mean

of zero. The functional form of this stochastic model has no

deep biological motivation. Thus, the model’s main merits

are its ability to mimic the behavior of real populations.

More work with this model will be required to determine if

it is an advance over previous heterogeneity models.

As an alternative to heterogeneity models, demographers

and gerontologists could consider using the evolutionary

theory of late life (Rose and Mueller, 2000). This theory

explains late-life mortality rate plateaus using equations

articulated by Hamilton (1966) and Charlesworth (1980),

especially the force of natural selection. There are simple

qualitative predictions that can be derived from this theory

(Mueller and Rose, 1996; Rose and Mueller, 2000;

Charlesworth, 2001), and tested using practicable exper-

iments (cf. Rose et al., 2002). The strongest support for the

evolutionary models comes from their ability to make

predictions that have been corroborated (Rose et al., 2002).

Few experimental tests of the evolutionary theory of late life

have been published to date, and this theory is undoubtedly

in need of improved mathematical definition and analysis.

Nonetheless, at a minimum, it deserves more of the attention

now given to lifelong heterogeneity theories of late life.
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