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Abstract

In this paper we develop predictions from models of life-long demographic heterogeneity. These predictions are then compared to
observations of mortality in large laboratory populations of Drosophila melanogaster. We find that the demographic heterogeneity models
either require levels of variation that far exceed what would be considered biologically plausible, or they predict a much larger number of
very old individuals than we actually observe. We conclude that the demographic heterogeneity models are not reasonable explanations of

demographic patterns and are weakly motivated biological models.
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1. Introduction
1.1. Late-life mortality rate plateaus

It has been known for some time that human mortality
rates plateau at advanced ages (e.g. Greenwood and Irwin,
1939; Gavrilov and Gavrilova, 1991). Gompertz himself
suggested that his model of mortality would not apply to
people aged 60 to 100 years (Gompertz, 1872). Recently,
mortality plateaus have been found in a large number of
other organisms (Carey et al., 1992; Curtsinger et al., 1992;
Vaupel et al., 1998).

Olshansky and Carnes (1997) review the historical
explanations for the departures from exponential mortality
rate increases at advanced ages. One currently popular
explanation for this phenomenon has been lifelong hetero-
geneity in robustness. Suppose that all individuals die at a
rate that follows an exponentially rising probability with
age, as given by the Gompertz equation

u(x) = Aexp(ax), (D
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where u(x) is the mortality rate at age-x, A is the age-
independent parameter, and « is the age-dependent
parameter. Further, suppose that there is life-long hetero-
geneity in these mortality functions, such that more robust
subgroups survive to later ages, slowing the rate of decline
in average survival probabilities at late ages among large
cohorts. At advanced ages the remaining individuals from a
cohort are expected to be so robust that the mortality rate
becomes a very shallow function of age, resembling a
plateau. We describe the heterogeneity as lifelong because
differences between individuals are in place when adulthood
begins and after that time do not change (Vaupel et al.,
1979). This is a special type of heterogeneity and should not
be confused with simple genetic or environmental variation
(Carnes and Olshansky, 2001). More recently demographic
models have been proposed that permit mortality rates to
stochastically vary continuously with age (Weitz and Fraser,
2001).

What has been lacking is an explicit analysis of lifelong
heterogeneity theory. Recently Service (2000a) and Pletcher
and Curtsinger (2000) have explored the behavior of several
variants of the heterogeneity model. Variables that have
been of little interest to demographers (e.g. Vaupel et al.,
1979), such as variance in mortality rates, are treated
explicitly by Service, Pletcher and Curtsinger, giving us our
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first opportunity to examine heterogeneity theory with care,
at least as a theory considered in the abstract.

As a predictive, falsifiable theory, lifelong heterogeneity
has already been evaluated elsewhere (e.g. Khazaeli et al.,
1998; Drapeau et al., 2000; also see Mueller et al., 2000;
Service, 2000b; Arking and Giroux, 2001; Drapeau, 2002).
Khazaeli et al. found that populations of fruitflies from
highly controlled larval environments that should produce
adults with reduced life-long heterogeneity, showed pla-
teaus as frequently as populations lacking these environ-
mental controls. Drapeau et al. (2000) found that genetically
robust populations did not experience increases in the age of
onset of plateaus as predicted from basic theory. In this
article we expand our previous theoretical and experimental
work with a more detailed examination of the statistical
properties of the heterogeneity models and some exper-
imental tests that follow from these statistical properties.

1.2. Variance in mortality rates

Variances in estimated mortality rates are important for
several reasons. We are not going to know the component
terms of the heterogeneity model, that is the rates of ageing
of individuals, so we have to study its properties indirectly,

using variances inter alia. If particular patterns of variation
are unique to heterogeneity models they could serve as a
means of testing this theory.

Here we dissect the variability that arises in a standard
cohort mortality assay. We do this because most exper-
imental evidence testing heterogeneity models comes from
large cohorts followed throughout adult life. This design is
also used in computer simulations that generate mortality
patterns under varied conditions.

For instance, if we start with a genetically variable
population (Fig. 1), it is possible that mortality rates will vary
due to genetic variation that affects the values of A and « of
the Gompertz equation. Even if we select a single genotype
and make many copies of it, mortality rates in this genetically
homogeneous cohort will vary due to environmental-
developmental factors that affect individuals (Fig. 1). We
call these developmental factors, since it is presumed that
their effects are in place at the time the organism starts to age.
As with genetic variation, this environmental variation may
presumably affect both A and «.

Proponents of heterogeneity theories suggest that this
variation will be present even in controlled laboratory
studies of inbred organisms (Fukui et al., 1996). Conse-
quently, as a practical matter it would be impossible under
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Even in a biologically homogeneous population there will still be
variation in the estimated mortality rates due to binomial sampling

and experimental error (@y).

Fig. 1. Sources of variation in mortality rates. In a population where the underlying dynamics of mortality are governed by the Gompertz equation, variability in
estimated mortality rates may be due to genetic variation, environmental/developmental factors, experimental error, and sampling variation.
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this theory to have an entire population that aged according
to a Gompertz model with one set of A and « parameters.
But certainly on a computer we can create such a population
to trace the other sources of variation in estimated mortality
rates, as we have illustrated in Fig. 1.

Suppose we have N, individuals that age according to a
Gompertz equation with one set of parameters. At various
time intervals f;, f», ..., t; the number of survivors
Ny, Ny,s ..., Ny,) are recorded and this information is used
to estimate the mean mortality rates fi(z;) (Fig. 1). The
observed number of deaths in any time interval in a real
experiment will always be subject to some level of
experimental error (¢, @;,,..., ¢;,) that may increase or
decrease the mortality rate from its expected Gompertz
value. In Drosophila experiments, for instance, adults are
transferred to fresh vials at regular intervals and it may be
appropriate to consider the experimental errors independent
identically-distributed random variables with a mean of 1.
However, in experiments where flies are housed in a single
cage over the course of the experiment the quality of that
environment may degrade over time, due to accumulating
wastes on the side of the cage or other factors that change
with time. The experimental error terms in this case may
depend on time, be autocorrelated, and may not have a mean
of 1. Finally, since all experiments rely on finite samples
there will be binomial sampling error at each time interval.
The mortality estimate is the mean of N, observations that
are either O or 1 (1 = dead, O = alive) at each time interval.

Note that the binomial sampling will only hold in the
biologically unrealistic case of no genetic or environmental
variation. In all other (real) cases the population will be a
mixture of binomial distributions corresponding to the
different probabilities of death due to different genotypes
and environmental-developmental types. The properties of
these mixed distributions can depart substantially from the
binomial. For instance consider a population with mixed
binomial distribution (sometimes called a Lexian distri-
bution) with a mean probability of success equal to p, and a
variance of p values equal to 6. If we take a sample of size
N, the number of successes is expected to be Np, as we
would expect from the standard binomial, but the variance
will equal Np(1 — p)+ N(N — 1)#* (Johnson and Kotz,
1969, p. 78). Thus, the variance is substantially inflated over
the binomial variance unless the variance of p-values, 02, is
quite small. Thus, attempts to tease apart different
components of variance in a genetic analysis of mortality
rates should not assume binomial sampling (cf.Shaw et al.,
1999).

1.3. Heterogeneity and variation in mortality rates

The best developed model of heterogeneity supposes that
individuals vary in their age-independent mortality par-
ameter (Vaupel et al., 1979). Individuals at the onset of adult
life vary in frailty. We may suppose that frailty is measured
by a random variable z. The probability of death of each

individual is then governed by the Gompertz model with
parameters @, and A’ = zA. Of course as individuals age
they die and the remaining population would have relatively
fewer individuals with very large values of A’. Thus, we
expect the distribution of z to change with age. Let z(x)
represent the random variable z in a population of
individuals aged x time units. Vaupel et al. (1979) showed
that if z has a gamma distribution with parameters A and k
and mortality follows the Gompertz equation then z(x ) has a
gamma distribution with parameters A(x) and k where,

Ax) = A+ Aa” [exp(ax) — 1]. )

In the special case of z with mean 1 and variance o” then the
variance of z(x) is given by

o

Varll = e e explan) = 1117

3)

The variance of u(x) is simply u?(x)Var[z(x)]. It is clear
from Eq. (3) that as the population ages (x increases) the
variance in frailty, Var[z(x )], decreases as one might expect.
However, the variance of u(x) has a factor of u %(x) in front
of it, which is increasing exponentially with age. Conse-
quently Var[u(x)] will generally increase with age.

Service (2000a), Fig. 3b) displays a graph showing the
relationship between Var[In(u(x))] and age. These results
were derived from simulations that included genetic and
environmental variability in both A and «, together with
sampling error. This curve shows a hump that Service
attributes to environmental-developmental heterogeneity,
suggesting that an interesting way to test the heterogeneity
theory would be to look for these humped curves from
replicate measurements of mortality. But, as we will show,
the patterns displayed by Service are largely due to binomial
(or mixed binomial) sampling variation (Fig. 1) and have
little to do with the heterogeneity model.

1.4. Plan of this study

Past work on life-long heterogeneity models has focused
on fitting heterogeneity models to demographic obser-
vations post hoc rather than developing testable predictions
that would enable us to evaluate the validity of heterogen-
eity theory. In this paper we develop testable predictions
based on life long heterogeneity theory and then compare
these predictions with data obtained from large replicated
cohorts of Drosophila melanogaster. We begin by con-
sidering the variance in mortality rates in aging cohorts, and
find that binomial sampling variance dominates the age-
specific pattern. We continue by deriving predictions
concerning the number of deaths that will occur at
extremely late ages, according to the lifelong heterogeneity
model. Actual data from large Drosophila cohorts demon-
strably fail to match these predictions.
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2. Materials and methods

2.1. Computer simulations

We used computer simulations to study the variance in
mortality rates due to several different random factors. In
our computer simulations both A and « varied. The deaths of
individuals in a cohort of 1250 individuals were simulated
following Service (2000a). For each individual two random
variables, z; and z,, were chosen. z; had a lognormal
distribution with a mean of —8.57 and variance of 0.766
while z, was sampled from a gamma distribution with mean
1 and variance of 0.0021. The mortality rates of that
individual were then determined by a Gompertz equation
with A = exp(z;) and a = z,0.

A random time of death for this individual was then
generated by the inverse transform method (Fishman, 1996,
p- 149) as In(1 — aIn(l — U)/A)a, where U is a uniform
random number on (0,1). Gamma random variables were
generated from the GKM1 algorithm of Fishman (1996) and
the RGS algorithm of Best (1983). Lognormal random
variables were generated from the Pascal version of the
function gasdev (Press et al., 1992, p. 289). In simulations
with no genetic variation, simulations for a given cohort size
were repeated 100 times and the variance in In(z(x))
estimated from these 100 values. In the simulation with
genetic variation, we used the same conditions as Service
(2000a), 24 cohorts of 1250 individuals each, repeated a
total of 10 times.

2.2. Fly populations employed for experimental
measurements

All stocks used in these experiments were ultimately
derived from a sample of the Amherst, Massachusetts, Ives
population that was collected in 1975 and cultured at
moderate to large population sizes since (e.g. Ives, 1970).
Individual populations have been subjected to a series of
selection regimes. Each of the four stocks differs in their age
of last reproduction and consists of five outbred replicate
populations (Fig. 2). The four stocks are B;_s5, O;_s,
CO,_s, and ACO,_s. The ACO and B populations have an
early age of last reproduction (9 and 14 days respectively),
the CO populations have an intermediate last age of
reproduction (28 days) and the O populations have a late
last age of reproduction (70 days, see Fig. 2).
These populations have each been maintained for more
than 100 generations at effective population sizes > 1000.
Together, these populations define a spectrum of selection
on the age of reproduction, and thus a spectrum of patterns
for the age-specific force of natural selection. It is probably
the case that natural populations are more variable than lab
populations and thus could in principle generate more life-
long heterogeneity. However, since mortality plateaus
are seen in genetically homogeneous lab populations,

ACO samples taken for experiments

A

2000
A

1990 @)

YEAR

0 14 28 42 56 70
Last age of reproduction,
in days of adult life

Fig. 2. The derivation of Drosophila stocks used in this experiment. Lines
indicate the source population of each line and how the age of reproduction
has changed over time.

the populations and environments used here should be
sufficient to test predictions of heterogeneity models.

We also measured mortality in all possible hybrid
populations of the five B-populations. Every pair-wise
combination of the cross B; X B; (both i and j varying from 1
to 5) was performed and non-hybrid cross progeny were
handled in the same manner as hybrid cross progeny.

Rearing was parallel for two generations prior to assay.
Densities were standardized among fly cultures. All cohorts
were assayed for mortality by complete census of deaths
every other day, similar to the mortality assays described
above. Sample sizes were approximately 880 per cohort per
sex, with a grand total of 43,937 flies.

2.3. Collection of fly mortality-rate data

The protocol used here closely matches that of our earlier
study (Drapeau et al., 2000). For each replicate population,
at least 80 8-dram glass banana-agar-corn syrup food vials
each containing 60 = 5 eggs were prepared. On the ninth
and tenth days after the egg collection (but within a 24-hour
period), all eclosed adult flies were sexed and placed into
new food vials in groups of 24 (12:12 male:female) which
would be used to start the mortality assay.

Adult survival was determined and living flies were
transferred to new vials with fresh food every other day.
Any flies that were living but irretrievably stuck to a part of
the vial were scored as dead two days later. When necessary,
flies within replicates were recombined among handling
vials in order to maintain a density of approximately 20
flies/vial, to rule out any possible density effects on
mortality rates. This procedure resulted in adult densities
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varying between 12 and 24. For a culture that can support
a carrying capacity of nearly 300 adults this is a very small
range of adult densities, a range that is expected to have
negligible effects on mortality rates (cf. Nusbaum et al.,
1993; Carey et. al., 1993, 1995; Graves and Mueller, 1993,
1995; Curtsinger, 1995a,b; Khazaeli et al., 1995,1996).
Survival assays were continued until every fly was dead. We
used high cohort sizes (at least 1000 individuals per
replicate) in order to reduce sampling variance in our
estimations of mortality rates (Pletcher, 1999; Promislow
et al., 1999) (see Table 3 for sample sizes).

More detail on the mortality patterns in these
populations, and analysis with respect to evolutionary
theories of late-life mortality (Mueller and Rose, 1996;
Rose and Mueller, 2000), are presented elsewhere (Rose
et al., 2002).

3. Results

3.1. Age-specific variance in B and O-populations

Previous work has documented large differences between
the B and O populations for «, so we focus attention on
those populations here. If there were zero deaths in any time
interval we set the mortality rate to 1 over the number of
survivors at that age class. We followed this procedure in
the computer simulations in the next section also. Since the
patterns of age-specific variance were very similar between
sex and populations within a selection treatment (B vs. O)
we have averaged the variance over sexes and similar
populations. We also only estimated variance at ages where
we had survivors across all populations. This reduced our
ability to see the variance patterns at advanced ages. Since a
whole population is used to estimate a single mortality rate
the variances are among population means. This is
important to keep in mind, since we will derive theoretical
variances between individuals later.

In Fig. 3 we see that the B-populations show a peak in
variance at very young ages. The O-populations, which have
a much lower value of « than the B-populations, show a
corresponding increase in the age of the first peak for
mortality variance (Fig. 3). We also see a rise in variance
late in life for the B-populations. Between these peaks, the
variance is relatively constant. Likewise the late rise in
variance in the O-populations occurs at a more advanced
age, but the variance remains relatively flat at intermediate
ages.

The general trend from both the B and O-populations is a
peak in variance at an early age and at a very late age, with
relatively constant variance at the intermediate ages. The
difference between the B and O-populations is that the early
and late peak start at younger ages in the B-populations
compared to the O-populations.

35
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Fig. 3. The variance of the natural log of mortality as a function of age. Both
sexes and 10 populations were used to estimate the variance in the O-
populations. Both sexes and 25 populations were used to estimate the
variance for the B and B-hybrid populations. The solid lines near the x-axis
are the predicted levels of variation from the heterogeneity-in-A model.
These were calculated from Eq. (4) and individual estimates of the model
parameters given in Table 1.

3.2. Results of analytical and simulation work

We now develop some analytical results for the Vaupel
et al. (1979) model that allows heterogeneity-in-A, in order
to determine the expected patterns in age-specific variance
for this model. It is fairly easy to show that Var[ln
(u(x))] = Var[ln(z(x))]. This variance refers to the variance
between individuals within a population. If we computed
the variance between mean mortalities in populations each
of size N, then this variance would be equal to,
Var[ln(u(x))]N_l. We now build on Vaupel et al.’s work
to derive the density function of the log transformation of
the random variable z(x). If we simplify the notation, our
problem is to determine the density function of the random
variable y = In(z). This can be accomplished by recalling
that the relationship between the density function of y

(fy(y)) and z (fAz)) is,

d
fr) = 7exp(y)

il ZGH L)

(Mood et al., 1974, p. 200). In particular if z has a gamma
distribution with parameters A and k then the density
function of In(z) is,

Ak(ey)ke—/\e"
Itk)
We can use Eq. (4) to estimate E[ln(z(x))] and

Var[In(z(x))]-and hence the Var[In(u(x))]-by letting

1 n Alexp(ax) — 1]

o a

and k= 1/0*. If we assume mortality rates obey the
Gompertz model with heterogeneity in A, we can use the

observed patterns of mortality in the B and O populations to
estimate the parameters of this model. We have used

“4)

)\:
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estimates of A, «, and o” for each B and O population (see
Section 3.4 for details of the estimation procedure) to
numerically estimate the variance in mean log mortalities
due to variation in A alone. Before describing these results
we give details of these numerical methods. Since the
gamma function in Eq. (4) can get quite large, we first
computed the log of the density function before placing that
result in an exponential function to get Eq. (4). We used
Romberg integration (the QROMB procedure described in
Press et al., 1992, p. 140) to numerically integrate the
density function. Polynomial interpolation with 10 ten
points was used in this implementation. This increased the
accuracy noticeably over five interpolating points. The
allowable error estimate for this procedure was set to 10~°.

The first result we obtained is that in an infinite
population the variance between individuals for the natural
log of mortality rates is constant with age (Fig. 4). It is clear
from Eq. (3) that the Var[z(x)] goes to zero with increasing
age. This is due to the scale of z, which must be a positive
number. At advanced ages the only survivors have very
small values of z and thus the numerical value of the
variance gets very small. However, on a log scale there is no
such change in variance as can be seen from the example in
Fig. 4. This result appears to contradict Pletcher and
Curtsinger (2000) who suggest that this variance will
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Fig. 4. The distribution of In(z(x)) at two different ages in the B1 male

population. At ten days the mean values of z is about 1 while at 80 days it is
3.5 % 10~%. At both ages the variance is the same, 1.86.

decrease with age (see their Fig. 1). Pletcher and Curtsinger
did not derive the distribution or density function of their
randomly varying mortality rates. Rather they relied on a
Taylor series approximation of variance derived from the
population mean mortality. Their differentiation of this
equation was with respect to only one source of variation,
the genetic variation, but not the environmental variation.

We took our numerical estimates of variance and divided
by the total number of individuals alive at each age, in each
population to get an estimate of the variance in mean
mortality. We then compared these theoretical results to the
observed variance in the B and O populations. In Fig. 3 we
have illustrated the theoretical variance with solid lines.
Heterogeneity in A will at best make a very small
contribution to the total variation except possibly at the
oldest ages where only a few individuals are still alive. In
Fig. 3 the solid curve for the B-populations starts to rise at
age 40 days. In the O-populations the variance is very small
(on the x-axis) at essentially all ages shown. We next used
computer simulations to study the variance of In(x(x)) when
the o parameter is also varied.

3.3. Magnitude of the different sources of variation

At very young ages, there are often no deaths between
consecutive age classes using the values of A and « provided
by Service. Service (2000a) followed the practice of setting
these zero values to 1 divided by the number of adults at the
start of the time interval. Examination of Fig. 3a in Service
(2000a) reveals many values of log mortality at a boundary
of -3.1, which corresponds to log(1/1250). The consequence
of this type of truncated distribution is an apparent reduction
in variance. Our first simulation (Fig. 5a) shows the variance
in log mortality rates in a population with no variation in A
and «a. Thus, we are looking at sampling variance only. The
variance peaks at about 10—15 days. The low variances
before this peak correspond to the days when many
populations appear not to vary since they all have zero
observed deaths.

Our next two simulations show the effects of sampling
variance plus environmental-developmental variation in A
(Fig. 5b) and environmental variation in « (Fig. 5c). The
most important conclusion is that the broad pattern is
dominated by sampling variation. There is very little effect
of within-population variation in A and «. This is in line
with the results from the previous section. This conclusion is
emphasized in Fig. 5d, which shows the results when three
sources of variation are considered -sampling variation,
variation in A, and variation in a- compared to just sampling
variation (from Fig. 5a).

In each of the simulations shown in Fig. Sa—d there is a
rapid decline in variance after the first peak and then a
second peak at day 45-50. Let the estimated mortality
rate at one of the young ages be p, then Np will have a
mixed binomial distribution (assuming N individuals alive at
the start of the time interval). Var[In(p )] is approximately
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Fig. 5. The variance of In[mortality rates] between replicate populations as a function of age. The values used in all these simulations were: A = 0.00019,
Var[In(A )] = 0.766, a = 0.193, Var[a] = 0.0021. Mortality rates were determined from a Gompertz equation with either (a) only sampling variation, (b)
sampling variation and variation in the A parameter of the Gompertz, (c) sampling variation and variation in « of the Gompertz, (d) sampling variation and
variation in both A and « of the Gompertz, (e) the same as (d) except the high lines are one standard deviation greater than (d) and the low lines are one standard
deviation smaller than (d), (e) average variation over 24 genetically different lines when within population variation is like (d).

p NVar(p)=(1—pp 'N '+ N - DN '¢Fp 2 =d'+
6*p~2, when 1 — p = 1 and d is the number of deaths in the
time interval. Since d increases rapidly from very young
ages (5—15 days) into the middle ages (20—30 days), the
variance declines rapidly in this age range. After this rapid
decline in variance during ages 30—40, there are periods of
relatively constant variance as we might expect from the
analytic results derived earlier. The variance starts to
increase again at later ages as the total number of survivors
becomes low and thus the sampling variation increases, so
when p = 0.5, Var[In(p)] = N~ '#*1/4 which grows quickly
at small values of N.

We next consider the effects of genetic variation. Service
(2000a) allowed the mean values of A and « to vary between
genetically different lines. In Fig. Se we show the results from
Fig. 5d (dashed line) along with the results after making the
mean value of A and « one standard deviation smaller and one
standard deviation larger than the means used in the previous
simulations. Between-line genetic variation shifts the peaks
tothe left or right but maintains the same general pattern thatis
due to sampling variation. In fact it is the late life peak that is
shifted most by the between-line genetic variation. In Fig. 5f
we have reproduced the simulations of Service by sampling
24 computer-generated genetically variable lines. The results
prior to day 40 closely resemble Service’s results. Service did

not see the variance peaks late in life due to additional
constraints on his simulations. Service (2000a) required that
at least 10 individuals be alive at the start of each age class to
estimate mortality. Additionally, Service computed the
between-line variation only at ages where all 24 lines had
survivors, which effectively eliminates the older age classes
from his analysis. Our analysis suggests that variation
between individuals within populations for either A or «
does not lead to substantial changes in the variance of
In(mortality) with age at least for the sample sizes and
parameters values used here. The observed patterns of Service
(2000a) are largely a consequence of sampling variation in
estimated mortality rates or the effects of artificially truncated
distributions on the estimates of variance.

We conclude from these analyses that, except for
unrealistically large populations, observed laboratory pat-
terns of age-specific variance in mortality rates will be
dominated by sampling variance. There is little hope of
detecting patterns that arise from different demographic
heterogeneity models that may be present in infinite
populations (Pletcher and Curtsinger, 2000), given the
degree of replication in most laboratory experiments.

These predictions are consistent with observed patterns
in the B and O-populations (Fig. 3). Both populations show
the variance peaks at early and late life predicted from our
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simulations. Since the value of « in the O-populations is
much less than in the B-populations, our simulations predict
that the peaks in the O-populations should be displaced
towards older ages, which they are.

3.4. Tests of the life-long heterogeneity models using
survival patterns

3.4.1. The heterogenity-in-A model

When there is variability in the A parameter of the
Gompertz equation, Vaupel et al. (1979) have derived the
average mortality at age-x as,

Aexp(ax)
1 + 6?Aa exp(ax) — 1]°

fax) = (&)
This model is sometimes called the logistic model
(Promislow et al., 1996). Two observations point to
environmentally generated variation in A as a reasonable
form of the heterogeneity model. First, populations that are
highly inbred, and therefore likely to have little genetic
variation, show plateaus (Fukui et al., 1993). Secondly,
several environmental perturbations that have demonstrable
effects on longevity only seem to affect the age-independent
parameter of the Gompertz (Nusbaum et al., 1996; Joshi
et al., 1996).

As a test of the lifelong heterogeneity theory, we
estimated the parameters of Eq. (5) in ten populations.
Mortality data from these ten populations were collected at
the same time using the same experimental protocol.
Accordingly we would expect levels of environmental
variation to be identical in each population. The ten
populations tested consist of five populations called B’s
and five called O’s described above. All ten populations
were originally derived from the same source population but
have been subject to different regimes of age-specific
selection (Rose, 1984). There is now substantial genetic
differentiation between these populations. Nusbaum et al.
(1996) showed that there were no significant differences
between the B and O populations for A of the Gompertz
equation but that there were significant differences for a.
We estimated the parameters of the logistic model, Eq. (5),
A, a, and o° using maximum likelihood techniques
described in Mueller et al. (1995), treating Eq. (5) as a
density function (Table 1). Of course fitting this model to
our data doesn’t show that the model is valid. It merely
provides us with an estimate of the model parameters under
the assumption that the model is valid. Fitting the mortality
data from large cohorts reveals significant differences in o”
between the B and O populations (two-way ANOVA,
p = 0.00084, see Table 2).

These results seem difficult to reconcile with a theory
based on environmental heterogeneity in A. One might
argue that there is also genetic variability in A and that there
is substantially more variation in the B populations than in
the O’s. This argument is difficult to accept since
the selection that has taken place has apparently not affected

Table 1

The estimated parameters of the logistic model for five B and five O
populations. The estimates were obtained by the maximum likelihood
technique without approximation as described in Mueller et al. (1995)

Population Sex A @ o
Bl Males 0.00183 0.268 1.09
B2 0.00531 0.185 0.524
B3 0.00178 0.298 1.06
B4 0.00140 0.272 1.11
B5 0.000759 0.245 1.10
Ol 0.000660 0.0984 0.813
02 0.000887 0.0924 0.469
03 0.00105 0.0841 0.669
04 0.00124 0.0674 0.335
05 0.000833 0.07997 0.607
B1 Females 0.00134 0.325 2.02
B2 0.00569 0.172 0.905
B3 0.00195 0.290 1.82
B4 0.00673 0.166 0.972
B5 0.00243 0.244 1.50
Ol 0.00141 0.0822 0.586
02 0.00293 0.0686 0.299
03 0.00277 0.0692 0.364
04 0.00296 0.0657 0.497
05 0.00181 0.0750 0.532

the mean value of A and the effective population sizes in the
two populations is roughly equal. Thus, we don’t expect to
have lost more variation in the O populations due to direct
selection on A or by loss from genetic drift. If anything, the
B populations have undergone a larger number of
generations since splitting from the O’s and might be
expected to have less variation that the O’s.

In studies with Drosophila, several environmental
variables are known to affect longevity and presumably
mortality rates. These include mating status (Maynard
Smith, 1958), nutritional status (Chapman and Partridge,
1996; Chippindale et al., 1993), and presence of urea in the
adult food (Joshi et al., 1996). Estimates of Gompertz
parameters for the experiments varying levels of food and
urea have shown that only the A parameter of the Gompertz
is affected and this presumably accounts for the differences
in mortality between cohorts receiving different food levels
(Nusbaum et al, 1996).

From the estimates of ¢” in Table 1 we can ask if the
levels of variation in A’(= Az) required to fit the datasets are
reasonable. If we focus on the B-males, as an example,

Table 2
The analysis of variance for o2 obtained from the heterogeneity-in-A model
(Table 1)

Source df. Sum of squares Mean square F p
Population 1 158 1.58 16.8  0.00084
Sex 1 0.031 0.031 033 057
Sex X population 1 0.163 0.163 1.73 0.21
Error 16 1.51 0.0941
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Fig. 6. The shaded portion shows the range that 95% of the z values would
fall in for the average B-male population. This also represents the relative
range for the different A’A’-values. The value of A’ for B-males fed ad lib
food is arbitrarily put at one then the relative reduction in A’ due to dietary
restriction (DR) is shown on the figure.

the average variance of z (0'2) is 0.976 (Table 1). Since z has
a gamma distribution with a mean of 1 and a variance of
0.976, 95% of the values of z would be between 0.023 and
3.73 (Fig. 6, shaded area). Thus, the largest and the smallest
value of A’ differ by a factor of 162. We need to recall that
this large level of variation is mostly environmental and
arises in experimental populations where all efforts have
been made to make the environment as constant as possible.
This type of variation also results in very different age-
specific mortality rates motivating our earlier claim that the
observed number of deaths has a Lexian distribution. For
instance, B; males produce a 95% confidence interval on z
of (0.017,3.48). This means that the 95% confidence interval
on probabilities of mortality between day 10 and day 11 is
(0.00052,0.101).

When food levels are purposely changed from ad lib to
low levels (DR) in these same populations of B-males, the
mean value of the A-parameter changes by only a small
fraction of the variation that is supposedly present in these
populations (Fig. 6). The heterogeneity in A theory requires
that subtle environmental forces, that can’t be controlled
even in the laboratory, produce variation in the age-
independent Gompertz parameter that is 80 times greater
than the mean variation that is produced by brute force
intervention in diet.

3.4.2. The heterogeneity-in-a model

We call the second heterogeneity model ‘heterogeneity-
in-a’. In this model the age-dependent parameter, «, is a
random variable equal to {&. The random variable, £, has a
gamma distribution with a mean of one and variance equal
to k~'. The mean instantaneous mortality rate for
individuals aged-x under the heterogeneity-in-a model is

(Pletcher and Curtsinger, 2000),

o r" Azk_lexp(o?zx — ¢(x,2))dz
u(x) =
0

= (6)
L 2 exp(— d(x, 2))dz

where ¢(x,z) = kz +A(diz)™! [exp(dizx — 1)]. The expression
for ¢(x,z) given here corrects a typographical error in
Pletcher and Curtsinger (2000).

Using Eq. (6) we can get estimates of the parameters of
this model, A, & and k&, using maximum likelihood
techniques, as we did for the heterogeneity-in-A model.
These estimates reveal much smaller variances for the
gamma random variable, {. For the O-males the average
variance that is observed is 0.037. The interval 0.66 to 1.42
includes 95% of the values of ¢, roughly a two fold
difference between the smallest and largest. Natural
selection for late-life reproduction can lead to genetic
changes in populations that affect the age-specific parameter
of ageing. Thus, the value of & in the B-males is roughly
twice as large as O-males (0.21 vs. 0.081) and females also
show a two-fold difference (0.19 vs. 0.067).

This heterogeneity-in-« model assumes that a small
portion of the population will have very small values of «
and will be very long lived. One possible sign that this
model does not work well is that it requires very long lived
individuals due to the assumption of heterogeneity in . An
indication of possible problems is revealed in Service
(2000a). In his simulations, when « was varied he generated
populations with average longevities of 50 days, which is
reasonable for Drosophila, but simulated maximum life-
spans of 365 days, which are unknown for this species.

To study this further, we have used the maximum
likelihood estimates of A, &, and k to simulate deaths in
large cohorts for the heterogeneity in @ model. We have
averaged the results of these simulations across the five
replicate populations within a selection treatment for each
sex (solid lines in Fig. 7). Along with these predictions the
actual probabilities of living beyond a specific age are
shown in Fig. 7 (circles). While the model does a good job at
young ages we see that at advanced ages, especially in the
longer lived lines, the model predicts more survivors than
we typically see.

We have tested this late-survivor prediction of the
heterogeneity models with observations from the B, O, CO,
and ACO populations. Since male and female data are
analyzed separately there are a total 40 populations
analyzed (2 sexesXx4 selection regimesX5 replicates). With
the estimated values of A, &, and k for each of the 40
populations we simulated deaths of 100,000 individuals
following the procedures used in Fig. 5. For each population
the frequency of individuals that lived longer than some
critical age were determined.

We also determined from our survival data the observed
numbers surviving beyond these critical days. The results
from the five replicates were pooled and the observed
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Fig. 7. The probability of surviving beyond a certain age in four different populations and both sexes. The probability scales are not identical for all figures. The
solid circles are the observed probabilities in each group while the solid lines are the values predicted by the heterogeneity-in-a model. Since the model
predictions are based on simulated, finite numbers of deaths, they do not always produce smooth curves especially at the advanced ages.

numbers were compared to the expected number from the
heterogeneity-in-a theory. To determine if the expected
frequencies were too large, we determined the 5% and 1%
limits to our observed numbers from binomial sampling
theory (Table 3). While we stated earlier that real
populations are likely to be mixed binomial samples we
believe the simple binomial distribution will be adequate
here. First of all there are few surviving adults in the real
population so the number of different p-values is likely to be
small. Secondly, these extremely long lived individuals are
all more likely to have similar probabilities of survival
because deaths have reduced the variation of p (at least on a
linear scale), making 6” very small.

These results show that for five out of eight comparisons
the heterogeneity-in-a model predicts an excessive number
of very old individuals. This suggests that some funda-
mental feature of the heterogeneity-in-a model is flawed.

4. Discussion

In biology, one of our most important organizing
principles is adaptive evolution by natural selection. Natural
selection rests on genetic variation, differential survival or
reproduction, and transmission of genetic information from
parent to offspring. Many profound ‘why’ questions in
biology can be answered with simple principles of
evolutionary biology, including questions in the fields of
aging and demography. Unlike evolutionary theories
of demography, the lifelong heterogeneity theories do not
rest upon such well-established principles of biology. The
lack of a mechanistic basis for these heterogeneity theories
also makes it difficult to design critical experiments to test
heterogeneity theories. The only support for these theories
comes from their ability to mimic the post hoc patterns of
mortality seen in biological populations. This is a weak form



L.D. Mueller et al. / Experimental Gerontology 38 (2003) 373-386 383

Table 3

Number of flies with longevities greater than the critical age. The observed numbers for each population are polled from the five replicates. The confidence
levels are based on the observed numbers and the expectations from binomial sampling theory. The expected numbers for the heterogeneity-in-a model are

based on the separate maximum likelihood estimates for each sex and population

Population Critical age (days) Sex Sample size Observed number > critical age Expected number
ACO 60 Males 12,444 8 9

CcO 60 Males 11,987 1346 1613%*

(0] 100 Males 8854 23 53.1%*

B 40 Males 4867 49 41.9

ACO 60 Females 14,084 1 3.8

CO 60 Females 12,361 739 804+

(0] 100 Females 10,037 2 28.6%*

B 40 Females 5,143 99 138%*

*Probability of observed numbers this large or greater <0.05; **probability of observed numbers this large or greater <0.01.

of support for models in biology since there are often many
post hoc models with these properties (Mueller and Joshi,
2000, Chapter 1).

4.1. The heterogeneity models

Nevertheless, in this paper we have shown that the
heterogeneity theories are demonstrably flawed. Most
importantly, the limited predictions that can be derived
from them are not corroborated, as summarized in Table 4.
The heterogeneity-in-a theory predicts too many long-lived
individuals. This shortcoming is even more telling when we
recall that populations that have too few long-lived
individuals are the same ones used to estimate the
parameters of these post hoc heterogeneity-in-a models.
The heterogeneity in A models require extraordinarily high
levels of between-individual variation. The known biologi-
cal mechanisms of generating differences between individ-
uals for the A parameter only account for a small fraction of
the variation needed by this model.

An advantage of models that have no mechanistic basis
for their equations is that a failure to fit a particular body of
data is only an invitation to add higher-order terms, or new

Table 4

mathematical functions, to the theory. For example, the
failure of the heterogeneity theory to predict a deficiency in
extreme late-life deaths could be met by the use of an age-
dependent mortality function that produces a steeper
acceleration in the mortality rate at very late ages. In the
history of science, such stratagems are well known (Popper,
1968), one use of them being the Ptolemaic epicycles added
to save the geocentric model for the astronomical universe.
Heterogeneity theory may continue to survive, but its
practitioners will probably resort to progressively more
elaborate model tinkering over the course of repeated
empirical failures.

4.2. Evolutionary models

We have proposed an evolutionary model to explain
mortality plateaus (Mueller and Rose, 1959), hereafter
referred to as the Mueller—Rose theory. The Mueller—Rose
theory relies on the joint forces of natural selection and
random genetic drift. It is postulated that throughout most of
the adult life span natural selection molds the patterns of
adult mortality. Since the force of natural selection declines
with age (Charlesworth, 1980) mortality rates increase

A summary of experimental tests of models of heterogeneity and natural selection. Results that are inconsistent with these predictions are called ‘negative’ and
those consistent with the predictions are ‘positive’

Theory Prediction Result Reference

Heterogeneity Reduction of early life variability should Negative Khazaeli et al., 1998
reduce appearance of plateaus

Heterogeneity Selection to resist stress should affect Drapeau et al., Drapeau et al., 2000;
characteristics of plateau 2000 Negative Mueller et al., 2000

Heterogeneity Number of survivors in extreme age-classes Negative This paper

Heterogeneity Similar variance in different populations raised Negative This paper
in the same environment

Evolution Decrease in age of onset of Positive Rose, et al., 2002
plateau with early life selection

Evolution Increase in age of onset of Positive Rose, et al., 2002

plateau with late life selection
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exponentially with age due to genetic mechanisms like
mutation accumulation and antagonistic pleiotropy. The
theory further supposes that at some advanced age selection
becomes so weak that random genetic drift becomes the
more important evolutionary force. At that age and at later
ages mortality remains high but shows no trend, since all
ages are equivalent from the perspective of selection and
drift. Quantitative support for this theory was derived from
computer simulations.

Several authors have criticized the Mueller—Rose theory.
In addition, there are now several alternative evolutionary
models that have been used to analyze mortality plateaus.
We provide a brief review of these theories and critiques
below.

4.2.1. The Mueller—Rose theory fails to identify the true
stationary states

Wachter (1999) has criticized the Mueller—Rose theory
suggesting that the plateaus observed in our computer
simulations were simply transient states of a stochastic
process. The true stationary states, according to Wachter,
show exponential increases in mortality with age. It should
be noted that the transient plateaus that observed by
Mueller—Rose exist for the equivalent of millions of
generations. It is also not clear from Wachter’s work if
the stationary states he identifies could be reached in a
biologically meaningful period of time. In fact his only
justification for interest in the stationary states rather than
long lived transient states is that a theory that relies on
transient states is ‘unappealing’.

There is no reason to suppose that any environment
would remain constant for millions of generations. As
environments change, gains made in age-specific survival
would be lost and the process of adaptation would begin
anew, preventing them from reaching a stationary state.
Many scientists have noted the importance of environmental
heterogeneity in short and long term evolution (for instance
see Gillespie, 1991, for a detailed treatment of this type of
theory in molecular evolution).

Wachter’s analysis only considers the special case of
mutations that affect one age-class at a time, presumably
because more realistic models were mathematically intract-
able. The Mueller—Rose theory concentrated on mutations
that affect broad windows of contiguous age-classes.
Charlesworth (2001) has recently shown that mutation
accumulation models can lead to mortality plateaus,
consistent with our findings. However, Charlesworth points
out that pleiotropy is needed to generate these plateaus. In
particular he assumed that mutations have both an age-
specific effect and a pleiotropic non-age-specific effect. The
non-age-specific effect is important for generating these
plateaus. Charlesworth’s conclusions suggest that Wach-
ter’s results may not hold for Mueller—Rose models with
broad pleiotropic effects.

4.2.2. Alternative models use entropy as a measure of fitness
rather than r

Demetrius (2001) developed an evolutionary model to
explain the existence of mortality plateaus that uses a
demographic statistic called entropy to predict the outcome
of evolution, as opposed to the intrinsic rate of increase used
in the Mueller—Rose and Charlesworth theories. Demetrius
shows that the partial derivative of entropy with respect to
age-specific survival is positive late in life but negative in
mid-life, if population size is regulated. He suggests,
without proof, that the age-specific pattern of entropy-
sensitivity predicts that late life mortality should plateau.
However, his results are also consistent with actual declines
in late life mortality. The Mueller—Rose theory does not
predict declines in late-life mortality. Thus, distinguishing
between the utility of these contrasting evolutionary
theories rests on empirical patterns of late-life mortality.

One can find occasional reports in the literature of
unreplicated populations that show declines in mortality late
in life (e.g. Carey et al., 1992). However, the broad pattern
that has emerged by considering many species and
replicates of similar populations is that mortality rates
plateau at late life; they do not decline (Rose et al., 2002).
Thus, existing empirical evidence is not consistent with the
theory developed by Demetrius.

4.2.3. The Mueller—Rose theory rests on special
assumptions or artifacts

Pletcher and Curtsinger (1998) suggest that our method
of generating mutants artifactually leads to mortality
plateaus. They assert that without these artifacts, late-life
mortality would go to 100%. They support their arguments
with computer simulations. These simulations assume that
there is no reproduction at the late ages where mortality
rises to 100%. None of the examples used to develop the
Mueller—Rose theory make this assumption. Contrary to
their assertions the alternative methods for generating
mutants described by Pletcher and Curtsinger do result in
mortality plateaus. Finally, Pletcher and Curtsinger derive
theoretical results that suggest that the Mueller—Rose
models will always equilibrate mortalities at intermediate
levels. However, as pointed out by Wachter (1999) and Rose
and Mueller (2000) these derivations rely on several
incorrect assumptions.

4.2.4. Variants of the heterogeneity theories can explain
plateaus

Weitz and Fraser (2001) develop a model that assumes
individual mortality rates are random variables. Thus, an
initially homogeneous population may develop heterogen-
eity since every individual experiences a different combi-
nation of random variation that alters their age-specific
survival. The model assumes there is a linear increase in
instantaneous mortality rates with age, so it assumes, rather
than explains, Gompertz-like kinetics, unlike the evolution-
ary models (Mueller and Rose, 1996; Charlesworth, 2001).
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Their model also assumes that mortality rates are subject to
perturbations from uncorrelated Gaussian noise with a mean
of zero. The functional form of this stochastic model has no
deep biological motivation. Thus, the model’s main merits
are its ability to mimic the behavior of real populations.
More work with this model will be required to determine if
it is an advance over previous heterogeneity models.

As an alternative to heterogeneity models, demographers
and gerontologists could consider using the evolutionary
theory of late life (Rose and Mueller, 2000). This theory
explains late-life mortality rate plateaus using equations
articulated by Hamilton (1966) and Charlesworth (1980),
especially the force of natural selection. There are simple
qualitative predictions that can be derived from this theory
(Mueller and Rose, 1996; Rose and Mueller, 2000;
Charlesworth, 2001), and tested using practicable exper-
iments (cf. Rose et al., 2002). The strongest support for the
evolutionary models comes from their ability to make
predictions that have been corroborated (Rose et al., 2002).
Few experimental tests of the evolutionary theory of late life
have been published to date, and this theory is undoubtedly
in need of improved mathematical definition and analysis.
Nonetheless, at a minimum, it deserves more of the attention
now given to lifelong heterogeneity theories of late life.
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