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Working with
Drosophila melanogaster

Why Drosophila?

All the experiments in this class use the common laboratory fruit fly,
Drosophila melanogaster. There are a number of reasons why we use fruit
flies. The lab fruit fly has been used for research in evolution and genetics
for the last 100 years, so we know a lot about it. The fruit fly is easy to raise
in large numbers and it has a short generation time. The short generation
time makes the fruit fly convenient for studying multi-generation
phenomena, like evolution. As you will see in this laboratory course, useful
genetic mutants of Drosophila and specially created lines are already
available. These genetic variations allow us to do experiments that could
not be done with almost any other organism. As of the first decade of the
21st Century, Drosophila is one of a select group of animals that has had
entire genomes sequenced. This gives us a solid foundation of genomic
information for specific studies of genetics and evolution.

How to Handle Drosophila

The life cycle of Drosophila melanogaster is outlined in the figure on page 5.
Experiments in this laboratory involve the handling of adults only.
Although it is possible to handle eggs and larvae, it is considerably more
difficult than handling the adults.

Because the adults can fly, they need to be knocked out before you count,
sex, or genetically type them. We knock them out using CO anesthesia.
Specific techniques for using CO2 will be demonstrated in the lab, but you
should always remember the following facts about CO». Exposing adults
to excessive amounts or prolonged exposure to COz can kill or severely
incapacitate the adult fly. When flies are immobile on the CO: plates, you
should carefully control the flow of carbon dioxide to keep it at the lowest
level possible. One easy way to determine the lowest possible level of CO>
is to keep turning the CO, down until you see the flies start to wake up. At
that point you have just passed the minimum flow of CO2 needed, and
should slightly increase the gas flow. Flies should not be knocked out for
more than about 10 minutes. Thus only put as many flies on your platform
as you can handle in about 10 minutes, if the flies need to be alive after
anesthesia. You also have to be especially careful with females that are less
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than 8 hours old, because even modest amounts of CO; can sterilize young
females.

Males and females are easily distinguished. Males have a solid black patch
on the tip of their abdomen. A ring of bristles surrounds their genitals.
Females lack the black patch at the tip of the abdomen, and have brown
stripes across the back of their abdomens. In very young adults, less than 6
hours from emergence from the pupa, the pigments in the bodies may be
very light. This makes “sexing” the adults much more difficult. Be careful
in these situations.

The Life Cycle of
Drosophila melanogaster

Eggs 21 hrs at O
25° C

Larvae - 4 days
three instars, duration —
affected by density and temperature

Pupae - 4 days O

Adults- 30-80 days

longevity affected by many factors
including genetics, males and females
show a gradual decline in reproductive
capacity with age.
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Random Genetic Drift

Introduction

Gene, or "allele,” frequencies fluctuate in experimental populations due to
random effects caused by reproduction “choosing” or “sampling” a finite
number of gametes to create the fertilized eggs of the next generation. This
does not happen because of external factors. It is just like the fluctuation in
the amount of money you have when you play poker or blackjack.
Sometimes the cards favor you. Sometimes they favor another player. In
the same way, luck sometimes favor one allele over another. This process
is called “genetic drift.”

Genetic drift is particularly strong when the population size is small. But
on average the effects of drift are not biased. It is just as likely that random
drift will cause a particular allele to increase OR decrease in frequency. We
can’t predict what will happen to anyone allele frequency over a long
period of time, as a result of drift. But we can predict that, over a long
period of time, drift will tend to cause populations that were initially the
same in allele frequency to become different. Quantitatively, genetic drift
causes a smear of allele frequencies.

The best way to see the effect of drift is to monitor allele frequencies in a
large number of populations that are made up of a small number of
individual organisms. Because the effects of drift are not directional, we
expect the average frequency of a particular allele over all the monitored
populations to remain about the same as it was when the experiment
started. But the “variance” of the allele frequency, among replicate
populations, should increase as evolution proceeds. The exact fashion in
which variance is measured will be discussed later, but for now you can
think of the variance as a measure of how much allele frequencies vary
among populations. High variance among populations means that the
allele frequencies of different populations are quite different from each
other. Low variance means that the allele frequencies are quite similar.

For example, if we monitor ten populations for the frequency of allele A at
a locus, then if there is low variance the ten allele frequencies might be:

0.12 0.11 0.13 0.11 0.09 0.10 0.08 0.11 0.12 0.11

Alternatively, if there is high variance, the ten allele frequencies might be
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0.10 0.01 0.34 0.42 0.03 0.22 0.67 0.32 0.12 0.00

Our theoretical prediction is that, if you start with the ten low-variance
allele frequencies, genetic drift for many generations might produce the ten
high-variance allele frequencies. However, this prediction does not allow
us to say exactly which population will evolve to which particular allele
frequency. Our ability to predict what will happen with genetic drift is not
that strong.

The figure below shows the effect of drift on the variance of allele
frequencies over many generations:

uoljoiauab

number of bw™ genes
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The figure above shows the number of bw?> allele at the autosomal brown
locus in 105 populations of D. melanogaster. Each population consisted of 8
males and 8 females.

Next we will make these qualitative generalities quantitative and explicit.

Allele and Genotype Frequencies

Regular Diploid Genetic Loci

Suppose that at a single genetic locus there are two alleles, A1and A2. Ina
diploid population, organisms have two alleles at every locus, so these two
alleles will give three genotypes that we will write as A1A1, A1A2 and A2A».

Suppose we have a sample of N individuals that we can classify as one of
these three genotypes. We will write the numbers for each A1A1, A1A2 and
A2A; genotype as N11, N12 and N2, in order, respectively. If we call the
frequencies of each genotype Pj;, their numerical values will be given by,

N
N.
=y

If we call the frequency of the A1 allele p1 and the frequency of allele A p,
allele frequencies can be calculated from the genotype frequencies as
follows:

_ 1
p =8, +7h0,,

p, =Py +%P12'

This makes sense because a heterozygote only contains half as many copies
of an allele as a homozygote. Notice also that the sum of the two allele
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frequencies is equal to the sum of the genotype frequencies and both of
these sums equal one (1).

Loci Located on X Chromosomes

For alleles that come from loci located on the X chromosomes that
determine sexual gender, the calculation of allele frequencies is different.
Recall that XX gives a human female and XY gives a human male. The
same thing is true in fruit flies. From a sample of N females with just two
alleles at the genetic locus under study, the three X-chromosome
genotypes have counts of N11, N12 and N2 for the individual A1A1, A1A2
and A2A» genotypes, respectively. We could use the equations above to
estimate the allele frequencies among the females from these observed
counts. However, it is possible that the X-chromosome allele frequencies
will be different in males, so we need a different set of equations for them.

If we examine M males, let the numbers of A1 males be M1 and the number
of A> males be M». Since there is only one X chromosome in males, there
is only one copy of an A allele in each male. Then the frequency of the A;
allele in males is given by g1 = M1/ M and the frequency of the A; allele is
1-q1 = g2 = M2/ M.

In our experiments, we will use dominant alleles that give the heterozygote
and one of the homozygotes in the females the same phenotype. For this
reason, it will be much easier to estimate the allele frequencies of genetic
loci located on the X chromosome in the males.

The Wright-Fisher Model

The major goal of our genetic drift experiment will be to observe the effects
of random genetic drift on the mean and the variance of allele frequencies
over several generations.

Basic Concept of the Wright-Fisher Model

Sewall Wright, an American biologist, and Ronald A. Fisher, an English
statistician, independently developed a very simple model that shows how
genetic drift works. We will describe this model in general terms now.

Suppose that we have N diploid individuals in a population. Then there
are a total of 2N alleles at a diploid genetic locus in this population. If we
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assume that these individuals mate by shedding their gametes into a
common pool, like some fish do, then the frequency of gametes that bear a
particular allele from a particular individual is on average just 1/2N .

If the frequency of a particular allele (say the allele is called A) in the
population is given by p, then on average there will be p times 2N gametes
of that allele. But sometimes a heterozygous parent will not generate
gametes that are exactly fifty:fifty, or even, frequencies of the two alleles
that it carries. This is a principle that is used all the time in Mendelian
genetics. If a heterozygous (Aa) parent generates two gametes, half the time
they will be A and a gametes, one quarter of the time they will be two A
gametes, and one quarter of the time they will be two a gametes.

In the same way, chance is involved in the combination of gametes in a
population of size N. Each fertilization event involving two gametes can
have a variety of outcomes: both gametes can have A alleles, both can have
a alleles, or one A and one a allele-bearing gamete can combine. In a
population with both alleles, it is mathematically possible that all offspring
will end up AA homozygotes. Or they could all be aa homozygotes. That
is, genetic drift can accidentally “fix” one allele or the other, even if the
previous parental generation is genetically polymorphic.

In addition to this extreme possibility, the same sort of sampling effect can
cause the allele frequency of a population to rise or fall, even though there
is no “directional” evolutionary mechanism, like selection, acting on the
population.

The mathematics that underlies the Wright-Fisher model is that of
combinatorics. But don’t let this term impress you. You use combinatorics
every time you play a game of chance. Combinatorics tells us that getting
dealt a bridge hand of thirteen cards all of the same “suit” (Hearts, Spades,
Diamonds, or Clubs) is very rare compared to getting a mixture of two or
more suits. Similarly, the changes of being dealt all four Aces and a King
in five-card stud poker is very rare. In the same way, the accidental fixation
of the A allele in one generation is an improbable (but not impossible) event
in a population of ten individuals if there are only ten (out of a maximum
number of 20) copies of the A allele in the parents of the preceding
generation.

Quantitative Predictions of the Wright-Fisher Model

There are several important theoretical results that have been
mathematically derived from the Wright-Fisher model of genetic drift that

Evolution Laboratory Notebook page 10




Spring 2023 Mueller, Rose, Emerson & Long

will be illustrated by our genetic drift experiment. Some of these ideas are
reviewed in chapter 7 of Hartl and Clark, among other textbooks in
population genetics. Here we will give the major theoretical results for the
Wright-Fisher model, results that supply us with predictions for our
experiment.

Suppose that, in a small population with effective population size N, the
initial frequency of an allele is po. At some time in the future, ¢, the frequency
is pt. The Wright-Fisher model predicts the following;:

Let E represent the “expected” or mean value for a variable. Then
the symbol E(p:) stands for the expectation of the random variable p:.
This is similar to the mean of the random variable p:.

E(pt+l):E(pt)7 (la)

In words, this means that genetic drift does not, on average, change the
frequency of an allele.

The variance (“Var”) is a measure of “dispersion” about the mean
value. The greater the variance, the more individual values
deviated from the mean or expected value for a variable. There are
two variances that we can predict when genetic drift occurs.

The first of these variances is the variance in allele frequencies that
arises from a single generation of random sampling of gametes in
the creation of the next generation. Let Var(p:+1 | pr) represent the
variance in allele frequencies at time #+1 given that the allele
frequency was p: at time £. This is the variance of allele frequencies
due to just a single generation of drift, which is given by the
following equation.

pt(l_pt)
Ve R 1b
ar(p,.,|1p,) T (1b)

Notice from this equation that, if N is absolutely huge, there will be
virtually no genetic drift in a single generation, because N appears
in the denominator of the right-hand side of the equation.

The second variance that we are interested in is the accumulated
variance over the entire sequence of generations in which genetic
drift occurred. Let Var(p:) represent the variance of the allele
frequency at time t. It is given quantitatively by the following
equation.
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Var(p,) = pogo[1-(1-3)']. (1c)

Again, notice that if N is very large, the right-hand side of this
equation will be very close to zero, because 1/2N will be close to
zero and the numeral 1 (one) to a very high power is still 1 (one).

Bear in mind that equations 1(a-c) are theoretical predictions from the
Wright-Fisher model. It is possible that the actual mean and variance in
this experiment may be different from these predictions. One goal of this
experiment will be to compare the observed mean and variance in allele
frequencies from our experiment with the expected values from the
Wright-Fisher model.

We will discuss methods of estimating the variance of allele frequencies
from actual population samples next.

Methods
Scoring Genotypes

This experiment uses two alleles at the white (or w) locus, a gene that affects
eye color. The gene white is located on the X chromosome of Drosophila
melanogaster. One allele is referred to as w. Females homozygous for w have
white eyes, males with one copy of w (a condition that is called
“hemizygous”) also have white eyes. The second allele, +, is wild type and
is dominant to w: females heterozygous (w/+) or homozygous (+/+) for the
wild allele have red eyes. Males hemizygous for the + allele also have red
eyes. The frequency of the w allele is most easily estimated by counting
the total number of white males divided by the total number of males.

Population Maintenance

Each group of two students will be responsible for ten populations. Each
population will initially consist of four males (two wild type and two white-
eyed) and four females (two wild type homozygotes and two white-eyed
homozygotes). Thus, the initial frequency of the w-allele is 0.5. These 8
adults will be put into a single 8-dram vial and allowed to lay eggs for 2
days in a 25° C incubator, as shown in the figure. You will have a total of
ten vials, one for each population.
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DRIFT EXPERIMENT: HANDLING OF EACH VIAL IN
EACH GENERATION

2 wild-type males
2 white males
2 wild-type females

- - INITIAL VIAL:
A

-

L

2 white females Remove
adults
Lay eggs for >
# two days Allow eggs
-—% to develop
- B for 12
days

Flies

lay eggs
for 2 days
- CONTINUE
Harvest the THIS CYCLE
first 4 males ,fﬁ FOR 4
and the B GENERATIONS
first 4 females f gl
(regardless of ‘#\
eye color) ‘#‘ﬁ\
and put into

a fresh vial

-

Count the number (
of flies of each
eye color and sex,

including the flies transferred
to a fresh vial to start the next generation

o« E
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After these two days of egg-laying in a 25° C incubator, the adults should
be removed and discarded. The vials for each of your populations must be
labeled with the group’s name and the population number, e.g. 1, 2, ..., 10.
You need to do this because you will be determining the generation-by-
generation trajectory for each population. Return the vials to the 25° C
incubator.

Two weeks later, you will census your 10 populations. One efficient way
to do this is as follows. Take a single vial and knock out all the adults using
COzand place them on a CO; platform. Take a paint brush and make a long
thin line of all the adults. Take the first four males and the first four females
in the line, record their phenotypes and place them into a fresh vial, as
shown in the figure.

Type and record the phenotypes of all remaining adults. The remaining
adults may then be discarded. However, before doing this make sure your
initial sample of eight has recovered from anesthetization. If there are some
flies in the group of eight (that were put in the fresh vial) which do not
recover, replace them with flies of the same type from the rest of the flies
that emerged in that vial.

Compute allele frequencies from all the male data. Recall that you can
estimate the allele frequency from the frequency of the corresponding
hemizygous male genotype. For example, if you have 10 w males and 30 +
males, the frequency of the w allele is 0.25 and the frequency of the + allele
is 0.75. The frequency of the male phenotypes gives the allele frequency in
the current generation for each vial’s population. Record your data in
tabular form, as indicated in the table below:

Drift Experimental Data

Population Genotype/Sex | Generation 1 | Generation 2 | Generation 3

w-male

r-male

w-female

r-female

w-male

r-male

w-female

r-female

w-male

r-male

w-female
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r-female
4 w-male
r-male
w-female
r-female
5 w-male
r-male
w-female
r-female
6 w-male
r-male
w-female
r-female
7 w-male
r-male
w-female
r-female
8 w-male
r-male
w-female
r-female
9 w-male
r-male
w-female
r-female
10 w-male
r-male
w-female
r-female

This procedure will be continued for four generations, for a total of 6 weeks.
At the end of the 6 weeks, the data from all groups will be shared. Each
group will then conduct their own analysis of the data obtained by the
entire class.

Sample Variance

Equation 1c gave the expected variance due to drift. This equation shows
how the population size and the allele frequencies affect the variance that is
generated by drift. At the end of this experiment, you will have data from
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ten populations in the form of allele frequencies for each population at each
generation. Estimating the variance in this sample is different than
computing the theoretical variance expected from drift alone. This is because
actual experimental data almost always differs at least slightly from the
predicted results.

Suppose that in one generation the allele frequencies that you observe in the
ten populations are represented by, 1p, 2p,.., 10p. Then the sample variance, s?
is computed as,

i=10 2

s? = (10171) Z(ip _]_7) ’
i=1
where,

i=10

=L

b= 102;‘p'
i=1

If you have 100 populations then you would replace the 10 in the equation
above with 100.

Questions for Your Lab Report

After the experiment is over you should have the results from the other
groups as well as your own. YOUR PRIMARY ANALYSIS SHOULD BE
THE POOLED DATA SET FROM ALL GROUPS USING THE MALE
DATA TO ESTIMATE ALLELE FREQUENCIES. In answering the
questions below remember the following two point. (i) The theoretical
mean and variances from the Wright Fisher model can be treated as
statistical constants when comparing them to the observed means and
variances. (ii) The observed means and variances are estimates with
uncertainty which can be summarized with confidence intervals.

1. Explain any obvious major differences between your results and the
rest of the class, if any.

2. Since everyone started their populations at the same initial allele
frequency of 0.5, examine the variance in allele frequencies due to a
single generation of drift using this first generation data. Is it what we
would expect from equation 1b? In this experiment, notice that N is
equal to 8. Since the initial allele frequency of both w and + alleles is 0.5,
you have all the information needed to calculate the single generation
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drift variance. Are your actual data close the prediction of equation 1b,
1/64? If not, can you think of reasons why there might be a difference
between the observed variance and the variance predicted by equation
1b? [Hint: is it possible the theoretical prediction is not correct for this
experiment?]

3. What happened to the observed variance in allele frequencies among
over time? Compare the observed variance to the theoretical predictions
of equation 1c, generation-by-generation.

4. What happened to the mean allele frequency over time? Compare to
the theoretical expectation. Were there statistically significant
differences between the observed mean and the expected mean allele
frequencies?

References
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Natural Selection

Introduction

The term “natural selection” refers to the differential net reproduction of
genotypes arising from fitness differences among those genotypes. Those
fitness differences may be expressed at different times in the life cycle. In
this experiment we will examine just one component of fitness, viability.
Viability is the probability of a genotype surviving from egg to adult.

To understand how natural selection acts, consider a generic life-cycle, as
shown in the following figure.

Eggs = Sexually Mature Adults ==———————- Gametes

viability meiotic
drive sexual
selection
Mating
Fertility

Adult survival
and continued
reproduction

Figure. A typical life cycle that reveals the various ways selection can affect the relative
numbers of genotypes that make it to the next generation.

Natural selection is not some cosmic force, orchestrating the evolution of
dinosaurs, flowering plants, or modern mammals, contrary to the writings
of journalists, “popular science writers,” and some wayward
paleontologists. Natural selection is instead about differences among
genotypes in their life-history characteristics. In some environments, at
some times, some genotypes have higher viability, mating success, or
fecundity. What this does is increase the transmission to the next
generation of the alleles that those genotypes possess. That'’s all. There is
nothing cosmic or progressive about this differential transmission. It is
“one foot in front of another.” The process of natural selection has no sense
of history, inertia, or goal. It is a blind mechanism.

By far the best way to understand how natural selection works, and works
mechanically, is to look at the consequences of simple genetic differences in
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life-history for the transmission of these genes. We will do this in the
present laboratory experiment.

Though it is mechanical and immediate, the action of natural selection can
be somewhat complicated. Natural selection can act at several points in this
life cycle. If genotypes vary in their chance of surviving from egg-to-adult
then viability selection can act. This is the type of natural selection that is
most often studied by evolutionary geneticists in the laboratory.

But there are other points at which natural selection can arise. From
Mendel’s laws, we expect that heterozygous adults will produce equal
numbers of gamete carrying each of the two alternative alleles. However,
some alleles may systematically bias the production of gamete types such
that the relative numbers are not 1:1. This process is called meiotic drive, and
it may increase the relative frequency of one allele. This is not the same thing
as accidental departures from 1:1 ratios arising from genetic drift. With
meiotic drive there is a persistent bias in favor of one allele over other
alleles. However, meiotic drive is a rare form of natural selection. In
particular, it is not appropriate to use it as an explanation for every
deviation from 1:1 genetic segregation. The Wright-Fisher model of
accidental genetic sampling effects is more appropriate, almost all the time,
as an explanation of such deviations.

Once the offspring have grown up, they are adults who must then mate to
produce fertile eggs. Males often compete with each other for the
opportunity to mate with females. [More on this in the next section.]
Sometimes females compete for mates, too. In some cases, genetic
differences confer a mating advantage to their carriers and the alleles that
produce these differences may increase due to sexual selection. Females in
turn may differ in the number of offspring they produce due to their
genotype, and this will create the opportunity for fertility selection. If the
adults are capable of reproducing more than once, then age-specific selection
may act if there are differences in survival or fertility at later ages. This is
an important topic in this laboratory course.

Methods

Our natural selection experiment will use genotypes at the white locus. By
doing specific crosses, we can use our knowledge of Mendelian genetics to
determine the expected frequencies of genotypes among the zygotes. If the
frequencies of adults systematically and consistently depart from these
expected zygote frequencies, we can infer that this is due to relative
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viability differences at loci for which meiotic drive does not arise. [This is
the case for the white locus.]

You will be provided with virgin females that are heterozygous at the w
locus and w males. In each vial place one female and two males. [We use
an extra male to forestall the problem of males who are either unable to
perform sexually or are not found to be appropriate mates by females.
Much of the time, however, either male with suffice. It is even possible that
the female will mate with both males.] Let this threesome mate and lay eggs
for two days and then remove the adult flies. The female will almost always
produce fertilized eggs that will develop into larvae.

Two weeks later, determine the phenotypes of all male and female progeny
in the vials in which eggs were laid.

The initial cross is shown below, with the expected X-chromosome
genotypes of the male and female offspring.
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NATURAL SELECTION EXPERIMENT:

X+ Xw

S
wy |*
A

egq laying for

: two days

Phenotype Genotype

- XY

4 XuY
gﬁ\ X+ Xw
= A

Xw Xw

>

Allow mating and

Remove the
adults from the
vial

Allow 12

days for the
eggs to become
adults

> - Harvest the
- adults from

o the rearing
. vial and
5 AR count the
s o numbers in

# each

-

phenotypic
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Female parent Male parent
w/+ x w
Progeny
Female offspring Male offspring

w/w w/+ w

0.5 0.5 relative 0.5 0.5
frequencies

White-eye wild phenotypes  white-eye wild

Relative fithess estimates

In any single vial, the raw data from these experiments will be the numbers
of white-eyed males and white-eyed females and the number of wild-type
(red-eyed phenotype) males and females. Let these numbers be given by
Nuwm, Nuwf, N+m, and N+, respectively. Let the relative fitness of the white
males and females be equal to 1. Then, the relative fitness of the wild-type
males (Ws,n) and the heterozygous females (W+/wy) is given by,

N+m
W*—,m - N 4
=
+w,f T N ’

wf

From this experiment we have not been able to estimate the fitness of
females homozygous for the wild type allele, W4+ s. This is a relative fitness,
because we have taken the viability of the flies with white eyes as the point
of reference, and we are ignoring possible differences in the other life-
history characters.

If there are many vials where Nuwm or Nuy are zero you can assume the wild
type flies have a relative fitness of 1 and then estimate the relative fitness of
the white males and heterozygous females using the reciprocals of the
equations above.

The eye color of the red-eyed heterozygotes is essentially the same as that
of the homozygotes bearing two copies of the wild-type (red eye) genotype,
which implies full dominance of the red-eye allele. For convenience, in
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your lab write-up you can assume that the effects of the wild-type on
viability are also fully dominant. In particular, you should address the
questions asked below making the assumption that Wi/ = Wi/sr. We don't
expect this type of perfect dominance for all alleles affecting viability, but it
is a useful point to start with.

Natural Selection Experimental Results

Replicate Progeny
w-male r-male w-female r-female

1

Relative fitness | male female
2

Relative fitness | male female
3

Relative fitness | male female
4

Relative fitness | male female
5

Relative fitness | male female
6

Relative fitness | male female
7

Relative fitness | male female
8

Relative fitness | male female
9

Relative fitness | male female
10

Relative fitness | male female

Questions for the Lab Report

1. Compute the relative viabilities of all the male and female genotypes
in this experiment. Treat each vial as an independent sample, thus
there will be 10 fitness estimates for each genotype. Put confidence
intervals on the mean estimates using R and discuss the general
implications of these numbers. Is there evidence for natural selection
acting on relative viability in the experimental vials? Which allele
appears to be favored by natural selection in this experiment?
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2. Assuming that females who are homozygous for the wild-type allele
have the same viability and fecundity as the heterozygotes at this
locus, what would be the ultimate outcome of natural selection acting
on the white locus polymorphism? [Hint: use the equations in the
appendix and iterate the equations for many generations, following
the change in white allele frequency. You can do this with computer
software like Excel or R.]

3. Is it possible for both alleles to be stably maintained without
heterozygote advantage in the females? [Hint: Use the equations in
the appendix to help answer this question. You may calculate
numerical examples using the techniques developed to answer the
second question. If you are really ambitious, these equations can be
used to derive analytical results concerning the long-term evolution
of populations with the fitnesses you have estimated.]

References

Hartl and Clark. 1997. Chapter 6, pages 211-236.
Lewontin, R.C. The Genetic Basis of Evolutionary Change. Chapter 3.
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Sexual Selection

Introduction

In animals that have two sexes, there is often a difference in the time and
energy each will devote to reproduction. Usually, the female will make the
larger investment of time and energy since she will produce the more
energy-laden eggs, and for some animals she will be involved with some
care of the offspring or developing eggs. This is obviously true of
mammalian females, whose bodies have a number of features that allow
mothers to nourish fetuses and newborns, such as placentas and
mammaries. In addition, mammalian females often supply their offspring
with solid food to supplement their milk, particularly among the
carnivores, in which the young are not usually effective hunters.

But in many cases among the fish species, the most abundant vertebrates,
the male invests most in the care and feeding offspring. This reaches the
point of full reversal of gender roles in seahorses, in which males get
“pregnant” and incubate their offspring until they “give birth,” their
offspring emerging from their large brood pouch. In either case, it is often
found that the parent that is investing more energy in reproduction controls
when and with whom mating will take place.

As aresult of this asymmetry in the decision making process, the sex which
invests less energy in caring for offspring, usually males among insects, will
compete among themselves to be chosen as mates by females. This type of
competition is called sexual selection. If there are characteristics that are
inherited by males that give them some advantage in this competition for
mates, such as structures or behaviors that females find attractive in a
prospective mate, then we can expect sexual selection to favor these
characteristics. In some species, like many birds-of-paradise, males have
elaborate coloration, long tails or build complex structures to attract
females. All of these characters are thought to result from evolution driven
by sexual selection. In some cases, sexual selection may have produced
cumbersome male morphology or dangerous competitive male behavior
that actually reduce male fitness, compared to the fitness that males might
have achieved if females did NOT discriminate among them.

There is thus the potential for antagonism between the effects of sexual
selection and viability selection, the focus of the previous experiment.
Viability selection may successfully oppose sexual selection, preventing the
evolution of extreme morphology or behavior. For instance, brightly
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colored males may be more attractive to females but may also be more
conspicuous to predators. It is interesting to note that birds are generally
more colorful than mammals of similar size, suggesting that the greater
ability of birds to flee from predators may have tilted the balance toward
less camouflaged sexual plumage. Thus, the evolutionary dynamics of
sexually selected traits may be quite complicated.

Laboratory sexual selection will be studied by measuring a male-limited
component of fitness called virility. In biology, the term virility refers to the
relative success of males in being chosen as mates by females, when
multiple males are striving to mate with the same female(s).

Methods

Each laboratory group will have a population of experimental males that
are wild type. The virility of these males will be tested against males that
carry the white (w) allele on the X-chromosome. This experiment allows
females to choose between males with red eyes and males with white eyes.
We do not have to assume that females will discriminate between males on
the basis of their eye color. Whether they do so or not will be determined
by the experiment itself. Indeed, this is one of the most important questions
that you should answer in your write-up of your laboratory report.

1. Place one wild type male and one white-eye male in each of
ten vials. Make sure that you do not expose males of one eye color
to more COz than males of the other eye color.

2. After both males have recovered from CO;, about 10-15
minutes, take 10 wild type virgin females and place each one in each
vial. By letting both males recover fully you ensure that neither has
an advantage over the other.

3. Carefully watch the females. When a female has mated for
more than 30 seconds record the type of male she mated with. It
takes male fruit flies more than a few minutes to transfer much
sperm, unlike most mammals, so a mounting that only last 10-30
seconds is more likely to be an unsuccessful mating attempt, rather
than a successful fertilization.

In order to make the duration of this laboratory reasonable, we will place
an arbitrary limit on the period during which you will watch the females
choose between males. This will be announced at the start of the class.
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The number of matings by wild-type males can be thought of as a binomial
random variable. The probability of the wild type male successfully mating

is given by,

_ [number of wild males mating]

L=

[total number of matings]

With this definition, the mating success of white-eye males is simply 1 - V..

Sexual Selection Experimental Results

Male Number of matings
Your experiment whole class
Red-eye
White-eye
Total
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1
SEXUAL SELECTION EXPERIMENT:
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Questions for the Lab Report

1. Inyour experiment do the females show a preference for white
or wild type males?

2. Summarize the results of the entire class. Put confidence
intervals on the relative mating success of white and wild type
males, using R. [Hint: use binom.test]

3. Suppose someone suggested using rates of population
growth as a measure of fitness (e.g. taking a population of flies
homozygous for the white allele and comparing that to a
population homozygous for the wild type allele by measuring
their population growth rate). How would virility affect this
measure of fitness, assuming that all females eventually mate?

References

Freeman, S. and J.C. Herron. 1998. Evolutionary Analysis. Chapter 15.
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Appendix

In this appendix we will develop allele frequency recursions for the sex-linked viability model. We must keep track
of allele frequencies in the males and females separately. Assume there are two alleles, A1 and A. Let the frequency

of the A1 allele in the females be prand in the males py.. To follow the results refer to the table below.

Genotypes
Fitness
Zygote frequencies

Relative frequency
after selection

Absolute frequency
after selection

Females
A1 Aq A1 A2
Fi Fi2
PyDy (l—pf)pm+
p(1-p,)
pmpth (1_pf)pm +
. 12
pf(l_pm)
Pups /Wy (1=p,)p, + Fol T,
p(1-p,) |

Ar A
F»

(1-p,)(1-2,)
(1-p, (1 p,)E

(1-p, J1-p.)Ea /T,

A

Males
A>
M>

l-pr
(l—pf)M2

(l—pf)M2 /W

m
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We assume that the genotypes of zygotes are initially in Hardy-Weinberg
proportions, with the frequency of each genotype the product of the
frequencies of each allele, keeping track of order. [This means that, if we
don’t keep track of order, the frequency of the heterozygotes is twice the
product of the individual allele frequencies.] Since the male and female
allele frequencies are possibly different, these Hardy-Weinberg frequencies
look different than the usual ones. To convince yourself they are the Hardy-
Weinberg proportions, let pn = pr and simplify the expressions to the one-
locus case.

The next step in the calculations reflects the change in the relative
frequencies of the zygotes due to differential survival, as may be seen in the
line labeled 'relative frequencies after selection'. Since these relative
genotype frequencies no longer sum to 1, we divide them by the mean
fitnesses for each sex to calculate the absolute frequencies after selection.
[Now these frequencies do sum to 1.] Since fitnesses are different in males

and females, we have different average fitnesses in the males (7, ) and

females (Wf )- These mean fitnesses are given by:

7, = o, Fut (1=, o 2, (1= )| P (1= 2, J1 - ) s |

5

and
W,=pM, +(1_pf)‘/[2

The frequencies of the A alleles in the next generation are then,

Py Z[Pml’fFu +%((1_Pf)l’m +pf(1_pm))FlZ /W,

)28 :prl /W,

m

The prime (‘) symbol indicates the value of the allele frequency in the next
generation. The female frequency ( pf) is simply the frequency of A1A1

homozygotes plus half the heterozygote frequency while the male
frequency ( p,,) is just the frequency of A1 males.
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Age-Specific Selection

Introduction

The basic theories of natural selection often assume that the life cycle of the
organism is discrete. This is the assumption underlying the diagram at the
start of the “Natural Selection” experiment’s Introduction. In such life
cycles, eggs become immature larvae. After a period of preadult growth,
development, and maturation, the sexually mature adults mate and
produce offspring in a short interval of time. With discrete generations, all
the adults either die or completely stop reproducing, leaving the offspring
to establish the next generation. Annual plants and “univoltine” insects are
just some of the examples of species that have such a well-synchronized life
cycle, in which each generation only mates with itself, in one well-defined
bout of reproduction.

Many other species, however, have more complex life cycles. You should
understand this already, because humans have multiple bouts of
reproduction and mating is not confined to individuals of the same age. In
fact Drosophila too have an extended period of adult life during which
reproduction can take place multiple times, with repeated bouts of mating
and egg-laying spread out over a number of weeks. In this respect, as in
some others, fruit flies are useful analogs of humans. Such populations are
said to have overlapping generations and age structure.

This type of life history greatly complicates the description of natural
selection. In computing fitness, we have to consider the survival of adults
and the amount of reproduction that takes place at each adult age. In
addition, we still have to take viability and mating into account. As we shall
see shortly, the fitness of a genotype will not only depend on how long the
genotype lives and how many offspring it produces, but also on the timing
of production of these offspring. In general, fitness will increase most by
having progeny early in life rather than later. This general rule has
portentous implications for evolution, particularly with respect to the
evolution of aging. Natural selection in this relatively complex context is
sometimes called age-specific selection. Age-specific selection requires the
most complete accounting of all life-history stages in the determination of
titness. Understanding selection in an organism as simple as a fruit fly or
as complex as a human being requires quantitative measurement of the
potential for age-specific selection.
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Theory of Age-Specific Selection

The description of age-structured populations first requires that the life
cycle be divided into a number of equally spaced time intervals. These time
intervals are the basis for dividing up the members of the population into
defined age-classes. Generally the length of the time interval that defines the
age-classes is somewhat arbitrary. The choice of time interval usually
depends on the type of population and amount of information available for
estimating key components of the age-structured life-history. In humans,
age-classes are usually defined by time intervals of one or five years. In
fruit fly experiments, age-classes are usually defined by days or weeks. In
developing the theory of age-specific selection here, we will ignore these
particulars.

Suppose the first age class consists of newborns and the older age-classes
are formed from individuals which have survived from earlier age-classes.
We will represent the number of individuals in each age-class at time t as
ni(t), n2(t), ..., na(t), where d is the last age-class. We will also represent the
quantitative probability of surviving from one age-class to the next as Py,
x=0,1,2,..,d-1. Pois the probability that newly produced eggs or offspring
survive to the first age class. Pgis not defined because by definition no one
lives beyond the dth age class.

For each age-class after the first, the number in each age-class is given by,
n_(t+1)=Pn_(t), forx=1,..,d-1. (1)

To calculate the number of individuals in the first age class formulaically,
we must first describe the birth process. Let the number of offspring born
to a female aged x be m,. Then the number of these offspring that survive
to the first age class, per-female is given by,

ﬂ:R)mx'

If we assume, for the sake of simplicity, that there are equal numbers of
males and females in each age-class, then the number of progeny produced
per-adult (male or female) in age-class x will be f./2. With all this notation,
the total number of individuals in the first age class is given by,

m(t+)=>""0fin (1) 2)
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This equation simply adds up all the progeny produced by each age-class.
If the young age-classes are sexually immature, fr may be 0 for all values of
x less than the age at which reproductive maturation first occurs. To
characterize the fitness of alternative genotypes will requires the collection
of information on the age-specific probabilities of survival, Py, and the age-
specific fecundities, f.. Note that in this discussion we have ignored male
fertility, although it could be taken into account by a further elaboration of
this model. Usually male fertility does not limit female fertility, particularly
in non-monogamous populations. [Almost no species are strictly
monogamous, and certainly humans and fruit flies aren’t.]

Fitness in Age-Structured Populations

Populations that grow according to eqs. (1-2) have age-structure. An
important feature of age-structured populations is that they grow in a
consistently exponential pattern after the proportions of the age-classes
stop fluctuating. @ When there is no more fluctuation in age-class
composition, we say that a population has reached a stable age distribution.
The following figure shows the process by which a hypothetical population
living in a constant environment achieves a stable age-distribution. From
this figure we see that after some time has passed, all age-groups, as well
as the total population, begin to grow at the same exponential rate.

You might think that it shouldn’t matter just how a population is
distributed into age-classes, but it does. Consider a scenario in which all
the students enrolled in the class are dumped on a desert island for the rest
of our lives. We will further assume that, while you have enough food and
there are no contagious diseases, you will still age, with falling probabilities
of survival and falling fecundity as you get older. Unfortunately, you won't
have birth control, television, or video games, so your limited recreational
opportunities will lead to a high birth rate. Since most of the students in
the class will be in their early twenties, your total fertility will be quite high
at first. Soon there will be a number of babies. The babies won't be
reproductive for a while, but the original group will still be able to
reproduce while your children grow up. Once the first group of children
grow up, they won’t have TV either, so they will be making your
grandchildren. The original group will start to get old, and the females
among you won’'t have much fertility after the age of 45. The population
will come to consist of a mixture of juveniles, potentially reproductive
adults, and post-reproductive adults. With this pattern, we expect a high
population growth rate initially, then a fluctuating population growth rate
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for a time until the composition of the population settles down to a stable
mix.

In the theory of age-structured populations, it is the exponential rate of
growth of a hypothetical population composed of just one geonotype that
is used as a summary of the fitness of that genotype. Generally, the rate of
exponential increase is most sensitive to changes in survival and fecundity
early in life. Thus, doubling the fecundity of age-class 2 would have a much
more dramatic impact in increasing the rate of growth than would doubling
the fecundity in the last age-class. Similar results apply to changes in age-
specific survival. This makes intuitive sense. We can expect such a
reduction in the importance of each age-specific life-history character as its
age of occurrence increases if only because earlier deaths lead to less
common expression of later life-history attributes.

The rate of exponential increase exhibited by a genotype can be found by

solving a particular polynomial equation. For the example in figure 1 this
equation looks like,

2~ f,2 =P f,2 = PP,f,A~ PBRPf, =0,
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Figure 1 The change in the total population size and four different age-classes. The
survival probabilities for P1, P> and Ps were 0.6, 0.5 and 0.3 respectively. The age-
specific fecundities were, 0, 0.9, 1.8 and 0.4. The initial population consisted of 100
1-year olds.

where the largest positive real root of this equation, Am, is the rate of
exponential increase of the population. In the case of the example in figure
1, Am = 1.0441. This means that the population is increasing by a factor of
about 4.4% each time interval.

In this experiment age-specific mortality rates and fertilities will be
estimated for a population of wild-type Drosophila melanogaster. From this
information, you will use the theory developed in the previous sections to
estimate a fitness value from these observations.

Methods

Each laboratory group will get their own population of flies. At the start of
the experiment, your population will consist of 50 males and 50 females that
are less than one week old as adults. These flies will be wild type. .

1. Count out 20 males and 20 females at random and place them
in 20 charcoal vials, one male-female pair per vial.
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2. Count the remaining flies (initially 30 males and 30 females)
and place them in the population cage. After the flies wake up in
the cage place a petri dish of plain food in the cage.

3. After 48 hours remove the females from the charcoal vials and
return them to your cages. Replace the petri dish in the cage with
a fresh petri dish of food plus a large dab of yeast paste. Count
the eggs laid in the charcoal vials over the previous two days.

4. The process described above will be repeated four more
times, at weekly intervals. At each weekly interval the total
number of surviving males and females should be counted in
your population cage and recorded. Food in these cages should
be replaced every Tuesday and Thursday, as described above.
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AGE-SPECIFIC SELECTION EXPERIMENT:

Once the experiment has started, you will be maintaing a same-aged cohort in a population

cage. Every week, you will census the population, set up egg -laying vials, and counting

the eggs laid in each laying vial after two days. After the egg-laying, RETURN the flies from the egg-
laying vials to the population cage.

-. Start the experiment by placing 30 males and 30 females into
e a population cage

At the same time as

60 flies are placed in
the cage, put
20 mated
pairs in 20
charcoal
vials to Every v.vgek count the number
lay eggs of surviving males & P
for 2 days females

Every

Tuesday 57 Pt

collect

%ated W

pairs & Supply new
put @ cage food
n _ every
Y Charcoal vials class
After egg laying
in charcoal vials
for 2 days,
return flies to
j H g ﬁ w ﬁ j cage.

Count the number of
eggs laid in each vial

Analysis of Growth Rates
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For the data collected in this experiment, we will make several assumptions.
We will assume that the number of eggs laid by females is equivalent to the
number entering the first age-class, that is Po = 1. The pre-adult age-classes
will all be lumped into age-class 1 even though these take more than a week
to complete. The survival from the preadult to adult age classes (P1) will be
set to one, because we don’t have any good information about survival
during this life-cycle, while the fecundity of the pre-adult age-classes is by
definition zero. In this experiment, there will be data on five adult age-
classes, thus the equation on page 35 will be a sixth-order polynomial rather
than a fourth order polynomial.

The largest root of these polynomial equations can be solved with the R
function “polyroot.” This function takes as its arguments the coefficients of
the polynomial starting with the constant term. For instance, using the
parameter values in figure 1, the polynomial we must solve looks like,
0=-0.036 —0.544 —0.542* + 2*. The R commands and results produced for

this example are shown below.

> goLyroot(c( 0.036,-0.54,-0.54,0,1))
[1]1 -0.07176821-1.349959e%213i -0.48617915+4.940097e-011
[31 -0.48617915-4.940097e-01i 1.04412651+3.885781e-16i

Since the polynomial is fourth order there are four roots. Each root is
written as a complex number with the general format, a+bi, where i = J-1
. We can see that the first root has a very small coefficient in front of i. This
means that we can ignore the imaginary part of this number. Thus, the first
root is -0.072. The second and third roots are imaginary numbers and are
complex conjugates, -0.49+0.49i and -0.49-0.49i. The last root is also a real
number and is the one positive root we are looking for, 1.044.

Experiment Results Age-Specific Selection

Week
1 2 3 4 5
# of males 50
surviving
females 50
Fecundity
Vials#

RN |G| W[
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10

11

12

13

14

15

16

17

18

19

20

Questions for the Lab Report

Compute the age-specific survival probabilities and fecundities
for your population. Remember fecundity and survival have
been estiomated and the uncertainty in these estimates can be
summarized with confidence intervals.

Estimate the exponential rate of increase, or fitness, for your
population. Since most of the first two weeks of life were spent
as a larva or pupa in these populations and are combined into the
tirst age-class, assume f1 =0 and P1 =1.

Using your own data, find the change in the exponential rate of
increase that would result from doubling the female fecundity (i)
at two weeks of age (e.g. f2), AND (as a second calculation) (ii)
doubling at five weeks of age (e.g. f5).

What happens to average female fecundity with increasing age?
What is this change due to?

References
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What Are Statistics?

Samples and Populations

Studies are largely based on sets of individual observations (or just
observations). Such observations generally consist of a single measurement
or set of measures taken on the "smallest sampling unit" of the study. A set
of such observations is referred to as the sample under consideration. A set
of blood pressure measures obtained from 100 patients is a sample, with
each blood pressure measure being an observation. Similarly, if we counted
the number of queen ants in each of 500 colonies, the number of queens in
each colony is an observation and the entire set of 500 such counts the
sample.

The actual measurement taken on each sampling unit is referred to as a
variable. This variable could be a single measure (like blood pressure), a
vector of observations (blood pressure taken a different times after a drug
was administered), or even a more complex set of observations (a
reconstructed three-dimensional CAT scan).

A third useful concept is the population. In statistics, the population is the
entire collection of “things” we wish to learn about. Generally, we try to
draw a sample from a population in a manner that is representative, such
that inferences made from the sample apply to the population. Thus, a
sample of 1000 doctors taking one aspirin tablet per day for three years and
then being monitored for heart disease may be representative of the
population of all doctors, or perhaps all Americans. Of course, the trick is
picking a sample that is truly representative of the group for which
conclusions are meant to be drawn. It is possible for the sample to also be
the population. Such an example may be the weights of all animals in
captivity for some species that is extinct in the wild.

Variables
Generally, experiments (and all data) differ in the forms they take. The
variables we will consider fall into a number of useful categories:

Measurement Variables
Continuous
Discontinuous

Ranked Variables

Attributes
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In theory continuous variables are measurements that can assume an infinite
number of states (perhaps bounded). Classic examples are height and
weight -- a person's height or weight can be measured to arbitrary precision
depending only on the availability of an appropriate tool for measuring.
Discontinuous variables on the other hand can only take on fixed values.
Examples include the number of sternopleural bristles on a fly (my
favorite!), or the number of eggs in a clutch of birds. Ranked variables imply
order but not scale. One, for example, could record the birth order of a large
family and the time between the 6 and 7th offspring's birth could be one
minute or five years. The last category of variable is an attribute. Attributes
are measurements which can only be expressed qualitatively. Attributes
can include biological sex, coat color pattern in cats, or blood groups in
humans. Attributes are also commonly associated with experimental
manipulation. An example of this would be "Nasonia Wasps Treated with
Ampicillan (to kill Wolbacia)" versus those "Untreated".

Accuracy and Precision
Accuracy is the closeness of a measure to its true value.
Precision is the closeness of repeated measures to the same value.

A watch that is STOPPED is very precise, but completely inaccurate!
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Descriptive Statistics

The technical definition of a statistic is
simply a numerical summary of the data.
We will define several such summary
statistics commonly used.

Let X7,X5,..,X, represent a set of N
observations from some experiment.

X's could include numeric variables or
indicator variables indicating discrete
outcomes of a trial. Examples of
numeric variables are weights of
different people (a  continuous
quantity), or the number of bristles on
certain segments of a fly (a discrete
| quantity). Examples of indicator
variables can be success or failure

No

outcomes of trials like determining whether the outcome of a coin toss is a
heads or whether a draw from a deck of cards is a heart. Such outcomes can
be recorded as 0’s or 1’s. Consequently, they can also be called binary
variables.

Some useful statistics that describe our set of X's are the following;:

Sample Mean

That is, "X bar" is equal to the sum of all the X; divided by the total number

of observations.

N

2. (X - Xy
1

i=

2
Var, = s, =

Se=Ass

The sample standard deviation is a measure of the average deviation from
the mean value of the population. For example, is the average height of a
population of male college students is 180 cm with a sample standard
deviation of 15 cm, this can be thought of as a typical male student is within
15 cm of 180 cm.

Sample Variance
N-1

Sample Standard Deviation
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If instead of having a single measure for each experimental unit, we took
pairs of measures, then we can define some additional useful statistics.
Examples of pairs of measures would include measuring both the pulse rate
and height of each individual in a study. In this case, data would take the
following form: {X;, Y1}, {Xo, Y3}, ..., {X;, Yy}. Here X; is the pulse rate of
individual i and Y; that individual's height. And we can define some
additional summary statistics:

DX =X, -Y)

i=1

Sample Covariance Cov,, = N1

_ Covy,

Sample Correlation oy =

SXSY

The sample correlation is a number between -1 and 1 which measures the
strength of the association between two variables in the study. Numbers
close to +1 imply the large values of X are strongly predictive of large values
of Y (and vice versa), value of -1 imply large values of X are strongly
predictive of small values of Y (and vice versa) and intermediate values of
r imply the value of X is a poor predictor of the value of Y. We would expect
height in centimeters and height in inches on the same set of individuals to
be highly correlated (r = 1), on the other hand we expect the height of each
person in our class to show little or no correlation with the average time it
takes to drive to work for that person (r = 0).

All these statistics can be calculated by hand or with a calculator. This isn't
very efficient when one has a lot of data. There are several computer
programs that allow these statistics to be calculated easily. We will learn
how to use one such program, called R.

Why Do | Want to Use Statistics?

Statistics in and of themselves are not terribly useful. The term statistics is
used in a much broader context to refer to a "statistical test of a hypothesis".
That is, after we observe the outcome of some experiment, we wish to ask
the question: “Is this outcome consistent with chance alone or is there
something else going on here?” Generally, scientists set up tests of
hypotheses. That is, they may ask if their results are consistent with some
predetermined model. If not, they may use their results to reject this model.
Alternatively, they may ask if their data differ with respect to an important
variable after some experimental manipulation. These are not very intuitive
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concepts for many people. In this course, we will motivate statistics with
concrete examples.

Coin Toss (The Binomial Distribution)

You want to test the hypothesis that a coin you have is “fair”. Thus,
following your scientific spirit, you decide to do a coin toss experiment. In
a more statistical language, you want to test the null hypothesis (usually
designated Ho) that the probability of a head is equal to the probability of a
tail, or fifty percent. The alternate hypothesis (usually designated Hi) is that
the probability of a head does not equal the probability of a tail. Note that
the two hypotheses are mutually exclusive and exhaustive. That is, if Ho is
true H; is false and vice versa, and the two hypotheses include all possible
outcomes. Formally you would write this as:

Hp: Prob(Head) = Prob(Tail) = 0.5
Hj : Prob(Head) # Prob(Tail)

You test this hypothesis by flipping a coin 20 times and each time writing
down the outcome. Imagine that you observe 9 heads and 11 tails, and
therefore you conclude that the probability of a Head is 45% (9 out of 20).
Is this consistent with H,, or H;? It is not obvious. Why? What should you

conclude? Suppose you had observed only 5 Heads out of 20, what then?

Luckily for you (and all of us), statisticians have given this problem a great
deal of thought. They realized that in 20 trials of a coin toss experiment
there is some probability of observing 0, 1, 2, ..., 20 Heads out of twenty.
These probabilities can be worked out from the elementary rules of
probability theory, but will not concern us here. It turns out that your
experiment is a special case of the more general probability distribution
referred to as the Binomial Distribution:

N! _
Pr(S;N,p) = mﬁs(l -p

This equation is read as the Probability of S successes given N trials when
the probability of a success equals p. This is the “distribution” of S
conditional on N and p. The above case of the binomial distribution applies
to the case where we perform a number of trials of some experiment and
observe one of two mutually exclusive and exhaustive outcomes and we
wish to test our observed number of “successes” to that expected under an
assumed probability of success.
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In your experiment, we define a success as a Head that occurs with a
probability of 0.5 under the null hypothesis. Below we have plotted the
probability of seeing exactly the specified number of heads out of 20 tosses
(the bars, scale on left). We have also plotted the cumulative probability of
seeing that number of heads or fewer (the line, scale on right). From the
figure, we can see that the probability of observing exactly 9 Heads is about
17% (draw a horizontal line to the scale on the left for the bar at 9 heads).
On the other hand, the probability of observing 9 or fewer heads is about
40% (draw a horizontal line to the scale on the right for the line at 9 heads).
Thus, your observation of 9 Heads does not appear to violate the null
hypothesis. Had you observed 5 Heads the situation would be different. In
this case, the probability of observing 5 or fewer Heads is less than 5% (the
right y-axis and line in Fig. 1). Thus, it seems unlikely the null hypothesis is
true, and the coin is biased.

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

o AN < (] (s} o N < (] [ce] o
~ ~ ~ N

~ ~

number of heads

Figure 1: The binomial probability distribution and cumulative distribution, N = 20 and p
=0.5.

So what is “statistics” really about? Simple.

1. You set up a null hypothesis and an alternative hypothesis.

2. You record your data and then calculate some “statistic” or summary of
the data.

3. You count on a statistician having determined the distribution of your
statistic given that the null hypothesis is true.

Evolution Laboratory Notebook page 46




Mueller, Rose, Emerson, Rebolleda-Gomez and Long Evolution Lab Manual — Spring 2023

4. You look and see where the observed value of your statistic falls in that
theoretical distribution. You ask if your observed value is likely to have
occurred by chance alone under the null hypothesis?

The trick is to pick a null hypothesis (1) and statistic (2) for which the distribution
is worked out!

Is sex-ratio influenced by rearing temperature in turtles? (Chi-square
Distribution)

In many species of turtles the sex-ratio of offspring hatching from a given
nest is affected by the temperatures experienced during development in the
nest. Molly, a hypothetical highly esteemed turtle biologist, discovers a new
species of turtle, Chrysemys gobruinsentius. She decides to carry out an
experiment to determine if sex-ratio is affected by rearing temperature. She
rears a cohort of turtles at either 16C or 25C and counts the number of
turtles of each sex that hatch.

OBSERVED DATA

Temp 16C 25C Total
Male 50 70 120
Female 50 20 70
Total 100 90 190

Molly's null hypothesis is that sex-ratio is independent of temperature. That
is 50/100 is statistically indistinguishable from 70/90. Her alternate
hypothesis is that the two ratios are unequal.

Ho: sex-ratios are independent of temperature
Hi: sex-ratios are different

It turns out that there is a convenient statistic, called the Chi-square statistic,
which summarizes the information in the table, and whose distribution is
known if the null hypothesis is true. The statistic is:

Z(Obsi _expi)Z
cells expi
where df is the degrees of freedom in the model, obs; is the number of

2 J—
Xap=x =

observations in each cell and exp; is the expected number of observations in
each cell under the null hypothesis. We will discuss degrees of freedom
later, cells refer to a particular combination of sex and rearing temperature
(e.g., males hatching at 16C). If N is the total number of observations over
all cells, then the expected number in each cell under the null hypothesis
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can be easily calculated. In the case of Males hatching at 16C this is just the
total proportion of males times the total proportion of turtles hatching at
16C times N; or

(#Males/N) x (#16C/N) x N = (120/190) x (100/190) x 190 = 63.2

The expected numbers can be calculated similarly for the remainder of the
cells. With the resulting table

EXPECTED DATA

Temp 16C 25C Total
Male 63.2 56.8 120
Female 36.8 33.2 70
Total 100 90 190

The Chi-square statistic can be calculated as the sum of the observed counts
minus expected counts squared divided by expected counts over all cells of
the table (as per the formula above). In this example, the resulting value of
the Chi-square statistic is 15.7. The degrees of freedom are calculated as the
total number of cells minus the "number of constraints placed on the
expected cell totals". In this case, there are three constraints placed on the
expected cell values: the total number of observations in the entire data set,
the total number of Males, and the total number of turtles hatched at 16C.
That is, once you are given these three values (i.e., conditional upon these
three values) all the expected values are completely determined (convince
yourself or this). So, in this example, there are 4-3 = 1 degree of freedom
(this will generally be the case with 2X2 tables). One minus the cumulative
Chi-square distribution looks like this for one degree of freedom. That is,
each point on the line can be thought of as the probability of observing a
Chi-square statistic larger than that value. The horizontal line shows the 5%
level, or the value of the Chi-square statistic for which we only expect to
observe larger values if the cell counts are independent five percent of the
time.
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Figure 2: One minus the chi-square cumulative distribution with one degree of freedom. The red
horizontal line shows the 5% probability level. Notice that 15.7 would fall far to the right of the
figure.

Thus, it is apparent that the probability of observing a number as extreme
as 15.7 is quite rare by chance alone (for values as low as six the probability
is approaching zero). The implication is that we can reject the null
hypothesis that the sex-ratios are independent of rearing temperature as the
probability of observing Molly's data is very low under the null hypothesis.
Molly is confident that rearing temperature affects sex-ratio in her newly
discovered turtle species.

Confidence Interval on a Variance Estimate

The Chi-square distribution is used in a number of different contexts in
statistics. For example, it turns out that

(n-1) s?2)/ o2 is distributed as a Chi-square with n-1 degrees of freedom
where s2 is the estimated observed variance of a sample of size n from some
population and o2 is the (unknown) true variance of the distribution from
which a sample is taken. We will state without proof that it follows that
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[(n “1)s? (n-1)s*
& 4
from which the sample was drawn, provided that

j is a 95% confidence interval on o2, the true variance

Pr( )(jf:n_l <¢,)=0.025 and Pr( ij:n—l < ¢,)=0.975. This property of the Chi-

square distribution can be useful for determining if the variance of a sample
differs from a theoretical prediction. The only "trick" required to calculate a
95% confidence interval on a true (unknown) variance is to calculate values
for g1 and g2. These q’s are referred to as quantiles of a statistical distribution,
and can be thought of as the value of the “x” axis conditional on the value
of the “y” axis in cumulative distribution plots such as Figures 2 and 3.

Below is a cumulative Chi-square distribution for degrees of freedom = 99
(i.e., the sample variance estimated from 100 observations). The red
horizontal lines are at 0.025 and 0.975. It can be seen from the figure that
the a value of g1 approximately equal to 75 satisfies the first equation (
Pr( ij=n4 <¢,)=0.025) and a value of g, approximately equal to 125 the

second equation (Pr( ;(jf: <q,)=0.975). Thatis, the values of q; and g; are

n—1
obtained by taking the value of the x-axis where the red line intersects the
cumulative Chi-square distribution for Pr(y},_,, < x). Later in the course we

will use a computer program to obtain these quantiles.
o

- p—
~—

@

Probabilty %2 < x

6b _ 8‘0 1(50 1é0 1210
Chi-Square value (x)

Figure 3: Cumulative Chi-square distribution for degrees of freedom = 99. Horizontal red lines
are at 0.025 and 0.975.

0.0

Desiccation resistance in flies selected to resist starvation (t-Distribution).

Many organisms have genetic mechanisms that allow them to respond to
"stressful" situations (think high temperatures or food shortage as opposed
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to a term paper being due tomorrow). One hypothesis regarding the
genetics of stress resistance is that there are general mechanisms of
responding to stress, such that an organism evolved to counter one stress is
often good at tolerating a second “unrelated” stress. In order to test this
hypothesis a hypothetical scientist, Parvin, creates 10 evolved populations
of Drosophila, along with a set of 10 matched controls. Each evolved
population and its matched control are derived from a different base
population. The selection is carried out by placing flies in vials without
food (but with water) until 80% of the flies die, and then allowing the
survivors to reproduce. After 25 generations the evolved populations are
qualitatively better at surviving starvation then the controls.

In order to examine “cross-tolerance” of her evolved populations Parvin
carries out an experiment where both the starvation evolved lines and their
controls experience desiccation stress. This is accomplished by placing 500
flies in a bottle in the presence of a desiccant, and then measuring the time
in hours until all the flies are dead. Parvin believes that the experiment
primarily measures desiccation resistance, as the survival times are an
order of magnitude shorter than would be observed in the case of a purely
starvation stress. Below are the data she observes.

Survival times in hours

Population A B C D E F G H I ]
Control 8.4 8.1 51 76 47 107 57 41 81 6.8

Starvation- 124 158 11.7 86 126 111 105 73 72 108
resistant

In Parvin's case the null hypothesis is that the means of the two treatments
are the same, and the alternate is that they differ:

Ho: mean desiccation resistance of control populations equals that of the
evolved populations
Hi: mean desiccation resistance is different

It turns out there is a convenient statistic, the t-statistic, whose statistical
properties are well known. The t-statistic is:
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t= =X

R where X with a bar over it is called "X-bar"
Sy %

n, m
and represents the sample mean of each group and s? the sample variance
of each group, and 7 is the number of observations in each group (this is a
special case of the t-statistic for the case in which the variances of the two
groups are fairly similar, which is all you have to worry about). This
statistic is distributed according to a t-distribution with n1 + n, - 2 degrees
of freedom, and the cumulative distribution looks like this:

o

=
X Q
V o
)
>
=
® <
Q °
@
S
O o
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O I I I I I I I

3 2 -1 0 1
t value (x)

Figure 4 The cumulative t-distribution. As before, red horizontal lines are at 0.025 and
0.975.

In Parvin's case the value of the t-statistic is -3.69. Less than 1% of the t-
distribution falls below the observed t-statistic measure in Parvin's case.
Thus it appears that Parvin can reject the null hypothesis that selection for
starvation resistance results in NO cross-tolerance to desiccation resistance.

What Does it Take to Reject the Null Hypothesis?

By convention, if the value of some statistic is such that fewer than 5% of
observations are likely to exceed it by chance alone the null hypothesis is
rejected at a "p-value" of 0.05. Thus a p-value of 0.05 or 5% is equivalent to
the statement that only 5% of the time would one observe this data or data
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more extreme under the null hypothesis. In the case of the example above
we did a two-tailed f-test (meaning we just wanted to see if desiccation
resistance was different between the two groups). Thus, for the above
degrees of freedom and looking at Figure 3 the t-statistic would have to be
either larger that approximately 2.1 or smaller than -2.1 to be significant (the
values of the x-axis, where horizontal lines at 0.025 and 0.975 cross the
cumulative distribution).

Confidence Interval on the Sample Mean

Suppose we have a sample of consisting of n-observations, x1, x2, ..., x». From
. _ 1& .
these we can easily calculate the sample mean, x = —Zx,. , and variance
nis

S2=1

12()? —x,) . A (1-a) x 100% confidence interval on ¥ is equal to
n—>1u

()_c o NS X + g VS /n), where ¢, is the value of a t random

variable with N degrees of freedom that is greater than a x 100% of all such
random variables. The value of this ¢ variable can be found using R (see next
chapter) with the command: gt (a, N) .
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R: A Language for Doing Statistics

We will use a program called R to help us do statistical calculations and
later simulate more complex phenomena. What follows is an introduction
to R designed with the information you need to do your problems.

Why R

Links

R is a freely available flexible statistical language. It is an Open Source
language, which means that computer programmers anywhere in the
world can modify it when a bug is found. R is object-oriented and has a set
of powerful graphic tools.

Download R

http:/ /cran.r-project.org/

Introduction to R

http:/ /cran.r-project.org/doc/manuals/R-intro.pdf

A second Introduction to R

http:/ /cran.r-project.org/doc/contrib/Rdebuts_en.pdf
One page R "cheat sheet"

http:/ / cran.r-project.org/doc/ contrib/refcard.pdf

Starting and Quitting R

Throughout this introduction commands typed into R will be in a different
(Courier) font. Everything in this (Times) font is an explanation of what
you are doing.

To get R just download and install R and RStudio from the following two
websites:

https:/ /cran.rstudio.com/

https:/ /www.rstudio.com/products/rstudio/download/

Everything in R is an object. q followed by parentheses executes the quit function,
whereas q without brackets lists the contents of an object called ‘q’, which should
be the q() function . This will be true of all the functions and objects you encounter.

Evolution Laboratory Notebook page 54



http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/refcard.pdf
https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/

Mueller, Rose, Emerson, Rebolleda-Gomez and Long Evolution Lab Manual — Spring 2023

“ 7

Try typing “q” without parentheses. Try typing a capital “Q”.

>q
>Q
>Q0

There is a differences between asking for the contents of q and executing q
as a function. R is also “case sensitive” meaning in general X does not equal
X.

Before proceeding further, view the “Introduction to R” video series (link
below). As you watch it, make sure that you follow along in RStudio and
perform the same actions as in the video. You will not learn without doing.
Be aware that some of the URLs referenced in the video may have changed
since the video was uploaded.

Introduction to R:
http:/ /bit.ly/E115L_LearningR

Some Useful Functions

Before continuing, WATCH THE VIDEO PLAYLIST above! Now, switch
to RStudio and let’s look at a few useful functions. First, notice the help tab
on the right-hand side (it was in the videos). Next, type the following two
commands into the window (omitting the literal *>" signs):

> mydata <- c¢(1,2,3,4,5)
> mydata
> mydata.squared <- (mydata) "2
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®0e RStudio
q-r & A Go to file/function B2 - Addins - ) Project: (None) ~

Console  Terminal Environment  History  Connections

~]
Files Plots Packages Help Viewer

R version 3.4.1 (2017-06-30) -- "Single Candle"
Copyright (C) 2017 The R Foundation for Statistical Computing - A & A
Platform: x86_64-apple-darwinl5.6.0 (64-bit) Home ~ [[FindiinTopic

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions. o R Resources R RStUdiO
Type 'license()' or 'licence()' for distribution details.

Learning R Online RStudio IDE Support
CRAN Task Views RStudio Community Forum
R is a collaborative project with many contributors. R on StackOverflow RStudio Cheat Sheets

Type 'contributors()' for more information and Getting Help with R RStudio Tip of the Day
'citation()' on how to cite R or R packages in publications. RStudio Packages

RStudio Products

Natural language support but running in an English locale

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type 'q()' to quit R. Manuals

[Workspace loaded from ~/.RData] An Introduction to R The R Language Definition
Writing R Extensions R Installation and
> mydata <- c(1,2,3,4,5) Administration

El]myiﬂ;q.% s R Data Import/Export R Internals

> mydata.squared <- mydataA2 Reference
>

The first line makes an object called mydata which contains the listed set of
numbers. Later we will learn how to import data. mydata is just a arbitrary
label for where we will put the data. The c (. . .) tells R to concatenate the
number in the parentheses. The arrow tells R to put whatever is on the right
side into the variable on the left side. mydata is a vector of observations. In
R vectors are series of data of one “kind” in one dimension (their length).
For example, you cannot have a vector with text and numbers or R will
convert the numbers into text.

The second line lists the contents of mydata. The third line squares each
value in mydata. mydata.squared again is a new variable name where we
will put something (in this case the squared values of mydata).

Try typing the following into RStudio:

plot (mydata, mydata.squared)

plot (mydata, mydata.squared, type="1l")

mean (mydata)

var (mydata)

length (mydata)

The first two lines make an xy-plot of the data. The plot command is of the
formplot (x-axis, y-axis, options).Specifying type="1"is aline
plot. The final three lines give the mean, variance, and number of
observations in mydata, repectively. Notice how the plot now replaces the
help menu.

vV V V V V
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RStudio
- & - A Go to file/function EE - Addins - K Project: (None) ~

Console  Terminal Environment  History  Connections
~]
Files Plots Packages Help Viewer
R is a collaborative project with many contributors. « 2 Zoom |*Export - | X |« Publish - C
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'qQ)' to quit R.

[Workspace loaded from ~/.RData]

> mydata <- <(1,2,3,4,5)

> mydata

1112345

> mydata.squared <- mydataA2

> plot(mydata, mydata.squared)
> plot(mydata, mydata.squared, type = "1")
> mean(mydata)

[11 3

> var(mydata)

118275

> length(mydata)

[R5

>

]
19}
<
5]
S
o
a
i)
©
°
=
€

>

Below is a table of commonly used functions and operators

+ addition

- subtraction

* multiplication

/ division

4 exponentiation

abs absolute value

exp exponential (e to a power)

log natural log

logl0 log base ten

sqgrt square root

cor correlation between two vectors
cumsum cumulative sum of a vector
mean mean

median median

min minimum

max maximum

sum sum

var variance (or covariance, if given a matrix)

It is useful to see what these functions do to your data. Try some of them
out.
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A few important notes
1) Write your code in a separate file (not in the console)

2) Annotate your code so that you remember what you did and why

To annotate code, you just add **#** before any line of text, that way R knows
that it is not an instruction. For example, type:

> This is just an instruction
What happened? Now try:
> #This is just an instruction

Vectors

Vectors are a series of objects (it can be of length 1) in R. They have only one
dimension of a certain “length”. You can ask R the length of a vector with
the command length ().

> mydata <- ¢ (1,2,3,4,5)
> length (mydata)

Note: We can ask if our R object is a vector with is.vector (). In R,
functions (we will learn more about them) are always followed by a set of

parentheses to give arguments for the function.

Vectors can contain many elements. These are some ways to create vectors in

R:

> vl <- ¢(2,4,6,8)
> v2 <- 1:12

> v3 <= 1:4

> v4 <- seg(0,50,1)
> vb <- rep(7,9)

What is each of these functions doing? Could you describe it? What do you
think will happen if you type v1+v3?

> v1+v3
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Getting up to Speed with R Using swirl()

By now, you should be able to do a number of basic tasks in R by using
RStudio. However, there are a lot of basics that are necessary to understand
to continue. And the rest of the course relies heavily on these concepts.
Perhaps the most important prep work you’ll do for the remainder of the
course will be completing the swirl() tutorial. This is an interactive R
tutorial taught in R! To access it, first open RStudio, and type the following
into the Console:

> install.packages ("swirl")

> library(swirl)

>install course github ("swirldev",
> swirl ()

"R _Programming E")

®Oe RStudio

# Go to file/function B2 - Addins - Project: (None) -

Console  Terminal Environment  History  Connections
~
= = Files Plots Packages = Hel Viewer
Please sign in. If you've been here before, J 2
me as you did then. If you are new, call -5 a & A

something unique. Home ~ | Find in Topic

What shall I call you? 1]

@ R Resources ® RStudio

| Please choose a course, or type @ to exit swirl.
Learning R Online
CRAN Task Views
R on StackOverflow

Getting Help with R

RStudio IDE Support
RStudio Community Forum
RStudio Cheat Sheets
RStudio Tip of the Day
RStudio Packages

RStudio Products

1: R Programming E
2: Take me to the swirl course repository!

Selection: 1

| Please choose a lesson, or type @ to return to course menu.

: Basic Building Blocks

: Sequences of Numbers

: Missing Values

: Matrices and Data Frames
: Functions

23
4:
[ H

Workspace and Files
Vectors
Subsetting Vectors

: Logic
: lapply and sapply

Manuals

An Introduction to R
Writing R Extensions

The R Language Definition
R Installation and

: vapply and tapply
: Simulation
: Base Graphics

: Looking at Data
: Dates and Times

Administration

R Data Import/Export R Internals

Reference
Selection:

As usual, omit the “>” symbols, as they represent the console prompts.
Now, the RStudio console will prompt you for your name and ask you
which course you’d like to take (see screenshot above). Enter the number
associated with “R Programming E” (it was 1 for me) and press return. For
this course, you should complete the whole tutorial except for possibly the
“Dates and Times” section. We won’t be working on that in class. The
tutorials are short, interactive, and very directly relevant to completing the
class. At the very least you should complete the tutorials to convince
yourself that you know enough to complete the course. I will be reviewing
the major concepts in class, but it will be a review. If you haven’t reviewed
the material ahead of time, it will be hard to learn in class.
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Matrices

Often, we will work on matrices instead of vectors. A matrix is a
representation of numbers in the form of a table with some number of rows
and columns. Generally a row of a matrix will be observations and columns
different variables. We will now generate a matrix. First, we need to make
an additional vector:

> mydata <- 1:5
this is shorthand for generating a sequence of numbers from 1 to 5
> cbind (mydata, (mydata)*2)

cbind stands for “column bind”, and will bind columns together to make a
matrix. Another function, rbind, will bind rows. Say we want to do
further work on this matrix. To do so, we must make it an object. How do
we do this??

Try:
> mymatrix <- cbind (mydata, (mydata)"2)
> mymatrix

Try applying some of the functions above to your new matrix. What do min,
max, and mean do? What about cor and var?

You can see that many functions don't really work the way you might like
them to. It would be useful to have a way to refer to only parts of mymatrix.
We can do this fairly easily.

Try the following, what happens
> mymatrix[1l,1]

Note the first number refers to the row number and the second the column
number.

3,2]

mymatrix
mymatrix
mymatrix

mymatrix

;2
r2]
3,1
1:3

vV V V V

r2]
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What happens when you apply functions to these "submatrices'"??

Now try this:
> mymatrix[mymatrix[,2] > 16,]

This is pretty complex, but powerful. Do you see what we accomplish by
using this command?

What is the variance/covariance matrix associated with the first three rows
of mymatrix?

Scripting R procedures

Two common complaints about R are: 1) that it is difficult to learn the
syntax of the language, and 2) why use a command line interface when we
are accustomed to “point and click” in the other programs we routinely use.
While the syntax can indeed be difficult to pick up, it more than makes up
for this challenge. One advantage of a command line interface is incredible
flexibility. If the “correct” procedure or plot you want is not easily
generated using point and click type defaults it can be modified at the
command line. Sometimes it is painful to do so, but it is at least possible.

More importantly it is possible to save all the commands you used to
produce a figure or analysis and then repeat that procedure exactly on the
same dataset, the same dataset with a subset of observations changed (say
it turned out that 15% of a sample of pH readings making up your dataset
were collected with a borrowed instrument that you discovered was
imprecise), or an entirely different dataset. If the same set of operations are
often applied to different datasets it is possible to even write your own
custom function to do this procedure (below). This is very useful the day
you want to re-generate a certain p-value or figure and you cannot
remember the exact sequence of point and click operations that allowed you
to do this....

The easiest way to do this is to work in RStudio’s script editor. Re-running
an analysis merely requires pasting the “code” back into a R window where
it is executed one line at a time.
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As an example, consider the commands below taken from the earlier
examples. I have edited these earlier commands by merely removing the
“>” prompt. Try pasting them into the R window.

mydata <- ¢ (12,19,24,17,15)
mydata.squared <- (mydata) "2

plot (mydata, mydata.squared)

mean (mydata)

var (mydata)

mydata?2 <- 1:5

mymatrix <- cbind(mydata?2, mydata)
mymatrix[1:3,2]

mymatrix [mymatrix[,2] > 16, ]

Now let’s imagine we discovered the first data point of mydata was not a
“12” but a “21” because of a transposition error entering the data. We could
correct our mistake easily.

mydatall] <- 21
mydata

We want the values of mymatrix for which the values in the second column
are greater than 16. What happens if we just re-run the last line of the above
script?

mymatrix [mymatrix[,2] > 16, ]

It doesn’t work correctly, as we have to re-run all the intermediate steps
(such as creating mymatrix) to reflect the changes to mydata. So we can re-
run our analysis on mydata by re-running all the lines subsequent to the
initial “mydata” assignment. Do this by highlighting those lines and
clicking on the “Run” button in the RStudio script editing window.

In the remainder of the notes I leave out the prompt “>" sign so you can directly
paste examples into R. When a line of code is indented, under a preceding line,
that’s an indication that it is a continuation of the previous line, and represents a
single line of code.

Importing

The best way to input data into R is as a "tab" delimited table. If data is
saved such that the first line is a set of tab separated names and subsequent
lines are the data (each with a row label) then the function read. table
can be used. For example say you have the following data saved as
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"house.data" in the “desktop directory” on your PC (to get the file to your
“desktop” go to the file server and drag the appropriate file to the
“desktop”). Now in R change your working directory to the “desktop”
(under “FILE” -> “CHANGE WORKING DIRECTORY”):

Price Floor Area Rooms
01 52 111 830 5
02 54.75 128 710 5
03 57.50 101.5 1000 6
04 57.50 131.0 690 6

This data can be read into R using the following command:

Housedata <- read.table("house.data")
What do you think the following command does?

Housedatal[, "Floor"]

R has another way to refer to parts of a “data.frame” such as “Housedata”
using a “dollar sign” notation.

HousedataS$Floor
HousedataS$Floor[1l:3]
HousedataSFloor [HousedataSFloor > 115]

Applying functions to rows or columns of a dataframe or a list

Lets load the decidedly non-biological example “mtcars” data set into R

data (mtcars)
mtcars[1:10, ]
dim(mtcars)

For each car we have the following variables that are recorded: mpg, cyl,
disp, hp, drat, wt, gsec, vs, am, gear, and carb. It is obvious what some of
these variables are.... others your guess is as good as mine. Say we wanted
to calculate the mean and minimum observations for each of the recorded
variables

mean (mtcars)
min (mtcars)
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Interestingly the function mean is “smart enough” to know mtcars is a
dataframe and calculate the mean for each column, min is not nearly so
smart. There is a function “apply: that lets one apply some operation to each
row or column of a matrix (or dataframe). The first argument to apply is a
matrix or dataframe, the second to apply the operation to rows or columns
(rows = 1, columns = 2), and the third the function to be applied. The
function can be a built in function taking a single argument (like min), a
custom function, or defined within the apply command:

apply (X = mtcars, MARGIN = 2, FUN = min)

apply(x = mtcars, MARGIN = 2, FUN = function (x)
(100*sd (x)) /mean (x))

# coefficient of wvariation

It is not difficult to calculate such statistics conditional on the state of one of
the other variables. For example say we want the average statistics for each
of the 4 cylinder cars.

mtcars.4cyl <- mtcars[mtcars[,"cyl"] == 4,]
apply (X = mtcars.4cyl, MARGIN = 2, FUN = mean)

In fact, we can calculate statistics of interest conditional on the number of
cylinders using the “split” function in concert with the “lapply” function.
“split” will split a dataframe by a given variable into a “list” of dataframes,
each member of the list being a dataframe subselected by the slitting factor.

{More advanced sub-setting commands are discussed below}

mtcars.cyl <- split(x = mtcars, f = mtcars["cyl"])
# apply the min and mean to each element of the list
mtcars.cyl

lapply (X = mtcars.cyl, FUN = function (x)
apply(x,2,min))
lapply (X = mtcars.cyl, FUN
apply (x,2,mean))

# we much nest the apply within the lapply since each

# element of mtcars.cyl is a dataframe itself!

function (x)

“tapply” is similar to “lapply” and is useful when tabling results.

tapply (X = mtcars$mpg, INDEX = mtcars[c("cyl", "am")],
FUN = mean)
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It appears 4 cylinder cars with a radio are your best bet if you want to
conserve fuel! (although perhaps this is not significant!)

“tapply”, “lapply”, and “apply” can be combined in a variety of manners
to produce useful results (we will not worry so much about these complex
operations). For example:

apply (X = mtcars [’ c (nmpgn’ "disp", "hp", "Cyl", namn) ] ,
MARGIN = 2, FUN = function (x) tapply (X = x,
MARGIN = mtcars[c("cyl", "am")], FUN = mean))

Although the results are readily apparent, I suspect the code is not so
transparent. Luckily, nothing this sophisticated with be required to do the
problems!

Making your own functions

In many situations you will do something often enough that it is useful to
have your own function to simplify this task. In fact many of the functions
you use in R are written in R. Let’s look at a simple example that cubes a
number

cube.it <- function(x) x*x*x
cube.it (3)
cube.it (-3)

Although this could have been accomplished using -3”3, it is instructive to
look at making a function. This is generally of the form

yyy <- function(xl, x2, ...){
operations on xi’s

final line in the object to be returned

}

And is called as
yyy(xl,x2,...)

The covariance of two data vectors X and Y is defined as

> (X, - X)(¥,-7)
Cov(X,Y)=-

n-—1
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So we will make a function called “foo.cov” (we do not want to call is cov
or it would replace the built in function for covariance!)

foo.cov <- function(x, V) {

X.bar <- mean (x)

Y.bar <- mean (y)

Xi.minus.Xbar <- x-X.bar

Yi.minus.Ybar <- y-Y.bar

numerator <- sum(Xi.minus.Xbar * Yi.minus.Ybar)
answer <- numerator/ (length (x)-1)

# length is the number of observations in a vector

# answer we must include the last line so “answer” is
# returned

}

We can compare our function that calculates Covariance to the built in R
routine

XX <- HousedataS$Price
YY <- HousedataS$Area
XX

YY

foo.cov (XX, YY)

cov (XX, YY)

or the same can be accomplished in one line, as:

foo.cov (Housedata$Price, HousedataS$SArea)

Graphics

The incredible flexibility of graphics in R, combined with publication
quality postscript output is one of the primary reasons that many
statisticians migrated to the R statistical language. As with statistical and
mathematical operations in R, graphics can also be included in functions (or
scripted). As aresult very complex figures can be easily recreated if a data-
set changed a small amount. Chapter 12 of the R-intro.pdf is a thorough
introduction to graphics in R. We will give a much less detailed
introduction here. If you really want to read this document, it can be found
here: http:/ /bit.ly /R-Intro-pdf

First lets get some data to plot. R has a number of built in data-sets.
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data (package = base) # list available datasets
data (faithful) # load data of intervals between
# eruptions of old faithful

faithful[1:10,]
attach(faithful)

“eruptions” are the magnitude of observed eruptions and “waiting” is the
waiting time between eruptions in minutes.

Lets look at a histogram of eruption waiting times

hist (waiting)

hist (waiting, breaks = 30) # more bins

hist (waiting, breaks 30, xlim=c(30,110))

# set xaxis limits

hist (waiting, breaks = 30, x1lim=c(30,110),prob=TRUE)
# yvaxis is now frequency versus counts

help (hist)

We can add lines to the histogram that estimate the “density” of eruption
intervals (more about what this is later...for now think of it as a smooth
curve to the data).

lines (density(waiting, bw=1))

What does changing “bw” do?
How would you find out other feature of “lines” or “density”?

lines (density(waiting, bw=5),col=2)

We can, of course make a similar plot for eruptions, try this (note you may
have to make the “bw” parameter much smaller as I do below).

hist (eruptions, breaks = 30, xlim = c(1,5.5), prob =
TRUE, col = 3)

lines (density(eruptions, bw=0.1), col = 2)

rug (eruptions) # I also add the raw observations

You can save these plots from RStudio using the “Export” button above
them. You can also do so by prefacing the plot commands with a “png” or
“pdf” command and suffixing the plot commands with the “graphics.off()”
command to plotting is redirected to the “screen”.

png(filename = "“eruptions.ps”)
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hist (eruptions, breaks = 30, xlim = c(1, 5.5), prob =
TRUE, col = 3)

lines (density(eruptions, bw = 0.1), col = 2)

rug (eruptions) # I also add the raw observations

graphics.off ()

pdf (file = "tonyl.pdf”)

hist (eruptions, breaks = 30, xlim = c(1,5.5), prob =
TRUE, col = 3)

lines (density(eruptions, bw=0.1), col=2)

rug (eruptions) # T also add the raw observations

graphics.off ()

It is interesting that both waiting and eruptions are “bimodal”. Is it
conceivable that longer waits between eruptions are associated with bigger
eruptions?

plot (waiting, eruptions)
plot (waiting, eruptions, pch = 16, col = 2)

Can you change the “x” and “y” limits and add a title to the plot?

R makes constructing beautiful plots easy. Below is a “fun” example with
the faithful data...more intended to “show off” R than teach you how to do
this.

faithful.m <- apply(faithful, 2, mean)
faithful.sd <- apply(faithful, 2, sd)

fm <- apply(faithful, 1, function (x)
(x - faithful.m)/faithful.sd)

# transform both columns to have 0 mean
# and variance of 1
# we will learn how to do this later in the course!

image (as.matrix (fm))

# oooh, I don’t like these heat colors
# turns out the color spectrum is easily manipulated

my.colors <- c(rgb(r=(30:15)
rgb (g=(15:30)

image (as.matrix (fm), col=my.colors)

# or yellow -> blue for those R/G color blind males
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my.colors <- c(rgb(r=(30:15)/30, g=(30:15) /30, b=0),
rgb (b=(15:30) /30, r=0, g=0))

image (as.matrix (fm), col = my.colors)

Stronger yellows are associated with small eruptions and short waiting
times, whereas stronger blues are associated with larger eruptions and
longer waiting times.

For the data here with only two columns a scatter plot is likely to be more
informative, but these image plots are of particular utility when the data is
highly dimensional. They have become a very popular way of presenting
gene expression patterns for thousands of genes over a number of different
treatments. It seems they may also be of utility in other contexts...for
example ecological data-sets in which a large number of species each have
the same 10 measures.

ggplot
In addition to the already available capabilities of R for graphics, you can install
an additional package that makes making beautiful plots really simple (once

you get the hang of it). To start with ggplot we first need to install it:

> install.packages ("ggplot2")
> library ("ggplot2")

There is a lot of great documentation about ggplot online. For now, th
important parts to know are that:

1. ggplot works by adding layers (each added with +)

2. It has "variables" (defined with ‘aes’) that vary according to the value
(usually the columns in your data).

3. And it has parameters like a particular color or shape that are defined
outside ‘aes’.

Let's try it using the data “iris”. This is a famous dataset introduced by the
evolutionary biologist Ronald Fisher in his 1936 paper “The use of multiple
measurements in taxonomic problems”. Ronald Fisher was a man that
developed a lot of useful tools and theories in statistics and evolution but
unfortunately was also a eugenicist. Luckily for us, this dataset is much
more innocent. The iris dataset contains three species of irises (setosa,
virginica, versicolor) and four traits measured for each sample. All
measurements are in cm.
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Ok, let’s try ggplot! The first layer just defines the space and overall
variables. Each of our columns is one of our variables (x, y, color) and that
is why they are defined within the “aes’ parenthesis. They will change
depending on the value of our columns.

>ggplot (data = iris, aes(x = Petal.Length, y =
Petal.Width, color = Species))

Now let's add some points and save our plot as an object to avoid copying
the same many times.

>myplot <- ggplot(data = iris, aes(x = Petal.lLength,
y= Petal.Width, color = Species))+
geom_ point ()+

To make things clearer let's add a trend line. Ways of plotting the data
(points, lines, boxplots) are ‘geom’ layers. Layers that summarize the data
in some ways are often ‘stat’ (as in statistics) layers.

>myplot + stat smooth (method= "1m")

If we want to have a trend for all species together, we can set the variable
for color only in the points. We can change the color of the trend line
outside the “aes’ parenthesis.

>myplot2 <- ggplot(data = iris, aes(x = Petal.Length, y
= Petal.Width) )+
geom point (aes(color = Species))+
stat smooth (method="1m",color = “black”)

Finally, we could change axis and colors (you can call colors by their name
in R, or use hexadecimal codes to call any color you want.

>myplot2 + xlab ("Petal length (cm)"™)+
ylab ("Petal width (cm)")+

scale color manual (values=c ("#D00000",
"#FFBAO8", "#3F88C5"))
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Cleaning up

“1s()” list all the functions in your working directory and “rm()” can be used
to remove objects no longer needed.

1s() # There is foo.cov and several objects starting
with “my”

ls (pattern = "my") # Yup, this lists only the “my”
objects

rm(list = foo.cov)

rm(list = ls(pattern = "my"))

When you quit R (g () ), R will ask if you want to save your work. If you
say "n" all variables in your directory will be lost. If you say "y" they will
be saved to your working directory as ".RData". Next time you start R from
the directing which contains ".RData" all these files will be loaded into your
workspace. This can potentially create a great deal of system overhead....so
it is worthwhile to clean house occasionally. Or make a number of working

directory for different projects!
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R can supply critical values and other useful information for some of the
distributions we discussed earlier. We will examine six of these
distributions in more detail.

Statistical R name additional argument
Distribution in R command
binomial binom size, prob
chi-squared chisqg df

F f dfl, df2

normal norm mean, sd
Student's t t df

uniform unif min, max

The trick is that each distribution must be preceded by a single letter a d, p,
q, or r. This letter tells R that you want either the density, cumulative
density (or probability), a quantile, or a random deviate.

Prefix meaning first parameter
d density=probability at point x x=the point you want
the probability at

p cumulative density=probability up to  x=point that you want
that point the probability up to

q quantile=the value of the statistic p=the desired
which has a probability p of an probability
observation less than it

r random deviates from that n=the number of

distribution deviates

These functions are best understood by going back to a previous example,
Ted the coin toss guy.
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Figure 1. The binomial distribution.

What is plotted in Fig. 1 is the binomial distribution for N = 20 and p = 0.5.
The bars are the density function or the probability at any given point. We
could generate the bar at 9 (that is the probability of seeing exactly 9 Heads
and 11 Tails) by typing;:

dbinom (9, size = 20, prob = 0.5)

or the probability of 9 or fewer Heads by typing:
pbinom (9, size = 20, prob = 0.5)
Consider the following vector:

x <= 0:20

x is now a vector of the numbers 0 through 20

Can you think of a clever way to calculate the probability for every
observed number of heads? How about the cumulative probability? How
about making a figure? [Hint: Does the first parameter passed to these
functions have to be a single number?]

> y <- dbinom(x, size = 20, prob = 0.5)
> plot(x, y , type = "1", col = "red")
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We can also plot continuous pdf’s.

x <- seq(from = -3, to = 3, by = 0.1)

# try typing help(seq) to see what seqg does
y <- dnorm(x = x, mean = 0, sd = 1)

plot(x = x, v =y, type = "1")

We can also use the R statistical table to calculate quantiles.

gbinom(p = 0.25, size = 20, prob = 0.5)
gbinom(p = c(0.025, 0.975), size = 20, prob = 0.5)

What do these two functions tell us?

Can you now calculate the 2.5% and 97.5% quantiles (g1 and g42) associated
with a chi-square distribution with 99 degrees of freedom (corresponding
to the horizontal red lines on page 50)?

How might we put a 95% confidence interval on the probability of a head
given we observe 9 Heads in 20 trials? (see Box 1). Here is a way to "cheat"
and let the computer do this for you

> binom.test(x = 9, n = 20, p = 0.5)

Box 1: Confidence intervals on an observed proportion

We want to establish the underlying binominal probabilities that would
result in the observed numbers of successes “or worse” in the observed
number of replicates. Therefore if we observe S successes in N trials we
want:

Prob(X < S; N, pug) = 2.5% for the upper bound
Prob(X = S; N, prg) = 2.5% for the lower bound

Note that Prob(X > S) =1 - Prob(X < 5-1) for integers, Thus we can solve

Prob(X < S-1; N, prg) = 97.5% for the lower bound. In R we would find a
pLs) such that

> pbinom(x = S-1, n = N, p = pLB) = 0.975
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Some Useful Statistical Tests

R has a number of built in statistical tests. You were introduced to the
binomial test in the above example. Two other useful built-in functions let
you carry out a chi-square test and a t-test. Let's examine the Chi-square
test first. First we have to enter the data in the earlier example (Is sex-ratio
influenced by rearing temperature in turtles?) into R.

male.hatch <- ¢ (50, 70)

female.hatch <- ¢ (50, 20)

sex.ratio <- rbind(male.hatch, female.hatch)
sex.ratio

Remember that the rbind function “glues” rows together to create a
matrix. Now let's tell R to do a Chi-square test:

chisqg.test (sex.ratio)

(you may notice that the Chi-square statistic is slightly different from the
one we calculated previously. This is due to the Yates' continuity correction.
We will not worry about that here.)

Enter the data from "Desiccation resistance in flies selected to resist starvation"
into R.

cntrl <- ¢(8.4,8.1,5.1,7.06,4.7,10.7,5.7,4.1,8.1,6.8)
strv <-
c(1l2.4,15.8,11.7,8.06,12.6,11.1,10.5,7.3,7.2,10.8)

We can do a t-test on this data using the t . test function
t.test(x = cntrl, y = strv)

Sometimes we do a t-test on "paired" samples. In the case of the example
the data above the data are naturally paired, since each population is
derived from a different base population. If instead all the populations
used in the experiment were derived from a single base population then the
data is not necessarily paired. Paired data is commonly encountered in
biological datasets, as often-times an experiment collects observations from
a set of individuals before and after some treatment (e.g., blood pressure
before and after a patient receives Lipitor®). In the case of paired data the
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null hypothesis becomes: the average difference between treatment over
matched pairs is zero. And a paired t-test is carried out by typing

t.test(x = cntrl, y = strv, paired = TRUE)

Notice that performing the t-test and paired t-test yield different test
statistics and p-values.

Other Resources

Download "An Introduction to R" under Documentation at:
"https://cran.us.r-project.org/".

Problem Set #1 (10 points):

1. i) Plot a binomial distribution for three different pairs of values of p and
N; ii) plot a Chi-square distribution for three different degrees of freedom,
and; iii) plot a t-distribution for three different degrees of freedom. For
EACH set of distributions, note how the shape of the distribution is affected
by changing parameters. You must choose an appropriate range of values
for the x-axis so that the at least 99% of the density of the distribution is
visible. A common mistake is to plot a range that doesn’t capture the shape
of the distribution. Doing this will lost credit.

2. i) Plot a cumulative probability distribution similar to the one in the coin
toss experiment, but for the probability of the number of sixes rolled in 10
rolls of a die (a die has 6 sides!).

ii) If we observe four sixes in 10 rolls, is this die likely to be loaded? If we
observe a six four times out ten what is a 95% confidence interval on the
underlying probability of rolling a six?

iii) Say instead we had rolled 40 sixes out of 100. Is the die likely to be
loaded? What is a 95% confidence interval on the probability of rolling a
six?

iv) Say instead we had rolled 400 sixes out of 1000. Is the die likely to be
loaded? What is a 95% confidence interval on the probability of rolling a
six?

Hint: use binom. test () for parts ii-iv.

3. If two heterozygous parents (i.e., both Aag) mate, they produce offspring
in the expected Mendelian proportions (i.e., 1/4 AA, 1/2 Aa, 1/4 aa). We
observe a big Drosophila family of 40 offspring of which 7 are aa.

i) Construct a 95% confidence interval on the observed proportion of aa
offspring (7/40). What does this confidence interval tell us about our null
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hypothesis? Hint: our null hypothesis is that Mendelian laws have not been
violated.

ii) Are 7 or fewer offspring statistically consistent with Mendelian
expectations? Hint: figure out the probability of observing 7 or fewer
offspring in such a family, if Mendelian laws have not been violated.

iif) How few offspring of type aa would we have to observe in order to be
suspicious that Mendelian proportions are being violated? Is your answer
a test of a one-tailed hypothesis or a two-tailed hypothesis?

Problem Set #2 (10 points):

1. Make up a story with new data like "Is sex-ratio influenced by rearing
temperature in turtles?" for a different problem (unrelated to sex or
temperature) that can be tested using a Chi-square analysis. Analyze it in
R. State your null and alternative hypothesis and interpret the p-value.

2. Make up a non-biological story and data to go with it similar in flavor to
"Desiccation resistance in flies selected to resist starvation" that requires a t-test.
Analyze it in R. State your null and alternative hypothesis and interpret the
p-value.

3. Input the dataset "ASC.data.txt" into R (you will have to load this
data into your computer using read. table). The first four columns are
bristle number measures taken from different parts of the fly calculated in
males and females and the remaining columns are molecular
polymophisms in a gene region call achaete-scute known to effect bristle
number development. Rows are different lines we maintain in the lab. Itis
hypothesized that a subset of the DNA polymorphisms in this region have
effects on bristle number.

i) Calculate the mean, variance, standard deviation, and min and max for
each column. Hint: While you must use apply () for var () and sd (), the
function summary () works on columns of matrices by default, and
produces mean, min and max.

ii) Calculate the variance/covariance, and correlation matrices associated
with this data. Hint: var () and cor () will produce covariance and
correlation between all possible combinations of columns. NB: The
covariance between a column and itself is its variance. Confirm this by
comparing your answers here to your answers in i) above.

iif) To visualize this data, make at least one scatter plot (using the "plot"
command), and at least one histogram. Pick any subsets of the variables
you wish to do this, and describe in words the relationships between the
variables.
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4. In the "Desiccation resistance in flies selected to resist starvation" example, is
there any evidence that the variances in survival times in the control
populations versus the starvation-resistant populations differ? Hint:
construct a 95% confidence interval on the observed variances (see page 49).
You will have to calculate quantiles of the chi-square distribution to
estimate g1 and g».
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Monte Carlo Simulation

The last chapter focused on the concept of hypothesis testing. We
introduced you to a distilled view of how statistics works. Namely:

1. You set up a null hypothesis and an alternative hypothesis.

2. You record your data and then calculate some "statistic" or summary of
the data.

3. You count on a statistician having determined the distribution of your
statistic given that the null hypothesis is true.

4. You look and see where the observed value of your statistic falls in that
theoretical distribution. You determine if your observed values are likely
to have occurred by chance alone?

We also introduced you to some statistical distributions used for testing
certain types of data. Specifically, you were introduced to the binomial,
Chi-square, and t-distributions. In our introduction to R we described a
number of other distributions but didn't discuss the circumstances under
which these distributions are used. We attempted to plot the distributions
whenever possible so that the concept of a test-statistic being "extreme" was
visually illustrated.

This is all very convenient. If we lived in a truly tidy universe hypothesis
testing would be simple. But what do we do if we can not write down the

distribution of some test statistic under the null hypothesis?

Lets consider the example below:
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Above a normal probability distribution function (i.e., dnorm(x,0,1)) and a
normal cumulative probability distribution function (i.e., pnorm(x,0,1)).
Note: gnorm(prob,0,1) would give the value of the “x-axis” in the lower
panel associated with any given probability (“prob”) fed to the qnorm
function.

Certain statistics of interest under specific null hypotheses come from
KNOWN distributions such as those above. Examples include the t-statistic
which under the null is distributed as a t-distribution and the Chi-square
statistic which under the null is distributed as a Chi-square distribution (we
will see this in Lecture 10). Note the distinction between a statistic and a
distribution. A statistic is some sort of summary number we can calculate
from the data, whereas a distribution is a theoretical construct represented
by a function that integrates to one.

Now lets imagine a process which is not nearly so neatly specified by a
theoretical distribution. A great example of this is a Japanese game of
chance called “pachinko” in which steel balls are fed into a machine. The
steel balls collide with various pins while falling and depending on the pins
they collide with (and which way they bounce after hitting pins) end up in
a different collection bin at the bottom of the game. It's extremely
complicated and would be very hard to model statistically. You can find a
lot of examples by typing in “pachinko” into YouTube:

https:/ /www.youtube.com/results?search_query=pachinko

For the sake of discussion, we’ll briefly consider a similar, but far simpler,
game called Plinko, played on a gameshow called the The Price Is Right. In
this variant, the player places a disk, rather than steel balls, at the top of the
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board, that then bounces off of pins as it falls down to eventually land in
one of nine collection bins (see first picture on next page).

Lets say we number the various bins 1 through 9. An interesting statistical
question is: Given that we know the rules which determine how balls fall
within the Pachinko can we derive the distribution of the frequency that
any given ball ends up in each of the 9 bins? Of course, the ability to
determine these types of distributions have important applications
whenever we can describe the processes (biological or not) that gives rise to
the statistic we keep track of. Oftentimes we can determine these
distributions by a process calls “Monte Carlo Simulation” even when we
can not write down an analytical solution for the probability distribution
function. Thus such Monte Carlo simulations have wide applicability in
biological situations. Let’s simplify our Plinko board even more. Consider
a board with only 6 bins and considerably pins. Furthermore, let’s force the
player to drop the chip directly above the top pin (see second image on the
next page).

33:33:33

70:30
@

4
50:50

0
; -
—— o] e
.

A diagram of a model of a simplified

Plinko game

40:60
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The Plinko game

Consider the above process on the next page. What we have here is a
Pachinko machine in which we know the probability a ball goes right or left
at any given pin.

In this particular machine the probability of ending up in each of the bins is
“known”

Bin Probability
0.5*0.4
0.5*0.6
0.5*0.7
0.5*0.3*0.333
0.5*0.3*0.333
0.5*0.3*0.333

NGl W DN -

With a resultant probability distribution function:
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Now say we wanted to run a computer simulation of the process that gives
rise to the above distribution, as opposed to directly calculating the
resulting pdf.

0.30
|

0.20
|

Probability

0.10
|

0.00
L

Bin

Consider the following “program” where “rx” implies getting a single
uniform random variable between zero and one.

Bin 1

Y
v #(2<0.4) —N—» Bin2

—>(r1 <0.5) N Bin3
N2 2 <03) <
Y

(13 <0.33) —» Bin 4
(r3>0.33 & 13 <0.66) —» Bin5
(r3 >0.66) — Bin6

The above program would start on the left and through subsequent calls to
the random number generator “wind” its way down the Pachinko machine.
Each run of the machine would start at the left hand side and end when it
reached one of the 6 Bins. Each run can be thought of as a single realization
of the process that gives rise to the pdf above - that is it can be thought of
as one trial of the Plinko game. By repeating this process a large number of
times and keeping track of the result each time we can get the distribution
of the resultant statistic (visually just like the barplot above).

In terms of a computer program we would start all the Bins at zero, run the
Pachinko trial a large number of times (say one million) and for each trial
“increment” the value in a Bin by one if the ball ends up in that bin. In the
end we would just count up the number of balls in each bin (i.e., the value
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of that bin) and divide by the number of trials to get the probability of each
outcome.

Luckily in the modern world we can often simulate on a computer the
distribution of some test statistic under the null hypothesis, despite the fact
that we cannot write down an analytical solution for that test statistic. We
do this using something called a Monte Carlo simulation. This works by
recreating on the computer the process that gives rise to the data we are
measuring a large number of times. We can then use these results to
empirically estimate the distribution of some test statistic we are interested
in. We can do this for something as simple as the binomial distribution, as
complex as the variance among a set of populations of Drosophila that are
experiencing random genetic drift, or things much more complex than that.

A re-derivation of the Binomial Distribution (p = 0.5, N = 20)

II.

II1.

We wish to carry out a Monte Carlo simulation to "derive" a binomial
distribution via computer simulation. The approach we will use to do this
is outlined below:

Write a function that simulates a single binomial trial comprised of 20
events, each with a probality of success of 50%

Run this function 10,000 times, recording the number of success in each
trial

Compare this simulation to the theoretical distribution

Below is a set of R commands which implements our Monte Carlo
simulation of the binomial distribution for prob = 0.5 and size = 20. It looks
difficult so we will walk through it line by line following the code.

# 1: a function to run a single binomial trial
binom trial <- function(size, prob) {
sum (runif (size) < prob)

}

# 2: a function to run many binomial trials
my rbinom <- function(n, size, prob) {
replicate(n = n, expr = binom trial(size = size, prob = prob))

}

# 3: define variables for the simulation
p <- 0.5; trial size = 20; num trials <- le4

# 4: simulate!
result.mc <- my rbinom(n = num trials, size = trial size, prob = p)
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# 5: table() counts the frequency of each number

# plot() is smart enough to do the "right thing" with a table

# type = 'o' overlaps points on top of a line

plot (table(result.mc) /num trials, type = 'o', pch = 19, col =
'gray')

# 6: points adds points to an existing plot
# this plots the theoretical distribution against our Monte Carlo

simulation
points(x = 0:trial size, y = dbinom(x = O0:trial size, size =
trial size, prob = p), col = 'red', type = 'o')

The first statement (#1) defines a function named binom trial () which
simulates a single binomial trial. A binomial trial is composed of observing
an event size times. Each independent event results in success with a
probability of prob and failure with a probability of 1-prob. The function
determines success by generating several random numbers (specified by
size) uniformly distributed between zero and one using the built in
runif () function. By definition, a random uniform number has a
probability of prob to be less than prob. Consequently, we count each
random number less than prob as a success. By summing up how many
numbers are less than prob, we count the number of successes.

Statement #2 is far simpler. It defines a function called my rbinom() that
calls our binom trial () function n times by using the built in function
replicate (). Functions like my rbinom() which are mainly designed
to call other functions are often referred to as “wrapper functions”. This
wrapper function effectively runs n binomial trials.

In the next line (#3), we define the number of events in a trial
(trial_size), the probability of success of an event (p), and the number
of trials (num trials). Then (#4) we call our simulation function and
supply the variables from #3 and save the number of successes for each trial
to the variable result.mc.

In the next line (#5), we tabulate the number of trials resulting in 0
successes, 1 success, 2 successes, etc. using the table () function and
dividte it by num trials to get a probability. These numbers are passed
directly to the plot () function, which is smart enough to plot this number
appropriately. We specify that the plot is in gray. Finally (#6), we use the
points () function to plot the theoretical expectation, which we get from
the dbinom () function.

The plot function has a number of useful options:
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e type = “p” for points, “1” for lines, b for “both”
etc

e lty = 1,2,etc. specifies a line type (solid, dashed, etc.)

e pch = 0, ...,25specifies the symbol plotted

e xlab = ”thelabel you want on the x-axis”

e ylab = "the label you want on the y-axis”

e xlim = c(min, max) specifies the range of values plotted on the
X-axis

e ylim = c(min, max) specifies the range of values plotted on the
y-axis

Closely related to the plot function are the 1ines (x, y) and points (x,y)
functions. These function add lines or points respectively to a pre-existing
plot. They use the same options as the plot command. We used the
points () function in the above example to plot the predicted probability
densities for the binomial on the same figure as our Monte Carlo simulation.

So why is this so cool?

The important point to understand with this example is that we have used
the computer to produce a binomial distribution without working out the
probability distribution theoretically or even relying on R to do it for us. In
order to do this we simulated a large (10,000) number of samples from a
process identical to the one the binomial distribution assumes, but without
recourse to the actual binomial distribution. The powerful feature of this
approach is that if we then did a coin toss experiment and observed some
outcome (e.g., 3 Heads), we could assign a probability to the event
happening by chance alone - without knowing anything about the binomial
distribution. Obviously, in the case of the coin toss experiment this was a
lot of work compared to just using the known distribution. But the Monte
Carlo approach can easily be extended to more complex models that are
difficult, or perhaps even impossible, to model analytically.

A re-derivation of the t-distribution (10 samples versus 10 samples)

We will do another example of a Monte Carlo simulation, this time for the
example "Desiccation resistance in flies selected to resist starvation". Like the
last example, we will first look at the algorithm we will try to write R code

for.
L. Write a function that simulates a single t-statistic from a two samples, both with 10
observations. Each sample is drawn from a random normal variable with mean zero and
standard deviation one. The formulate for the t-stastic we’ll be using is:
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jﬁ'-ji

=

II.  Write a wrapper for the function above and run it 10,000 times;
III. ~ Compare a histogram of our simulated t-statistics to the theoretical
expectation.

Below is the R code. We will work through this example line by line.

# 1: Function to simulate a t-statistic from two samples
single rt <- function(sizel, size2) {

x1l <- rnorm(sizel)

x2 <- rnorm(size?2)

( mean (x1)-mean (x2) ) / sqrt( (var(xl)/size2)+ (var(x2)/sizel) )
}
# 2: A wrapper to run the single rt() function many times
my rt <- function(n, sizel, size2) {

replicate(n = n, expr = single rt(sizel = sizel, size2 = size2))

}

# 3a: Define conditions for a simulation.
num_reps <- led4; N1 <- 10; N2 <- 10

3b: Run the simulation and obtain simulated t-statistics
.stats <- my rt(n = num reps, sizel = N1, size2 = N2)
3c: Get the values of the theoretical t distribution using the
degrees of freedom related to our simulation.
_theory <- seqg(from = -5, to = 5, by = 0.01) # Where to evaluate
theory
y_theory <- dt(x = x theory, df = N1+N2-2)

X e T

# 4: Plot the simulation and theory results on the same graph.

hist(t.stats, prob = TRUE, breaks = 25, xlim = c(-5, 5), ylim =
c(0, 0.41))

lines(x = x_theory, y = y theory, col = 'red')

First (#1) we write a function that simulates two random samples. The only
difference between them is one has sample size sizel and the other has sample
size size2. Next (#2), we wrap the function from #1 in a function that lets us run
it as many times as we want using the built in replicate () function.

We now (#3a) set variables to hold the number of control and evolved
populations (N1 and N2) and the number of simulations we want to run
(num_reps). We use the values to both run the simulation (#3b) and to
obtain the predictions from theory (#3c).

Finally (#4), we plot a histogram of our simulation and overlay the
theoretically predicted probability density. Remember, a histogram
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constructed with prob = TRUE is an approximation of the probability
density of the distribution underlying the data. If the Monte Carlo
simulation is working, the observed cumulative distribution should be
similar to the theory!

A question that may arise is how did we “know” to seed the Monte Carlo
matrix with numbers from a random normal distribution? It turns out that
as n gets big, the t-statistic is distributed according to a t-distribution as long
as the individual observations are drawn INDEPENDENTLY from the
SAME distribution. This claim is explained by something called the Central
Limit Theorem. So if I were to define something called:

my.distribution <- ¢(1, 17, 42, 5, o6, 40, 3, 10, 45,
40, 1, 4, 7, 6)

That is, the above numbers occur with equal probabilities then I could have
replaced the following two lines

X1l <- rnorm(sizel)
x2 <—- rnorm(size?2)

in the above example, with

x]1 <- sample(x = my.distribution, size = sizel,
replace = TRUE)
x2 <- sample(x = my.distribution, size = sizeZ2,

replace = TRUE)

as the sample (x, n, replace = TRUE) will draw a sample of size n
with replacement from the vector x. Where “with replacement” means after
drawing an observation you put it back in the “pile” to potentially be drawn
again. Think of it as drawing a card from a deck, replacing the card,
shuffling the deck, and drawing again - you could draw the same card
twice in a row We will not make use of this observation, but it has very
important ramifications for more advanced courses on the design and
analysis of experimental design.

What is the distribution in the variance of allele frequencies in a hypothetical
drift experiment?

In the last two examples the distribution of the corresponding statistic was
known. The next two examples deal with distributions that are either not
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known, or more difficult to figure out. Lets consider a random genetic drift
experiment, like the one you did in the lab portion of the course.

We will simulate 10,000 replicates each consisting of 10 populations. Below
is the algorithm we will employ:

I.  First we will “seed” a simulation. We will simulate 10 vials, each
starting with 10 copies of the “w” allele and 10 copies of the “wild
type”.

II.  Now to generate the next generation for each vial draw a random

binomial deviate of size 20 alleles with the probabily of drawing a
"w'" allele being equal to its observed frequency in the vial from the
preceding generation.

II.  Repeat this process for 5 generations. We are now done the Monte
Carlo simulation for a single replicate.

IV.  Repeat the above process 10,000 times to get the fully replicated
simulation.

Or as a picture:

53 -

l Sample from each

i i vial to create the

next generation
Simulate this sampling process
for several generations -

Simulate 10,000 Monte Carlo replicates of this experiment

We start out with 10 populations with initial allele frequency = 0.5,
population size = 20 alleles (i.e, 10 diploid individuals) and then let them
drift for 5 generations. Each population is then completely characterized
by 20 copies of the white locus (some fraction WT and some fraction w-).
We repeat this 10,000 times to get our simulation. We will step through this
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very careful in the code below. There’s no way to sugar coat this. There is a
lot of code below and it uses most of the R programming concepts you've
leared up until now.

The next page and a half might seem tough at first. But a few things make
it not so bad. First, most of the code is actually just comments. Anything
following the hashtags (#) is a comment and is ignored by R. But those
comments are useful to us, the people reading the code. Whenever you
write code, please try to do the same thing. It really makes life easier for
others. The second reason the code isn’t as bad as it might seem at first is
that we’ve already sketched out our basic approach both in words and in a
diagram above. Now all we must do is translate that into code.

If you haven't already, now is the time to review the learning R videos
and to take the interactive R tutorial. You can review how to run the
interactive swirl() tutorial in the section above titled “Getting up to Speed
with R Using swirl()”. The videos can be found here:
http:/ /bit.ly/E115L_LearningR
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# This function simulates a binomial experiment with sample size of
# size and a probability of success x. The number of successes 1is
# divided by the sample size to get another frequency.
drift step <- function(x, size) {

rbinom(n = 1, size = size, prob = x)/size

}

The goal of this function is to run the drift step() many times.

It will run for several different populations each generation (equal
to the number of frequencies specified by pop frequencies).

It will perform num generations generations of simulation. The
starting frequencies are specified by the values in pop frequencies.
drift sim <- function(pop size, num generations, pop frequencies) {

# Creates a matrix with num generations+l rows and pop frequencies

H o HE 3E E

# columns.

# Each column is a single population. Each row is a single generation.
# The first row will hold the starting conditions, or generation O.

# Each value in the matrix is an allele frequency for a population at a
# particular generation.

ans <- matrix(nrow = num generations+l, ncol = length(pop frequencies))

# This assigns the starting allele frequencies to the first row.
ans[1l,] <- pop frequencies # GCeneration 0 is row 1.

# We're going to step through each generation. We keep track of which
# generation we're on with the value 1.
for (i in l:num generations) {

# Fill the next generation (i+l) with results by simulating
# based on frequencies from the current generation (i).
# The drift step() function simulates one step of genetic drift
# using a random binomial deviate. sapply() does its magic by
# executing the drift step() function for every value in ans[i,].
# Finally, we pass the parameter size to drift step() by giving it
# sapply() .
ans[i+l,] <-

sapply(

X = ans([i, ],

FUN = drift step,
size = pop_ size

}

return (ans)

}

# This function simply applies the mean () and var () function to its argument
# and returns both results with meaningful names. We'll use it later.
summarize function <- function(x) {

# Calculate mean(x) and var (x)

ans <- c(mean(x), var (x))

# Give names to the results.

names (ans) <- c('mean', 'wvar')

return (ans)

# In the schematic figure above, this function first simulates a single
"sheet". Then it summarizes the generations (ie rows in that "sheet")
# returning a mean and a variance for each generation simulated.

=+
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drift summary <- function(pop size, num generations, pop frequencies) {

sim <- drift sim(pop size = pop_ size, num generations = num generations,
pop_ frequencies = pop frequencies)

ans <- apply(X = sim, MARGIN = 1, FUN = summarize function)

colnames (ans) <- paste('gen', 0O:num generations, sep = ' ')

return (t (ans))

drift.mc <-
replicate(
n = le4,
expr =
drift summary (
pop_size = 20, num generations = 5, pop frequencies = rep(0.5, 10)

)

par (mfcol = c(3,2))

hist(drift.mc['gen 1', 'var',], xlim = c(0, 0.2))
hist(drift.mc['gen 2', 'var',], xlim = c(0, 0.2))
hist(drift.mc['gen 3', 'var',], xlim = c(0, 0.2))
hist(drift.mc['gen 4', 'var',], xlim = c(0, 0.2))
hist(drift.mc['gen 5', 'var',], xlim = c(0, 0.2))

In a hypothetical experiment, let’s say an experimenter observed a variance
in allele frequencies of 0.05 in the first generation after establishment. Based
on our Monte Carlo simulation, what is the probability of seeing a variance
larger than 0.05 by chance alone? In theory we can estimate this from the
histogram we just made. Or we could take a slightly more sophisticated
approach:

sum(drift.mc['gen 5', 'var',] > 0.05)/1le4

In short, we ask for all the independent replications of the entire experiment
(10,000 or 1e4) for which the variance was greater than 0.05 and take its
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length. This is the total number of Monte Carlo replications for which we
observed a larger variance larger than 0.05. Now we just divide by 10,000
to change that to a frequency. You can do something analogous for any
time point or statistic you are interested in.

Iterative Solutions to an Equation and Iterative Processes

R contains control structures that allow the user to “loop” through a set of
calculations. Below is such an example:

x <= 0
for (1 in 1:10) {
x <- x+1

}
print (x)

The statement for (1 in 1:10) sets the variable i equal to 1 and then
carries out the statement in brackets. The variable i is then incremented to
2 and the statement in curly brackets is repeated. This goes on until 1=10
and the statement is carried out for the last time. Verify for yourself that
this will result in the variable x having a value of 55.

Selection and drift

{Review making your own function on page 64}

In R it is relatively straightforward to write your own functions. I have
written two such functions for you to enjoy.

drift.select(x,N,wll,wl2,w22)
evolve.time (x,N,wll,wl2,w22, time)

where x is a column vector of starting allele frequencies p(A) (for example
the starting frequency of the "w" allele), N is the population size, w11, w12,
and w22 are the fitnesses of AA, Aa, and aa respectively, and time is the
number of generations to run the drift/selection experiment. These two
functions allow you to easily do a Monte Carlo simulation of a small
population that incorporates BOTH random genetic drift and natural
selection. The easist way to get functions into R is simply to use copy and
paste. Then you can view the functions by typing their names with no
parentheses
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# This function takes single starting frequency, and applies
# genetic drift and natural selection to it.
drift.select <- function(x, N, wll, wl2, w22) {

# x is column of starting frequencies

# N is diploid population size

# wll, wl2, and w22 are fitnesses

if(x !'= 0 || x !'= 1) {

}

# drift term

X <= rbinom(n = 1, size = N, prob = x)/N

#selection term

X <- xXx +

(x* (1-x) * ( x*(wll-wl2)+(1-x)*(wl2-w22) )) /
(Wll*x"2 4+ wl2*2*x*(1-x) + w22*(1l-x)"2)

return (x)

}

evolve.time <- function(x, N, wll, wl2, w22, time) {
# x is a vector of starting frequencies
# N is diploid population size
# wll, wl2, and w22 are fitnesses
# time is number of generations
ans <- matrix(nrow = length(x), ncol = time+l)
ans[,1l] <- x
for(i in 1l:time) {

ans[,i+1] <- sapply(X = ans[,i], FUN = function (x)

drift.select(x, N, wll, wl2, w22) )

}

return (ans)

You run evolve.time () for a given set of starting allele frequencies,
population size, fitnesses, and number of generations (time). evolve.time
will then just run drift.select() for "time" generations. Each
generation it generates a new column of allele frequencies and appends it
to the starting column, subsequent generations using this new allele
frequency to start the next generation.

drift.select () calculates a new allele frequency based in part on the
fact that a binomial distribution predicts the change in allele frequency over
one generation due to genetic drift. The first term is the change due to drift.
The second term predicts the change in allele frequency due to the action of
natural selection. The equation used in this term can be found in any
population genetics or evolution text book.
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A really useful property of functions is that they can be simply used without
caring a great deal about how they actually work. Here is an example of
evolve.time in action:

# start 75 replicates each at 50% as a column vector
p.start <- rep (0.5, 75)

# run 50 generations at a diploid population size of 25
Aa.most.fit <- evolve.time(x = p.start, N = 25, wll = 0.9,
wl2 = 1, w22 = 0.6, time = 50)

all.fit.equal <- evolve.time(x = p.start, N = 25, wll = 1,
wl2 = 1, w22 = 1, time = 50)

par (mfrow=c(2,1))

plot (0:50, apply(Ra.most.fit, 2 ,mean), xlab = "generation",
ylab = "mean", ylim = c(0,1), type = "1")

lines (0:50, apply(all.fit.equal, 2 ,mean), col = "red")

Aa.most.fit.var <- apply(Ra.most.fit, 2, var)
all.fit.equal.var <- apply(all.fit.equal, 2, var)
varrange <- range (c(RAa.most.fit.var, all.fit.equal.var))
plot (0:50,

Aa.most.fit.var, xlab = "generation",

ylab = "var", ylim = varrange, type = "1")
lines (0:50, all.fit.equal.var, col = "red")

First we make a column vector consisting of 75 "0.5's". They represent 75
populations each with a starting frequency of 50%.

Then we run evolve.time for 50 generations. In the first case the
heterozyogote is the most fit, in the second case all three genotypes have
the same fitness.

Remember apply(matrix, 2, mean) will take the mean of each column of
matrix. The output of evolve.time is a matrix in which each column are 75
replicate evolved populations, and each additional column is a generation
of evolution. Therefore the "plot" commands plot either the average allele
frequency against time, or the variance in allele frequency against time. I
have used the "ylim" parameter and the lines command to put the plots on
the same figure.

When the heterozygote is the most fit, what do we expect the allele
frequencies to do over time? Why do the means differ when the
heterozyogte is most fit compared to when all genotypes have equal fitness?
Why do the variances differ?

Evolution Laboratory Notebook page 96




Mueller, Rose, Emerson, Rebolleda-Gomez and Long Evolution Lab Manual — Spring 2023

Problem Set #3 (10 points):

Reminder for all plots: You won’t get full credit unless your plots show
appropriate x and y axis ranges. For plotting distributions, this means we
need to see all or most of distribution. Distributions like the normal have
non-zero density from -o to «, so obviously we can’t ask you to plot
everything. Also, for binomial distributions with a large size parameter,
most of the distribution fits in a narrow window. Even though you can plot
the whole distribution, you can plot it for the x range containing most of the
density. Of course, never chop off the y range of a distribution!

1. Plot a binomial distribution for the three different pairs of values of p
and N you used in problem set #1 without using to the theoretical binomial
distribution provided by R.

2. Plot a figure similar to the one in the coin toss experiment, but for the
distribution of rolling sixes in 10 rolls of a die (a die has 6 sides!) without
recourse to the binomial distribution. If I rolled 4 sixes is this die likely to be
loaded? What is the probability of rolling 4 sixes in 10 rolls, according to
your Monte Carlo simulation? Hint: use the “sort” and/or “sum”
commands.

3. In the last assignment you made up a story like "Desiccation resistance in
flies selected to resist starvation" that required a t-test and analyzed it in R. Re-
analyze it using a Monte Carlo simulation. Calculate your t-statistic,
compare it to your simulated distribution, and explain whether or not you
reject your null hypothesis.

4. Use the Monte Carlo simulation for the “Desiccation resistance in flies
selected to resist starvation” example (p.81) to answer the following questions.

i) What is the distribution under a Monte Carlo simulation of a t-statistic
when the standard deviations of the two samples differ by two-fold?
Compare this distribution with the theoretical t-distribution. What
conclusions can you draw from this comparison?

ii) What is the distribution of the t-statistic when the null hypothesis states
that the means and the standard deviations of the two groups vary by two
fold (sample sizes still 10)? Compare this distribution with the theoretical
t-distribution. What conclusions can you draw from this comparison?

iif) What is the distribution of the t-statistic if the means stay the same, but
standard deviations vary by two-fold and the sample size of the first sample
is 4 and the second is 12? Compare this distribution with the theoretical t-
distribution. What conclusions can you draw from this comparison?
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Problem Set #4 (10 points):

1. Is the variation in allele frequency estimates from your drift experiment
different from that expected due to chance alone:

i) in the Monte Carlo simulation example?

ii) in a Monte Carlo simulation example with an effective population size
equal to that of your experiment?

iii) Is there any evidence for the mean allele frequency differing from that
expected by chance alone?

iv) What happens to the variance in allele frequency over time?

2. Run evolve. time for the parameters given in the example. Why do the
means and variances of allele frequencies differ for the two examples? Run
evolve.time (500 replicates) of each “experiement” (exp) for the
following parameter values:

parameter expl exp2 exp3 exp4
N 50 200 50 200
wll 0.8 0.8 1 1
w12 1 1 1 1
w22 0.6 0.6 0.2 0.2
time 50 50 50 50

Explain the differences and similarities in summary statistics and figures
generated from these four Monte Carlo simulations using evolutionary
arguments. Hint: in your plots, compare experiment 1 with experiment 3,
and experiment 2 with experiment 4.
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Phylogenetic Inference

We can obtain DNA sequence from a number of individuals, each being a
representative of a different species. We often assume that the majority of
the DNA sites are evolving in a neutral fashion. Under this assumption the
rate at which differences accumulate between species is proportional to the
mutation rate, pu. If we further assume that the mutation rate is
approximately constant throughout the evolutionary history of the
molecule being examined, then the number of differences separating any
two sequences is proportional to the amount of time the species have
diverged (in generations).

Under the above assumptions we can use the “distance” between sequences
to construct a phylogenetic tree representing how and when species have
diverged from one another. These phylogenetic trees are used in a large
number of contexts in evolutionary biology. They are often constructed
using quite sophisticated algorithms. This introduction to phylogenetic
trees will use a very simple tree building algorithm. The intent of this
approach is to introduce you to the idea of phylogenetic trees and some of
their uses.

Constructing a distance matrix

Lets read in some example data (remember to download any files needed
to your desktop and change to the proper working directory)

examp <- read.table("example.txt", row.names=1)

examp
cat a C g g t C a t t
puma a C C g t C a t C
dog t t g g a c a t c
wolf t t g g t c a t c

This is an example of DNA sequence data. Rows represent different species
and columns polymorphic DNA sites. These data are obtained from
sequencing DNA from the same gene from each of a number of different
species and aligning these sequences. For typical genes from "closely
related taxa" it is easy to align the DNA by hand or computer as the majority
of sites with be monomorphic. In order to carry out a phylogenetic analysis
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only the polymophic sites are informative, and as a result we only need
work with a fraction of the sequence data. The row.names option to the
read. table function tells R to make the first column of the data the name
of each row.

I have written a function which will automatically construct a distance
matrix for a set of DNA sequences. Such a matrix measures the number of
DNA sequence differences separating all pairs of sequences divided by the
total number of polymorphic sites examined. This function can be “loaded”
into R using cut and paste on the code below.

seqg.dist <- function (seq) {
rs <- nrow(seq)
cs <- ncol (seq)
m <- matrix(nrow = rs, ncol = rs)
for(c in 1l:rs){
for(r in 1l:rs){
x <- sum(apply(seq, 2, function(x) x[c] != x[r]))/cs
m[{c, r] <- x
}
}
ans <- as.dist (m/2)
attr (ans, "Labels") <- rownames (seq)
return (ans)

The function will loop over all species pairs (that is all rows of seq) -- this
is specified in the the for (¢ in 1:rs) and for (r in 1:rs) commands.
For each pair of species the function will calculate the total number of sites
at which species A and B differ and divide by the total number of sites (i.e.,
sum (apply (seq, 2, function(x) x[c] != x[r]))/cs). For each
comparison the function will take this value of “divergence” and use it to
build a matrix whose [a,b]t element is the divergence between species A
and B. I encourage you to attempt to understand how this function works
- although it is possible to use it as a “black box”.

Use seqg.dist () to calculate the distance matrix associated with our
example.

examp.dist <- seqg.dist (examp)

Each element of example.dist is the distance between two species. This
matrix can now be used to construct a phylogenetic tree.
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Box 2 UPGMA: Unweighted Pair Group Mean (from B. Gaut)

1. Assume the following distance matrix. The matrix can represent
distances between sequences or phenetic distances

Species A B C D E

0.10

028 0.32

041 039 040
039 041 040 0.20

mg N Wy

2. Start by choosing the two most closely related species and start to make
a phylogeny by drawing branches between the two species. Take the
distance and divide it by 2. For example the branches connecting
species A and B should look like this:

0.20 0.15 0.10 0.05 0.00

Percent dissimilarity

Notice the scale bar on the bottom. Notice also that the horizontal branch
length going to B is length 0.05 (0.10/2). The vertical branch length doesn’t
really mean anything - it’s just there to differentiate between the branch
leading to A and the branch leading to B.

3. Re-make the dissimilarity matrix by combining species A and B. In the
matrix above, species A is 0.28 different from species C and species B is
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0.32 different from C; we combine by averaging - e.g., (0.28 + 0.32)/2 =
0.30. If you do this for all species, you will get a matrix like this:

Species A-B C D E

A-B

C 0.30

D 040 0.40

E 040 040 0.20

4. Choose the two most similar species from the matrix. The dissimilarity
value between D and E is 0.20, and thus we draw branches of 0.20/2 =
0.10 in length. At this point, we only want to connect species D and E
to each other; we don’t want to connect them to A and B (that will come
later). The phylogeny will look like this:

0.20 0.15 0.10 0.05 0.00

Percent dissimilarity

5. Now its time to once again remake the matrix, combining D and E in
the process. You should get the matrix:

Species A-B C D-E

A-B
C 0.30
D-E 040 0.40

6. Combine A-B and C, as the pair with the least distance on the tree.
Here’s what the phylogeny should look like:

Evolution Laboratory Notebook page 102




Mueller, Rose, Emerson, Rebolleda-Gomez and Long Evolution Lab Manual — Spring 2023

0.20 0.15 0.10 0.05 0.00

Percent dissimilarity

7. Recompute the matrix, combining A-B with C, and finish the tree.

Making a UPGMA tree in R

UPGMA trees can be conveniently calculated from a distance matrix in R.
We will be using the function hclust(), which we will view as a "black box"
function that we need to construct pyhlogenetic trees. What it does is
equivalent to applying the UPGMA algorithm to the distance matrix
generated earlier

examp.tree <- hclust(as.dist(0.5*examp.dist), method =
"average™)

In short hclust is a clustering algorithm, and when this algorithm is used
with the method set to “average” it is equivalent to a UPGMA approach.
The only other thing we have to do is pre-multiply the distance matrix by
0.5 (i.e, 0.5*example.dist)so that the resulting tree is scaled to the total
distance between sequences. Finally, we can plot the tree.

plot (examp.tree, labels = rownames (examp), hang = -1)

In this case we use the 1abels option to add our species names to the tree,
and a hang = -1 option to extend branches to the bottom of the tree.

Problem Set #5 (10 points)
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1. Plant species often have multiple copies of the catalase genes in their
genome. All copies of this gene are descended from one ancestoral copy,
but some duplication events occurred prior to the diversification of
"grasses" (maize, rice and barley are all grassed), and some duplicated
within a specific lineage (for example maize). We define homologs as
copies of a gene that trace their origin back to a single common ancestor of all
grasses, and paralogs as copies of a gene that trace their origin back to
different copies present in the common ancestor of grasses. Load the sequence
data liging.txt into R (use something like liging <-
read.table ("liging.txt", row.names=1)). Note that you will have
to change your "working directory" so R can see liging.txt. Use UPGMA to
make a phylogenetic tree. Numbered genes are duplicate copies of the
catalase genes in different plant species. Which copies of genes are likely
to be homologs of one another? Which pairs of genes duplicated prior to
the speciation events associated with maize, rice, and barley? Which pairs
are likely to have duplicated since speciation?

2. Load the sequence data andi. txt into R (use something like andi <-
read.table ("andi.txt")). Use UPGMA to make a phylogenetic tree.
Rows are different alleles of a gene called Delta obtained from D.
melanogaster, and columns are polymorphic sites. Numbered alleles are all
from a single population of wild caught flies from North Carolina; whereas
SAM, and STANDARD are strains from elsewhere in N. America. Is there
any evidence for “population structure” (different populations evolving
independently) in Drosophila? Say lines 10, 15, 31, 46, 50, 51, 116, and SAM
all had a dark body color phenotype in common. Where is the most
parsimonious place in your tree for this body color mutation to have
occurred?

3. Load the sequence data sets peekl.txt and peek2.txt into R (use
something like peekl <- read.table ("peekl.txt"
, row.names=1)). Use UPGMA to make a phylogenetic tree for each data
set. For each data set rows are different strains of E. coli and columns are
polymorphic sites. The data set peekl is for a gene called mdhs1 and for
data set peek? is for a gene called fimasl. These two genes are at different
positions in the E. coli genome. Bacterial geneticists have often claimed that
E. coli rarely recombines in the wild. A corollary of this claim is that
different genes in E. coli should give the same phylogenetic tree since the
genome is always inherited vertically as a unit. An alternative hypothesis
is that different strains of E. coli in nature exchange DNA sequences (that is
experience recombination). A corollary of this hypothesis is that different
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genes should give different trees. Which hypothesis does your data
support? Are there public health implications associated with this result?
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April 2023

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
3 Place drift fliesin | 4 5 Empty drift vials 6 7 8
vials
Start and finish
sexual selection
experiment
9 10 Statistics 11 12 Statistics with R 13 14 15
16 17*Census drift flies | 18 19*Empty drift flies | 20 21 22
& transfer *Count eggs from
*Start age-specific age experiment,
selection *Start natural
*Start age-specific selection lab,*SS lab
fecundity assay report due 1PM
23 24 Empty flies from 25 26 *Count eggs from | 27 28 29
natural selection expt age expt
*Start age-specific
fecundity assay
*Census adult Problem Set #1 due
populations APM
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30 May 1 2 3*Count eggs from 4
*Census adult age expt
populations *Census selection
*Start age-specific flies
fecundity assay *Empty drift flies

*Census/transfer drift
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May 2023

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
7 8*Census adult 9 10 *Count eggs from | 11 12 13
populations age expt
*Start age-specific Work on PS#2
fecundity assay
14 15*Census drift flies | 16 17 Count eggs from | 18 19 20
and end age expt
expt,*Census adult
populations, *Start Monte Carlo
age-specific @2:30PM
fecundity assay,
Problem Set 2 due 4
PM
21 22 Monte Carlo 23 24 Monte Carlo 25 26 27
*Drift lab due 1PM
Problem Set #3 due
1PM
28 29 Work on PS #4 30 31 Work on PS #4 June 1 2 3
*NS lab due 1PM Problem Set #4 due
4PM
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4 5 Phylogeny 6 7 Work on PS #5 8 9 10
*AS lab due 4PM
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
11 12 Problem Set 5 13 14 15 16 17
due SPM

18 19 20 21 22 23 24

25 26 27 28 29 30
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