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Working with  
Drosophila melanogaster 
 
 

Why Drosophila? 
 

All the experiments in this class use the common laboratory fruit fly, 
Drosophila melanogaster.  There are a number of reasons why we use fruit 
flies.  The lab fruit fly has been used for research in evolution and genetics 
for the last 100 years, so we know a lot about it.  The fruit fly is easy to raise 
in large numbers and it has a short generation time. The short generation 
time makes the fruit fly convenient for studying multi-generation 
phenomena, like evolution.  As you will see in this laboratory course, useful 
genetic mutants of Drosophila and specially created lines are already 
available.  These genetic variations allow us to do experiments that could 
not be done with almost any other organism. As of the first decade of the 
21st Century, Drosophila is one of a select group of animals that has had 
entire genomes sequenced. This gives us a solid foundation of genomic 
information for specific studies of genetics and evolution. 

 
 

How to Handle Drosophila  
 

The life cycle of Drosophila melanogaster is outlined in the figure on page 5.  
Experiments in this laboratory involve the handling of adults only. 
Although it is possible to handle eggs and larvae, it is considerably more 
difficult than handling the adults. 
 
Because the adults can fly, they need to be knocked out before you count, 
sex, or genetically type them. We knock them out using CO2 anesthesia. 
Specific techniques for using CO2 will be demonstrated in the lab, but you 
should always remember the following facts about CO2.  Exposing adults 
to excessive amounts or prolonged exposure to CO2 can kill or severely 
incapacitate the adult fly. When flies are immobile on the CO2 plates, you 
should carefully control the flow of carbon dioxide to keep it at the lowest 
level possible.  One easy way to determine the lowest possible level of CO2 
is to keep turning the CO2 down until you see the flies start to wake up.  At 
that point you have just passed the minimum flow of CO2 needed, and 
should slightly increase the gas flow.  Flies should not be knocked out for 
more than about 10 minutes.  Thus only put as many flies on your platform 
as you can handle in about 10 minutes, if the flies need to be alive after 
anesthesia.  You also have to be especially careful with females that are less 
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than 8 hours old, because even modest amounts of CO2 can sterilize young 
females.  
 
Males and females are easily distinguished. Males have a solid black patch 
on the tip of their abdomen. A ring of bristles surrounds their genitals. 
Females lack the black patch at the tip of the abdomen, and have brown 
stripes across the back of their abdomens. In very young adults, less than 6 
hours from emergence from the pupa, the pigments in the bodies may be 
very light.  This makes “sexing” the adults much more difficult.  Be careful 
in these situations. 
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Random Genetic Drift 
 

 
Introduction 

 
Gene, or ”allele,” frequencies fluctuate in experimental populations due to 
random effects caused by reproduction “choosing” or “sampling” a finite 
number of gametes to create the fertilized eggs of the next generation.  This 
does not happen because of external factors.  It is just like the fluctuation in 
the amount of money you have when you play poker or blackjack.  
Sometimes the cards favor you.  Sometimes they favor another player.  In 
the same way, luck sometimes favor one allele over another.  This process 
is called “genetic drift.” 
 
Genetic drift is particularly strong when the population size is small.  But 
on average the effects of drift are not biased.  It is just as likely that random 
drift will cause a particular allele to increase OR decrease in frequency.  We 
can’t predict what will happen to anyone allele frequency over a long 
period of time, as a result of drift.  But we can predict that, over a long 
period of time, drift will tend to cause populations that were initially the 
same in allele frequency to become different.  Quantitatively, genetic drift 
causes a smear of allele frequencies. 

 
The best way to see the effect of drift is to monitor allele frequencies in a 
large number of populations that are made up of a small number of 
individual organisms.  Because the effects of drift are not directional, we 
expect the average frequency of a particular allele over all the monitored 
populations to remain about the same as it was when the experiment 
started.  But the “variance” of the allele frequency, among replicate 
populations, should increase as evolution proceeds.  The exact fashion in 
which variance is measured will be discussed later, but for now you can 
think of the variance as a measure of how much allele frequencies vary 
among populations.  High variance among populations means that the 
allele frequencies of different populations are quite different from each 
other.  Low variance means that the allele frequencies are quite similar. 
 
For example, if we monitor ten populations for the frequency of allele A at 
a locus, then if there is low variance the ten allele frequencies might be: 
 

0.12 0.11  0.13  0.11  0.09  0.10  0.08  0.11  0.12  0.11 
 

 
Alternatively, if there is high variance, the ten allele frequencies might be 
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0.10 0.01  0.34  0.42  0.03  0.22  0.67  0.32  0.12  0.00 
 

Our theoretical prediction is that, if you start with the ten low-variance 
allele frequencies, genetic drift for many generations might produce the ten 
high-variance allele frequencies.  However, this prediction does not allow 
us to say exactly which population will evolve to which particular allele 
frequency.  Our ability to predict what will happen with genetic drift is not 
that strong. 
 
The figure below shows the effect of drift on the variance of allele 
frequencies over many generations: 
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The figure above shows the number of bw75 allele at the autosomal brown 
locus in 105 populations of D. melanogaster. Each population consisted of 8 
males and 8 females. 
 
Next we will make these qualitative generalities quantitative and explicit. 
 

Allele and Genotype Frequencies 
 

Regular Diploid Genetic Loci 
 
Suppose that at a single genetic locus there are two alleles, A1 and A2 .  In a 
diploid population, organisms have two alleles at every locus, so these two 
alleles will give three genotypes that we will write as A1A1, A1A2 and A2A2. 
 
Suppose we have a sample of N individuals that we can classify as one of 
these three genotypes.  We will write the numbers for each A1A1, A1A2 and 
A2A2 genotype as N11, N12 and N22, in order, respectively.   If we call the 
frequencies of each genotype Pij, their numerical values will be given by, 
 

 

P
N
N11

11= ,  

 
 

P
N
N12

12= ,  

 
 

P
N
N22

22= .  

 
 

If we call the frequency of the A1 allele p1 and the frequency of allele A2 p2, 
allele frequencies can be calculated from the genotype frequencies as 
follows: 
 
 

p P P1 11
1
2 12= + ,  

 
p P P2 22

1
2 12= + .  

 
This makes sense because a heterozygote only contains half as many copies 
of an allele as a homozygote.  Notice also that the sum of the two allele 
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frequencies is equal to the sum of the genotype frequencies and both of 
these sums equal one (1). 
 
Loci Located on X Chromosomes 
 
For alleles that come from loci located on the X chromosomes that 
determine sexual gender, the calculation of allele frequencies is different. 
Recall that XX gives a human female and XY gives a human male.  The 
same thing is true in fruit flies.  From a sample of N females with just two 
alleles at the genetic locus under study, the three X-chromosome 
genotypes have counts of N11, N12 and N22 for the individual A1A1, A1A2 
and A2A2 genotypes, respectively. We could use the equations above to 
estimate the allele frequencies among the females from these observed 
counts. However, it is possible that the X-chromosome allele frequencies 
will be different in males, so we need a different set of equations for them. 
 
If we examine M males, let the numbers of A1 males be M1 and the number 
of A2 males be M2.  Since there is only one X chromosome in males, there 
is only one copy of an A allele in each male.  Then the frequency of the A1 
allele in males is given by q1 = M1/M and the frequency of the A2 allele is 
1-q1 = q2 = M2/M. 
 
In our experiments, we will use dominant alleles that give the heterozygote 
and one of the homozygotes in the females the same phenotype. For this 
reason, it will be much easier to estimate the allele frequencies of genetic 
loci located on the X chromosome in the males. 

 
 

 
The Wright-Fisher Model 
 

The major goal of our genetic drift experiment will be to observe the effects 
of random genetic drift on the mean and the variance of allele frequencies 
over several generations. 
 
Basic Concept of the Wright-Fisher Model 
 
Sewall Wright, an American biologist, and Ronald A. Fisher, an English 
statistician, independently developed a very simple model that shows how 
genetic drift works.  We will describe this model in general terms now. 
 
Suppose that we have N diploid individuals in a population.  Then there 
are a total of 2N alleles at a diploid genetic locus in this population.  If we 
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assume that these individuals mate by shedding their gametes into a 
common pool, like some fish do, then the frequency of gametes that bear a 
particular allele from a particular individual is on average just 1/2N .    
 
If the frequency of a particular allele (say the allele is called A) in the 
population is given by p, then on average there will be p times 2N gametes 
of that allele.  But sometimes a heterozygous parent will not generate 
gametes that are exactly fifty:fifty, or even, frequencies of the two alleles 
that it carries.   This is a principle that is used all the time in Mendelian 
genetics.  If a heterozygous (Aa) parent generates two gametes, half the time 
they will be A and a gametes, one quarter of the time they will be two A 
gametes, and one quarter of the time they will be two a gametes.  
 
In the same way, chance is involved in the combination of gametes in a 
population of size N.  Each fertilization event involving two gametes can 
have a variety of outcomes:  both gametes can have A alleles, both can have 
a alleles, or one A and one a allele-bearing gamete can combine.  In a 
population with both alleles, it is mathematically possible that all offspring 
will end up AA homozygotes.  Or they could all be aa homozygotes.  That 
is, genetic drift can accidentally “fix” one allele or the other, even if the 
previous parental generation is genetically polymorphic.   
 
In addition to this extreme possibility, the same sort of sampling effect can 
cause the allele frequency of a population to rise or fall, even though there 
is no “directional” evolutionary mechanism, like selection, acting on the 
population.   
 
The mathematics that underlies the Wright-Fisher model is that of 
combinatorics.  But don’t let this term impress you.  You use combinatorics 
every time you play a game of chance.  Combinatorics tells us that getting 
dealt a bridge hand of thirteen cards all of the same “suit” (Hearts, Spades, 
Diamonds, or Clubs) is very rare compared to getting a mixture of two or 
more suits.  Similarly, the changes of being dealt all four Aces and a King 
in five-card stud poker is very rare.  In the same way, the accidental fixation 
of the A allele in one generation is an improbable (but not impossible) event 
in a population of ten individuals if there are only ten (out of a maximum 
number of 20) copies of the A allele in the parents of the preceding 
generation.   
 
Quantitative Predictions of the Wright-Fisher Model 
 
There are several important theoretical results that have been 
mathematically derived from the Wright-Fisher model of genetic drift that 
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will be illustrated by our genetic drift experiment. Some of these ideas are 
reviewed in chapter 7 of Hartl and Clark, among other textbooks in 
population genetics.  Here we will give the major theoretical results for the 
Wright-Fisher model, results that supply us with predictions for our 
experiment. 
 
Suppose that, in a small population with effective population size N, the 
initial frequency of an allele is p0. At some time in the future, t, the frequency 
is pt. The Wright-Fisher model predicts the following: 
 

Let E represent the “expected” or mean value for a variable.  Then 
the symbol E(pt) stands for the expectation of the random variable pt. 
This is similar to the mean of the random variable pt. 

 
E p E pt t( ) ( )+ =1 ,    (1a) 

In words, this means that genetic drift does not, on average, change the 
frequency of an allele. 

 
The variance (“Var”) is a measure of “dispersion” about the mean 
value.  The greater the variance, the more individual values 
deviated from the mean or expected value for a variable.  There are 
two variances that we can predict when genetic drift occurs. 
 
The first of these variances is the variance in allele frequencies that 
arises from a single generation of random sampling of gametes in 
the creation of the next generation.  Let Var(pt+1|pt) represent the 
variance in allele frequencies at time t+1 given that the allele 
frequency was pt at time t. This is the variance of allele frequencies 
due to just a single generation of drift, which is given by the 
following equation.   

Var p p
p p

Nt t
t t( | )
( )

+ =
−

1
1
2

,   (1b) 

 
Notice from this equation that, if N is absolutely huge, there will be 
virtually no genetic drift in a single generation, because N appears 
in the denominator of the right-hand side of the equation. 
 
The second variance that we are interested in is the accumulated 
variance over the entire sequence of generations in which genetic 
drift occurred.  Let Var(pt) represent the variance of the allele 
frequency at time t.  It is given quantitatively by the following 
equation.  
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[ ]Var p p qt N

t( ) ( )= − −0 0
1

21 1 .   (1c) 
 

Again, notice that if N is very large, the right-hand side of this 
equation will be very close to zero, because 1/2N will be close to 
zero and the numeral 1 (one) to a very high power is still 1 (one). 

 
Bear in mind that equations 1(a-c) are theoretical predictions from the 
Wright-Fisher model. It is possible that the actual mean and variance in 
this experiment may be different from these predictions. One goal of this 
experiment will be to compare the observed mean and variance in allele 
frequencies from our experiment with the expected values from the 
Wright-Fisher model.   
 
We will discuss methods of estimating the variance of allele frequencies 
from actual population samples next. 
 
 

Methods 
 
Scoring Genotypes 
 

This experiment uses two alleles at the white (or w) locus, a gene that affects 
eye color.  The gene white is located on the X chromosome of Drosophila 
melanogaster. One allele is referred to as w. Females homozygous for w have 
white eyes, males with one copy of w (a condition that is called 
“hemizygous”) also have white eyes. The second allele, +, is wild type and 
is dominant to w: females heterozygous (w/+) or homozygous (+/+) for the 
wild allele have red eyes. Males hemizygous for the + allele also have red 
eyes. The frequency of the w allele is most easily estimated by counting 
the total number of white males divided by the total number of males. 

 
Population Maintenance 
 

Each group of two students will be responsible for ten populations. Each 
population will initially consist of four males (two wild type and two white-
eyed) and four females (two wild type homozygotes and two white-eyed 
homozygotes). Thus, the initial frequency of the w-allele is 0.5. These 8 
adults will be put into a single 8-dram vial and allowed to lay eggs for 2 
days in a 25o C incubator, as shown in the figure.  You will have a total of 
ten vials, one for each population. 
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DRIFT EXPERIMENT:

INITIAL VIAL:
2 wild-type males
2 white males
2 wild-type females
2 white females

Lay eggs for
two days

Remove
adults

Allow eggs
to develop
for  12
days

HANDLING OF EACH VIAL IN
EACH GENERATION

Harvest the
first 4 males
and the
first 4 females
(regardless of
eye color)
and put into
a fresh vial

Flies
lay eggs
for 2 days

Count the number
of flies of each
eye color and sex,
including the flies transferred
to a fresh vial to start the next generation

CONTINUE
THIS CYCLE
FOR  4
GENERATIONS
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After these two days of egg-laying in a 25o C incubator, the adults should 
be removed and discarded. The vials for each of your populations must be 
labeled with the group’s name and the population number, e.g. 1, 2, …, 10. 
You need to do this because you will be determining the generation-by-
generation trajectory for each population.  Return the vials to the 25o C 
incubator. 
 
Two weeks later, you will census your 10 populations.  One efficient way 
to do this is as follows.  Take a single vial and knock out all the adults using 
CO2 and place them on a CO2 platform. Take a paint brush and make a long 
thin line of all the adults. Take the first four males and the first four females 
in the line, record their phenotypes and place them into a fresh vial, as 
shown in the figure. 
 
Type and record the phenotypes of all remaining adults. The remaining 
adults may then be discarded. However, before doing this make sure your 
initial sample of eight has recovered from anesthetization.  If there are some 
flies in the group of eight (that were put in the fresh vial) which do not 
recover, replace them with flies of the same type from the rest of the flies 
that emerged in that vial. 
 
Compute allele frequencies from all the male data.  Recall that you can 
estimate the allele frequency from the frequency of the corresponding 
hemizygous male genotype.  For example, if you have 10 w males and 30 + 
males, the frequency of the w allele is 0.25 and the frequency of the + allele 
is 0.75.  The frequency of the male phenotypes gives the allele frequency in 
the current generation for each vial’s population.  Record your data in 
tabular form, as indicated in the table below: 

 
Drift Experimental Data 

Population Genotype/Sex Generation 1 Generation 2 Generation 3 
1 w-male    
 r-male    
 w-female    
 r-female    
2 w-male    
 r-male    
 w-female    
 r-female    
3 w-male    
 r-male    
 w-female    
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 r-female    
4 w-male    
 r-male    
 w-female    
 r-female    
5 w-male    
 r-male    
 w-female    
 r-female    
6 w-male    
 r-male    
 w-female    
 r-female    
7 w-male    
 r-male    
 w-female    
 r-female    
8 w-male    
 r-male    
 w-female    
 r-female    
9 w-male    
 r-male    
 w-female    
 r-female    
10 w-male    
 r-male    
 w-female    
 r-female    

 
This procedure will be continued for four generations, for a total of 6 weeks. 
At the end of the 6 weeks, the data from all groups will be shared. Each 
group will then conduct their own analysis of the data obtained by the 
entire class. 

 
 

 
Sample Variance 
 

Equation 1c gave the expected variance due to drift.  This equation shows 
how the population size and the allele frequencies affect the variance that is 
generated by drift.  At the end of this experiment, you will have data from 
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ten populations in the form of allele frequencies for each population at each 
generation.  Estimating the variance in this sample is different than 
computing the theoretical variance expected from drift alone.  This is because 
actual experimental data almost always differs at least slightly from the 
predicted results.   
 
Suppose that in one generation the allele frequencies that you observe in the 
ten populations are represented by, 1p, 2p,.., 10p.  Then the sample variance, s2 
is computed as, 
 

( )
210

1
)110(

12 ∑
=

=
− −=

i

i
i pps , 

where, 
 

∑
=

=

=
10

1
10
1

i

i
i pp . 

If you have 100 populations then you would replace the 10 in the equation 
above with 100. 

 
 
 
 

Questions for Your Lab Report 
 

After the experiment is over you should have the results from the other 
groups as well as your own. YOUR PRIMARY ANALYSIS SHOULD BE 
THE POOLED DATA SET FROM ALL GROUPS USING THE MALE 
DATA TO ESTIMATE ALLELE FREQUENCIES. In answering the 
questions below remember the following two point. (i) The theoretical 
mean and variances from the Wright Fisher model can be treated as 
statistical constants when comparing them to the observed means and 
variances. (ii) The observed means and variances are estimates with 
uncertainty which can be summarized with confidence intervals. 
 

1. Explain any obvious major differences between your results and the 
rest of the class, if any. 

 
2. Since everyone started their populations at the same initial allele 
frequency of 0.5, examine the variance in allele frequencies due to a 
single generation of drift using this first generation data. Is it what we 
would expect from equation 1b? In this experiment, notice that N is 
equal to 8.  Since the initial allele frequency of both w and + alleles is 0.5, 
you have all the information needed to calculate the single generation 
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drift variance.  Are your actual data close the prediction of equation 1b, 
1/64?  If not, can you think of reasons why there might be a difference 
between the observed variance and the variance predicted by equation 
1b? [Hint: is it possible the theoretical prediction is not correct for this 
experiment?] 

 
3. What happened to the observed variance in allele frequencies among 
over time? Compare the observed variance to the theoretical predictions 
of equation 1c, generation-by-generation.   

 
4. What happened to the mean allele frequency over time? Compare to 
the theoretical expectation. Were there statistically significant 
differences between the observed mean and the expected mean allele 
frequencies? 
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Natural Selection 
 
 

Introduction 
 
The term “natural selection” refers to the differential net reproduction of 
genotypes arising from fitness differences among those genotypes.  Those 
fitness differences may be expressed at different times in the life cycle.  In 
this experiment we will examine just one component of fitness, viability. 
Viability is the probability of a genotype surviving from egg to adult.  
 
To understand how natural selection acts, consider a generic life-cycle, as 
shown in the following figure. 
 

 

Figure. A typical life cycle that reveals the various ways selection can affect the relative 
numbers of genotypes that make it to the next generation. 

 
Natural selection is not some cosmic force, orchestrating the evolution of 
dinosaurs, flowering plants, or modern mammals, contrary to the writings 
of journalists, “popular science writers,” and some wayward 
paleontologists.  Natural selection is instead about differences among 
genotypes in their life-history characteristics.  In some environments, at 
some times, some genotypes have higher viability, mating success, or 
fecundity.  What this does is increase the transmission to the next 
generation of the alleles that those genotypes possess.  That’s all. There is 
nothing cosmic or progressive about this differential transmission.  It is 
“one foot in front of another.”  The process of natural selection has no sense 
of history, inertia, or goal.  It is a blind mechanism. 
 
By far the best way to understand how natural selection works, and works 
mechanically, is to look at the consequences of simple genetic differences in 
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life-history for the transmission of these genes.  We will do this in the 
present laboratory experiment.   
 
Though it is mechanical and immediate, the action of natural selection can 
be somewhat complicated.  Natural selection can act at several points in this 
life cycle.  If genotypes vary in their chance of surviving from egg-to-adult 
then viability selection can act. This is the type of natural selection that is 
most often studied by evolutionary geneticists in the laboratory.   
 
But there are other points at which natural selection can arise.  From 
Mendel’s laws, we expect that heterozygous adults will produce equal 
numbers of gamete carrying each of the two alternative alleles. However, 
some alleles may systematically bias the production of gamete types such 
that the relative numbers are not 1:1. This process is called meiotic drive, and 
it may increase the relative frequency of one allele. This is not the same thing 
as accidental departures from 1:1 ratios arising from genetic drift.  With 
meiotic drive there is a persistent bias in favor of one allele over other 
alleles.  However, meiotic drive is a rare form of natural selection.  In 
particular, it is not appropriate to use it as an explanation for every 
deviation from 1:1 genetic segregation.  The Wright-Fisher model of 
accidental genetic sampling effects is more appropriate, almost all the time, 
as an explanation of such deviations. 
 
Once the offspring have grown up, they are adults who must then mate to 
produce fertile eggs. Males often compete with each other for the 
opportunity to mate with females.  [More on this in the next section.] 
Sometimes females compete for mates, too.  In some cases, genetic 
differences confer a mating advantage to their carriers and the alleles that 
produce these differences may increase due to sexual selection. Females in 
turn may differ in the number of offspring they produce due to their 
genotype, and this will create the opportunity for fertility selection. If the 
adults are capable of reproducing more than once, then age-specific selection 
may act if there are differences in survival or fertility at later ages.  This is 
an important topic in this laboratory course. 
 
 

Methods 
 
Our natural selection experiment will use genotypes at the white locus.  By 
doing specific crosses, we can use our knowledge of Mendelian genetics to 
determine the expected frequencies of genotypes among the zygotes.  If the 
frequencies of adults systematically and consistently depart from these 
expected zygote frequencies, we can infer that this is due to relative 
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viability differences at loci for which meiotic drive does not arise.  [This is 
the case for the white locus.] 
 
You will be provided with virgin females that are heterozygous at the w 
locus and w males.  In each vial place one female and two males.  [We use 
an extra male to forestall the problem of males who are either unable to 
perform sexually or are not found to be appropriate mates by females.  
Much of the time, however, either male with suffice.  It is even possible that 
the female will mate with both males.] Let this threesome mate and lay eggs 
for two days and then remove the adult flies.  The female will almost always 
produce fertilized eggs that will develop into larvae. 
 
Two weeks later, determine the phenotypes of all male and female progeny 
in the vials in which eggs were laid.   
 
The initial cross is shown below, with the expected X-chromosome 
genotypes of the male and female offspring. 
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NATURAL SELECTION EXPERIMENT:

Allow mating and
egg laying for
two days

Remove the
adults from the
vial

Allow 12 
days for the
eggs to become
adults

Harvest the
adults from
the rearing
vial and
count the 
numbers in
each 
phenotypic
group

Phenotype    Genotype

   X+ Y

   Xw  Y

   X+ Xw

   Xw Xw

X+ Xw

Xw  Y
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Female parent Male parent 

 w/+ × w  
          
   Progeny    
          
 Female offspring   Male offspring  
 w/w  w/+   w  +  
 0.5  0.5 relative 

frequencies 
0.5  0.5  

 White-eye  wild phenotypes white-eye  wild  

 
Relative fitness estimates 

 
In any single vial, the raw data from these experiments will be the numbers 
of white-eyed males and white-eyed females and the number of wild-type 
(red-eyed phenotype) males and females.  Let these numbers be given by 
Nwm, Nwf, N+m, and N+f , respectively.  Let the relative fitness of the white 
males and females be equal to 1.  Then, the relative fitness of the wild-type 
males (W+,m) and the heterozygous females (W+/w,f) is given by, 
 

W
N
Nm

m

wm
+

+=, ,  

 

W
N
Nw f

f

wf
+

+=/ , ,  

 
From this experiment we have not been able to estimate the fitness of 
females homozygous for the wild type allele, W+/+,f.  This is a relative fitness, 
because we have taken the viability of the flies with white eyes as the point 
of reference, and we are ignoring possible differences in the other life-
history characters.   
 
If there are many vials where Nwm or Nwf are zero you can assume the wild 
type flies have a relative fitness of 1 and then estimate the relative fitness of 
the white males and heterozygous females using the reciprocals of the 
equations above. 
 
The eye color of the red-eyed heterozygotes is essentially the same as that 
of the homozygotes bearing two copies of the wild-type (red eye) genotype, 
which implies full dominance of the red-eye allele.  For convenience, in 
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your lab write-up you can assume that the effects of the wild-type on 
viability are also fully dominant.  In particular, you should address the 
questions asked below making the assumption that W+/+,f = W+/w,f .  We don’t 
expect this type of perfect dominance for all alleles affecting viability, but it 
is a useful point to start with. 

 
Natural Selection Experimental Results 

Replicate Progeny 
w-male 

 
r-male 

 
w-female 

 
r-female 

1     
Relative fitness male  female  
2     
Relative fitness male  female  
3     
Relative fitness male  female  
4     
Relative fitness male  female  
5     
Relative fitness male  female  
6     
Relative fitness male  female  
7     
Relative fitness male  female  
8     
Relative fitness male  female  
9     
Relative fitness male  female  
10     
Relative fitness male  female  

 
 
 

Questions for the Lab Report 
 

1. Compute the relative viabilities of all the male and female genotypes 
in this experiment. Treat each vial as an independent sample, thus 
there will be 10 fitness estimates for each genotype. Put confidence 
intervals on the mean estimates using R and discuss the general 
implications of these numbers.  Is there evidence for natural selection 
acting on relative viability in the experimental vials?  Which allele 
appears to be favored by natural selection in this experiment? 
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2. Assuming that females who are homozygous for the wild-type allele 
have the same viability and fecundity as the heterozygotes at this 
locus, what would be the ultimate outcome of natural selection acting 
on the white locus polymorphism? [Hint: use the equations in the 
appendix and iterate the equations for many generations, following 
the change in white allele frequency. You can do this with computer 
software like Excel or R.] 

3. Is it possible for both alleles to be stably maintained without 
heterozygote advantage in the females? [Hint: Use the equations in 
the appendix to help answer this question. You may calculate 
numerical examples using the techniques developed to answer the 
second question.  If you are really ambitious, these equations can be 
used to derive analytical results concerning the long-term evolution 
of populations with the fitnesses you have estimated.] 

 
 

References 
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Sexual Selection 
 

 
Introduction 

 
In animals that have two sexes, there is often a difference in the time and 
energy each will devote to reproduction.  Usually, the female will make the 
larger investment of time and energy since she will produce the more 
energy-laden eggs, and for some animals she will be involved with some 
care of the offspring or developing eggs.  This is obviously true of 
mammalian females, whose bodies have a number of features that allow 
mothers to nourish fetuses and newborns, such as placentas and 
mammaries.  In addition, mammalian females often supply their offspring 
with solid food to supplement their milk, particularly among the 
carnivores, in which the young are not usually effective hunters.   
 
But in many cases among the fish species, the most abundant vertebrates, 
the male invests most in the care and feeding offspring.  This reaches the 
point of full reversal of gender roles in seahorses, in which males get 
“pregnant” and incubate their offspring until they “give birth,” their 
offspring emerging from their large brood pouch.  In either case, it is  often 
found that the parent that is investing more energy in reproduction controls 
when and with whom mating will take place. 
 
As a result of this asymmetry in the decision making process, the sex which 
invests less energy in caring for offspring, usually males among insects, will 
compete among themselves to be chosen as mates by females.  This type of 
competition is called sexual selection.  If there are characteristics that are 
inherited by males that give them some advantage in this competition for 
mates, such as structures or behaviors that females find attractive in a 
prospective mate, then we can expect sexual selection to favor these 
characteristics.  In some species, like many birds-of-paradise, males have 
elaborate coloration, long tails or build complex structures to attract 
females.  All of these characters are thought to result from evolution driven 
by sexual selection.   In some cases, sexual selection may have produced 
cumbersome male morphology or dangerous competitive male behavior 
that actually reduce male fitness, compared to the fitness that males might 
have achieved if females did NOT discriminate among them. 
 
There is thus the potential for antagonism between the effects of sexual 
selection and viability selection, the focus of the previous experiment.  
Viability selection may successfully oppose sexual selection, preventing the 
evolution of extreme morphology or behavior.  For instance, brightly 
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colored males may be more attractive to females but may also be more 
conspicuous to predators.  It is interesting to note that birds are generally 
more colorful than mammals of similar size, suggesting that the greater 
ability of birds to flee from predators may have tilted the balance toward 
less camouflaged sexual plumage.  Thus, the evolutionary dynamics of 
sexually selected traits may be quite complicated.   
 
Laboratory sexual selection will be studied by measuring a male-limited 
component of fitness called virility.  In biology, the term virility refers to the 
relative success of males in being chosen as mates by females, when 
multiple males are striving to mate with the same female(s). 

 
 

Methods 
 

Each laboratory group will have a population of experimental males that 
are wild type. The virility of these males will be tested against males that 
carry the white (w) allele on the X-chromosome.  This experiment allows 
females to choose between males with red eyes and males with white eyes.  
We do not have to assume that females will discriminate between males on 
the basis of their eye color.  Whether they do so or not will be determined 
by the experiment itself.  Indeed, this is one of the most important questions 
that you should answer in your write-up of your laboratory report. 
 

1. Place one wild type male and one white-eye male in each of 
ten vials.  Make sure that you do not expose males of one eye color 
to more CO2 than males of the other eye color.   
2. After both males have recovered from CO2, about 10-15 
minutes, take 10 wild type virgin females and place each one in each 
vial. By letting both males recover fully you ensure that neither has 
an advantage over the other. 
3. Carefully watch the females.  When a female has mated for 
more than 30 seconds record the type of male she mated with.   It 
takes male fruit flies more than a few minutes to transfer much 
sperm, unlike most mammals, so a mounting that only last 10-30 
seconds is more likely to be an unsuccessful mating attempt, rather 
than a successful fertilization. 

 
In order to make the duration of this laboratory reasonable, we will place 
an arbitrary limit on the period during which you will watch the females 
choose between males.  This will be announced at the start of the class.   
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The number of matings by wild-type males can be thought of as a binomial 
random variable.  The probability of the wild type male successfully mating 
is given by, 
 

[ ]
[ ]V+ =

number of wild males mating
total number of matings

.  

 
With this definition, the mating success of white-eye males is simply 1 - V+. 
 

Sexual Selection Experimental Results 
Male Number of matings 

Your experiment 
 
whole class 

Red-eye   
White-eye   
Total   
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1

 

SEXUAL SELECTION EXPERIMENT:

Add 1 white
and 1 wild-type
male to each
mating vial

Allow both
males time to 
recover

Add 1
wild-type 
female to
each mating
vial

Observe each mating 
vial until the female 
has copulated with
one of the two males
for more than
30 seconds

Female chooses
wild-type male

Female chooses
white-eyed male
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Questions for the Lab Report 
 

1. In your experiment do the females show a preference for white 
or wild type males? 

 
2. Summarize the results of the entire class.  Put confidence 
intervals on the relative mating success of white and wild type 
males, using R. [Hint: use binom.test] 

 
3. Suppose someone suggested using rates of population 
growth as a measure of fitness (e.g. taking a population of flies 
homozygous for the white allele and comparing that to a 
population homozygous for the wild type allele by measuring 
their population growth rate). How would virility affect this 
measure of fitness, assuming that all females eventually mate? 
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Appendix 
 
In this appendix we will develop allele frequency recursions for the sex-linked viability model. We must keep track 
of allele frequencies in the males and females separately. Assume there are two alleles, A1 and A2. Let the frequency 
of the A1 allele in the females be pf and in the males pm. To follow the results refer to the table below.   
 

 Females Males 
Genotypes A1 A1 A1 A2 A2 A2 A1 A2 
Fitness F11 F12 F22 M1 M2 
Zygote frequencies  

 

  1-pf 

Relative frequency 
after selection 

 

 

   

Absolute frequency 
after selection  

 

   

p pf m ( )
( )

1

1

− +

−
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We assume that the genotypes of zygotes are initially in Hardy-Weinberg 
proportions, with the frequency of each genotype the product of the 
frequencies of each allele, keeping track of order. [This means that, if we 
don’t keep track of order, the frequency of the heterozygotes is twice the 
product of the individual allele frequencies.]  Since the male and female 
allele frequencies are possibly different, these Hardy-Weinberg frequencies 
look different than the usual ones. To convince yourself they are the Hardy-
Weinberg proportions, let pm = pf and simplify the expressions to the one-
locus case. 
 
The next step in the calculations reflects the change in the relative 
frequencies of the zygotes due to differential survival, as may be seen in the 
line labeled "relative frequencies after selection". Since these relative 
genotype frequencies no longer sum to 1, we divide them by the mean 
fitnesses for each sex to calculate the absolute frequencies after selection.  
[Now these frequencies do sum to 1.]   Since fitnesses are different in males 
and females, we have different average fitnesses in the males ( mW ) and 

females ( fW ). These mean fitnesses are given by: 

, 
and 

 
( ) 21 1 MpMpW ffm −+=  

 
The frequencies of the A1 alleles in the next generation are then,  

 
 

 
 

The prime (‘) symbol indicates the value of the allele frequency in the next 
generation.  The female frequency ( '

fp ) is simply the frequency of A1A1 
homozygotes plus half the heterozygote frequency while the male 
frequency ( '

mp ) is just the frequency of A1 males. 

( ) ( )( ) ( )( )[ ]W p p F p p p p F p p Ff m f f m f m f m= + − + − + − −11 12 221 1 1 1

( ) ( )( )[ ]′ = + − + −p p p F p p p p F Wf m f f m f m f11
1
2 121 1 /

′ =p p M Wm f m1 /
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Age-Specific Selection 
 

 
Introduction 

 
The basic theories of natural selection often assume that the life cycle of the 
organism is discrete. This is the assumption underlying the diagram at the 
start of the “Natural Selection” experiment’s Introduction.  In such life 
cycles,  eggs become immature larvae.  After a period of preadult growth, 
development, and maturation, the sexually mature adults mate and 
produce offspring in a short interval of time.  With discrete generations, all 
the adults either die or completely stop reproducing, leaving the offspring 
to establish the next generation.  Annual plants and “univoltine” insects are 
just some of the examples of species that have such a well-synchronized life 
cycle, in which each generation only mates with itself, in one well-defined 
bout of reproduction.   
 
Many other species, however, have more complex life cycles.  You should 
understand this already, because humans have multiple bouts of 
reproduction and mating is not confined to individuals of the same age.  In 
fact  Drosophila too have an extended period of adult life during which 
reproduction can take place multiple times, with repeated bouts of mating 
and egg-laying spread out over a number of weeks.  In this respect, as in 
some others, fruit flies are useful analogs of humans.  Such populations are 
said to have overlapping generations and age structure.   
 
This type of life history greatly complicates the description of natural 
selection.  In computing fitness, we have to consider the survival of adults 
and the amount of reproduction that takes place at each adult age.  In 
addition, we still have to take viability and mating into account. As we shall 
see shortly, the fitness of a genotype will not only depend on how long the 
genotype lives and how many offspring it produces, but also on the timing 
of production of these offspring.  In general, fitness will increase most by 
having progeny early in life rather than later.  This general rule has 
portentous implications for evolution, particularly with respect to the 
evolution of aging.  Natural selection in this relatively complex context is 
sometimes called age-specific selection.  Age-specific selection requires the 
most complete accounting of all life-history stages in the determination of 
fitness.  Understanding selection in an organism as simple as a fruit fly or 
as complex as a human being requires quantitative measurement of the 
potential for age-specific selection. 
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Theory of Age-Specific Selection 
 

The description of age-structured populations first requires that the life 
cycle be divided into a number of equally spaced time intervals.  These time 
intervals are the basis for dividing up the members of the population into 
defined age-classes.  Generally the length of the time interval that defines the 
age-classes is somewhat arbitrary.  The choice of time interval usually 
depends on the type of population and amount of information available for 
estimating key components of the age-structured life-history.  In humans, 
age-classes are usually defined by time intervals of one or five years.  In 
fruit fly experiments, age-classes are usually defined by days or weeks.  In 
developing the theory of age-specific selection here, we will ignore these 
particulars. 
 
Suppose the first age class consists of newborns and the older age-classes 
are formed from individuals which have survived from earlier age-classes.  
We will represent the number of individuals in each age-class at time t as 
n1(t), n2(t), ..., nd(t), where d is the last age-class.  We will also represent the 
quantitative probability of surviving from one age-class to the next as Px, 
x= 0, 1, 2,...,d-1.  P0 is the probability that newly produced eggs or offspring 
survive to the first age class.  Pd is not defined because by definition no one 
lives beyond the dth age class. 
 
For each age-class after the first, the number in each age-class is given by, 
 

n t P n tx x x+ + =1 1( ) ( ),  for x = 1, ... , d-1.   (1) 
 

To calculate the number of individuals in the first age class formulaically, 
we must first describe the birth process. Let the number of offspring born 
to a female aged x be mx. Then the number of these offspring that survive 
to the first age class, per-female is given by, 
 

f P mx x= 0 . 
 

If we assume, for the sake of simplicity, that there are equal numbers of 
males and females in each age-class, then the number of progeny produced 
per-adult (male or female) in age-class x will be fx/2. With all this notation, 
the total number of individuals in the first age class is given by, 

 

∑ =

=
=+

dx

x xx tnftn
1 2

1
1 )()1( .      (2) 
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This equation simply adds up all the progeny produced by each age-class. 
If the young age-classes are sexually immature, fx may be 0 for all values of 
x less than the age at which reproductive maturation first occurs. To 
characterize the fitness of alternative genotypes will requires the collection 
of information on the age-specific probabilities of survival, Px, and the age-
specific fecundities, fx.  Note that in this discussion we have ignored male 
fertility, although it could be taken into account by a further elaboration of 
this model.  Usually male fertility does not limit female fertility, particularly 
in non-monogamous populations.  [Almost no species are strictly 
monogamous, and certainly humans and fruit flies aren’t.] 
 
 

Fitness in Age-Structured Populations 
 

Populations that grow according to eqs. (1-2) have age-structure.  An 
important feature of age-structured populations is that they grow in a 
consistently exponential pattern after the proportions of the age-classes 
stop fluctuating.  When there is no more fluctuation in age-class 
composition, we say that a population has reached a stable age distribution.  
The following figure shows the process by which a hypothetical population 
living in a constant environment achieves a stable age-distribution.  From 
this figure we see that after some time has passed, all age-groups, as well 
as the total population, begin to grow at the same exponential rate. 
 
You might think that it shouldn’t matter just how a population is 
distributed into age-classes, but it does.  Consider a scenario in which all 
the students enrolled in the class are dumped on a desert island for the rest 
of our lives.  We will further assume that, while you have enough food and 
there are no contagious diseases, you will still age, with falling probabilities 
of survival and falling fecundity as you get older.  Unfortunately, you won’t 
have birth control, television, or video games, so your limited recreational 
opportunities will lead to a high birth rate.  Since most of the students in 
the class will be in their early twenties, your total fertility will be quite high 
at first.  Soon there will be a number of babies.  The babies won’t be 
reproductive for a while, but the original group will still be able to 
reproduce while your children grow up.  Once the first group of children 
grow up, they won’t have TV either, so they will be making your 
grandchildren.  The original group will start to get old, and the females 
among you won’t have much fertility after the age of 45.  The population 
will come to consist of a mixture of juveniles, potentially reproductive 
adults, and post-reproductive adults.  With this pattern, we expect a high 
population growth rate initially, then a fluctuating population growth rate 
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for a time until the composition of the population settles down to a stable 
mix. 
 
In the theory of age-structured populations, it is the exponential rate of 
growth of a hypothetical population composed of just one geonotype that 
is used as a summary of the fitness of that genotype. Generally, the rate of 
exponential increase is most sensitive to changes in survival and fecundity 
early in life.  Thus, doubling the fecundity of age-class 2 would have a much 
more dramatic impact in increasing the rate of growth than would doubling 
the fecundity in the last age-class. Similar results apply to changes in age-
specific survival.  This makes intuitive sense.  We can expect such a 
reduction in the importance of each age-specific life-history character as its 
age of occurrence increases if only because earlier deaths lead to less 
common expression of later life-history attributes. 
 
The rate of exponential increase exhibited by a genotype can be found by 
solving a particular polynomial equation. For the example in figure 1 this 
equation looks like, 

 
λ λ λ λ4

1
3

1 2
2

1 2 3 1 2 3 4 0− − − − =f P f P P f P P P f ,  
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where the largest positive real root of this equation, λm, is the rate of 
exponential increase of the population. In the case of the example in figure 
1, λm = 1.0441.  This means that the population is increasing by a factor of 
about 4.4% each time interval.  
 
In this experiment age-specific mortality rates and fertilities will be 
estimated for a population of wild-type Drosophila melanogaster. From this 
information, you will use the theory developed in the previous sections to 
estimate a fitness value from these observations. 
 

Methods 
 

Each laboratory group will get their own population of flies.  At the start of 
the experiment, your population will consist of 50 males and 50 females that 
are less than one week old as adults. These flies will be wild type. .   
 

1.  Count out 20 males and 20 females at random and place them 
in 20 charcoal vials, one male-female pair per vial.  

 

Time
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Figure 1 The change in the total population size and four different age-classes.  The 
survival probabilities for P1, P2 and P3 were 0.6, 0.5 and 0.3 respectively.  The age-
specific fecundities were, 0, 0.9, 1.8 and 0.4.  The initial population consisted of 100 
1-year olds. 
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2. Count the remaining flies (initially 30 males and 30 females) 
and place them in the population cage. After the flies wake up in 
the cage place a petri dish of plain food in the cage. 

 
3. After 48 hours remove the females from the charcoal vials and 
return them to your cages.  Replace the petri dish in the cage with 
a fresh petri dish of food plus a large dab of yeast paste. Count 
the eggs laid in the charcoal vials over the previous two days. 

 
4. The process described above will be repeated four more 
times, at weekly intervals. At each weekly interval the total 
number of surviving males and females should be counted in 
your population cage and recorded. Food in these cages should 
be replaced every Tuesday and Thursday, as described above.  
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Analysis of Growth Rates 
 

Start the experiment by placing 30 males and 30 females into
    a population cage

At the same time as
60 flies are placed in
the cage, put
20 mated
pairs in 20
charcoal
vials to
lay eggs
for  2 days

After egg laying
in charcoal vials
for 2 days,
return flies to     
                  cage.

Count the  number of
eggs laid in each vial

Every week count the number
of surviving males &
females

Every
Tuesday
collect

20 mated
pairs &
put
in
   charcoal vials

Supply new
cage food
every
class

AGE-SPECIFIC SELECTION EXPERIMENT:
Once the experiment has started, you will be maintaing a same-aged cohort in a population
cage.  Every week, you will census the population, set up egg -laying vials, and counting
the eggs laid in each laying vial after two days.  After the egg-laying, RETURN the flies from the egg-
laying vials to the population cage.
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For the data collected in this experiment, we will make several assumptions.  
We will assume that the number of eggs laid by females is equivalent to the 
number entering the first age-class, that is P0 = 1.  The pre-adult age-classes 
will all be lumped into age-class 1 even though these take more than a week 
to complete.  The survival from the preadult to adult age classes (P1) will be 
set to one, because we don’t have any good information about survival 
during this life-cycle, while the fecundity of the pre-adult age-classes is by 
definition zero.  In this experiment, there will be data on five adult age-
classes, thus the equation on page 35 will be a sixth-order polynomial rather 
than a fourth order polynomial. 
 
The largest root of these polynomial equations can be solved with the R 
function “polyroot.” This function takes as its arguments the coefficients of 
the polynomial starting with the constant term. For instance, using the 
parameter values in figure 1, the polynomial we must solve looks like, 

4254.054.0036.00 λλλ +−−−= . The R commands and results produced for 
this example are shown below. 
 
> polyroot(c(-0.036,-0.54,-0.54,0,1)) 
[1] -0.07176821-1.349959e-21i -0.48617915+4.940097e-01i 
[3] -0.48617915-4.940097e-01i  1.04412651+3.885781e-16i 
 

Since the polynomial is fourth order there are four roots. Each root is 
written as a complex number with the general format, a+bi, where 1−=i
. We can see that the first root has a very small coefficient in front of i. This 
means that we can ignore the imaginary part of this number. Thus, the first 
root is –0.072. The second and third roots are imaginary numbers and are 
complex conjugates, -0.49+0.49i and –0.49-0.49i. The last root is also a real 
number and is the one positive root we are looking for, 1.044.  
 

Experiment Results Age-Specific Selection 
  Week 

1 
 
2 

 
3 

 
4 

 
5 

# of 
surviving 

males 50     

 females 50     
Fecundity 1      
Vials# 2      
 3      
 4      
 5      
 6      
 7      
 8      
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 9      
 10      
 11      
 12      
 13      
 14      
 15      
 16      
 17      
 18      
 19      
 20      

 
 
 

Questions for the Lab Report 
 

1. Compute the age-specific survival probabilities and fecundities 
for your population. Remember fecundity and survival have 
been estiomated and the uncertainty in these estimates can be 
summarized with confidence intervals. 

 
2. Estimate the exponential rate of increase, or fitness, for your 

population. Since most of the first two weeks of life were spent 
as a larva or pupa in these populations and are combined into the 
first age-class, assume f1 = 0 and P1 = 1. 

 
3. Using your own data, find the change in the exponential rate of 

increase that would result from doubling the female fecundity (i) 
at two weeks of age (e.g. f2), AND (as a second calculation) (ii) 
doubling at five weeks of age (e.g. f5). 

 
4.  What happens to average female fecundity with increasing age? 

What is this change due to? 
 
 

References 
 

Charlesworth, B. 1980. Evolution in age-structured populations. Chapters 1,3. 
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What Are Statistics? 
 

Samples and Populations 
 
Studies are largely based on sets of individual observations (or just 
observations).  Such observations generally consist of a single measurement 
or set of measures taken on the "smallest sampling unit" of the study.  A set 
of such observations is referred to as the sample under consideration.  A set 
of blood pressure measures obtained from 100 patients is a sample, with 
each blood pressure measure being an observation.  Similarly, if we counted 
the number of queen ants in each of 500 colonies, the number of queens in 
each colony is an observation and the entire set of 500 such counts the 
sample.   
 
The actual measurement taken on each sampling unit is referred to as a 
variable.  This variable could be a single measure (like blood pressure), a 
vector of observations (blood pressure taken a different times after a drug 
was administered), or even a more complex set of observations (a 
reconstructed three-dimensional CAT scan). 
 
A third useful concept is the population.  In statistics, the population is the 
entire collection of “things” we wish to learn about.  Generally, we try to 
draw a sample from a population in a manner that is representative, such 
that inferences made from the sample apply to the population.  Thus, a 
sample of 1000 doctors taking one aspirin tablet per day for three years and 
then being monitored for heart disease may be representative of the 
population of all doctors, or perhaps all Americans.  Of course, the trick is 
picking a sample that is truly representative of the group for which 
conclusions are meant to be drawn.  It is possible for the sample to also be 
the population.  Such an example may be the weights of all animals in 
captivity for some species that is extinct in the wild. 
 
Variables 
Generally, experiments (and all data) differ in the forms they take.  The 
variables we will consider fall into a number of useful categories: 
 
Measurement Variables 
 Continuous 
 Discontinuous 
Ranked Variables 
Attributes   
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In theory continuous variables are measurements that can assume an infinite 
number of states (perhaps bounded).  Classic examples are height and 
weight -- a person's height or weight can be measured to arbitrary precision 
depending only on the availability of an appropriate tool for measuring.  
Discontinuous variables on the other hand can only take on fixed values.  
Examples include the number of sternopleural bristles on a fly (my 
favorite!), or the number of eggs in a clutch of birds.  Ranked variables imply 
order but not scale.  One, for example, could record the birth order of a large 
family and the time between the 6th and 7th offspring's birth could be one 
minute or five years.  The last category of variable is an attribute.  Attributes 
are measurements which can only be expressed qualitatively.  Attributes 
can include biological sex, coat color pattern in cats, or blood groups in 
humans.  Attributes are also commonly associated with experimental 
manipulation.  An example of this would be "Nasonia Wasps Treated with 
Ampicillan (to kill Wolbacia)" versus those "Untreated". 
 

Accuracy and Precision 
 
Accuracy is the closeness of a measure to its true value. 
 
Precision is the closeness of repeated measures to the same value. 
 
A watch that is STOPPED is very precise, but completely inaccurate! 
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Descriptive Statistics 
 
The technical definition of a statistic is 
simply a numerical summary of the data. 
We will define several such summary 
statistics commonly used. 
 
Let X1,X2,...,Xn represent a set of N 
observations from some experiment.  
X's could include numeric variables or 
indicator variables indicating discrete 
outcomes of a trial.  Examples of 
numeric variables are weights of 
different people (a continuous 
quantity), or the number of bristles on 
certain segments of a fly (a discrete 
quantity). Examples of indicator 
variables can be success or failure 

outcomes of trials like determining whether the outcome of a coin toss is a 
heads or whether a draw from a deck of cards is a heart. Such outcomes can 
be recorded as 0’s or 1’s. Consequently, they can also be called binary 
variables. 
 
Some useful statistics that describe our set of X's are the following: 
 

Sample Mean  X =
Xi

i =1

N

∑
N

 

 
That is, "X bar" is equal to the sum of all the Xi divided by the total number 
of observations. 

Sample Variance Var X = sX
2 =

(Xi − X )2

i =1

N

∑
N −1

 

 
Sample Standard Deviation sX = sX

2  

The sample standard deviation is a measure of the average deviation from 
the mean value of the population. For example, is the average height of a 
population of male college students is 180 cm with a sample standard 
deviation of 15 cm, this can be thought of as a typical male student is within 
15 cm of 180 cm. 
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If instead of having a single measure for each experimental unit, we took 
pairs of measures, then we can define some additional useful statistics. 
Examples of pairs of measures would include measuring both the pulse rate 
and height of each individual in a study. In this case, data would take the 
following form: {X1, Y1}, {X2, Y2}, ..., {Xn, Yn}. Here Xi is the pulse rate of 
individual i and Yi that individual's height. And we can define some 
additional summary statistics: 
 

Sample Covariance CovXY =
(Xi − X )(Yi − Y )

i =1

N

∑
N −1

 

 

Sample Correlation r XY =
CovXY

sXsY

 

The sample correlation is a number between -1 and 1 which measures the 
strength of the association between two variables in the study. Numbers 
close to +1 imply the large values of X are strongly predictive of large values 
of Y (and vice versa), value of -1 imply large values of X are strongly 
predictive of small values of Y (and vice versa) and intermediate values of 
r imply the value of X is a poor predictor of the value of Y. We would expect 
height in centimeters and height in inches on the same set of individuals to 
be highly correlated (r = 1), on the other hand we expect the height of each 
person in our class to show little or no correlation with the average time it 
takes to drive to work for that person (r = 0).  
 
All these statistics can be calculated by hand or with a calculator. This isn't 
very efficient when one has a lot of data. There are several computer 
programs that allow these statistics to be calculated easily. We will learn 
how to use one such program, called R. 
 
 

Why Do I Want to Use Statistics? 
 
Statistics in and of themselves are not terribly useful. The term statistics is 
used in a much broader context to refer to a "statistical test of a hypothesis". 
That is, after we observe the outcome of some experiment, we wish to ask 
the question: “Is this outcome consistent with chance alone or is there 
something else going on here?”  Generally, scientists set up tests of 
hypotheses. That is, they may ask if their results are consistent with some 
predetermined model. If not, they may use their results to reject this model. 
Alternatively, they may ask if their data differ with respect to an important 
variable after some experimental manipulation. These are not very intuitive 
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concepts for many people.  In this course, we will motivate statistics with 
concrete examples. 
 
Coin Toss  (The Binomial Distribution) 
 
You want to test the hypothesis that a coin you have is “fair”. Thus, 
following your scientific spirit, you decide to do a coin toss experiment. In 
a more statistical language, you want to test the null hypothesis (usually 
designated H0) that the probability of a head is equal to the probability of a 
tail, or fifty percent. The alternate hypothesis (usually designated H1) is that 
the probability of a head does not equal the probability of a tail. Note that 
the two hypotheses are mutually exclusive and exhaustive. That is, if H0 is 
true H1 is false and vice versa, and the two hypotheses include all possible 
outcomes. Formally you would write this as: 
 
H0 :  Prob(Head) = Prob(Tail) = 0.5 
H1 :  Prob(Head) ≠ Prob(Tail) 
 
You test this hypothesis by flipping a coin 20 times and each time writing 
down the outcome. Imagine that you observe 9 heads and 11 tails, and 
therefore you conclude that the probability of a Head is 45% (9 out of 20). 
Is this consistent with H0 or H1? It is not obvious. Why? What should you 
conclude? Suppose you had observed only 5 Heads out of 20, what then? 
 
Luckily for you (and all of us), statisticians have given this problem a great 
deal of thought. They realized that in 20 trials of a coin toss experiment 
there is some probability of observing 0, 1, 2, ..., 20 Heads out of twenty. 
These probabilities can be worked out from the elementary rules of 
probability theory, but will not concern us here. It turns out that your 
experiment is a special case of the more general probability distribution 
referred to as the Binomial Distribution: 
 

 

Pr(S;N, p) =
N!

S!(N − S)!
pS (1− p)N−S  

 
This equation is read as the Probability of S successes given N trials when 
the probability of a success equals p. This is the “distribution” of S 
conditional on N and p. The above case of the binomial distribution applies 
to the case where we perform a number of trials of some experiment and 
observe one of two mutually exclusive and exhaustive outcomes and we 
wish to test our observed number of “successes” to that expected under an 
assumed probability of success.  
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In your experiment, we define a success as a Head that occurs with a 
probability of 0.5 under the null hypothesis. Below we have plotted the 
probability of seeing exactly the specified number of heads out of 20 tosses 
(the bars, scale on left). We have also plotted the cumulative probability of 
seeing that number of heads or fewer (the line, scale on right). From the 
figure, we can see that the probability of observing exactly 9 Heads is about 
17% (draw a horizontal line to the scale on the left for the bar at 9 heads). 
On the other hand, the probability of observing 9 or fewer heads is about 
40% (draw a horizontal line to the scale on the right for the line at 9 heads). 
Thus, your observation of 9 Heads does not appear to violate the null 
hypothesis. Had you observed 5 Heads the situation would be different. In 
this case, the probability of observing 5 or fewer Heads is less than 5% (the 
right y-axis and line in Fig. 1). Thus, it seems unlikely the null hypothesis is 
true, and the coin is biased.  
 

number of heads
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Figure 1: The binomial probability distribution and cumulative distribution, N = 20 and p 
=0.5. 

So what is “statistics” really about? Simple. 
 
1. You set up a null hypothesis and an alternative hypothesis. 
2. You record your data and then calculate some “statistic” or summary of 
the data. 
3. You count on a statistician having determined the distribution of your 
statistic given that the null hypothesis is true. 
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4. You look and see where the observed value of your statistic falls in that 
theoretical distribution. You ask if your observed value is likely to have 
occurred by chance alone under the null hypothesis? 
 
The trick is to pick a null hypothesis (1) and statistic (2) for which the distribution 
is worked out! 
 
Is sex-ratio influenced by rearing temperature in turtles? (Chi-square 
Distribution) 
 
In many species of turtles the sex-ratio of offspring hatching from a given 
nest is affected by the temperatures experienced during development in the 
nest. Molly, a hypothetical highly esteemed turtle biologist, discovers a new 
species of turtle, Chrysemys gobruinsentius. She decides to carry out an 
experiment to determine if sex-ratio is affected by rearing temperature. She 
rears a cohort of turtles at either 16C or 25C and counts the number of 
turtles of each sex that hatch. 
 
OBSERVED DATA 
Temp 16C 25C  Total 
Male   50   70  120 
Female   50   20    70 
Total 100   90  190 
 
Molly's null hypothesis is that sex-ratio is independent of temperature. That 
is 50/100 is statistically indistinguishable from 70/90. Her alternate 
hypothesis is that the two ratios are unequal. 
 
H0:  sex-ratios are independent of temperature 
H1:  sex-ratios are different 
 
It turns out that there is a convenient statistic, called the Chi-square statistic, 
which summarizes the information in the table, and whose distribution is 
known if the null hypothesis is true. The statistic is: 
 

 χ df = x
2 =

(obsi − expi)
2

expicells
∑  

where df is the degrees of freedom in the model, obsi is the number of 
observations in each cell and expi is the expected number of observations in 
each cell under the null hypothesis.  We will discuss degrees of freedom 
later, cells refer to a particular combination of sex and rearing temperature 
(e.g., males hatching at 16C). If N is the total number of observations over 
all cells, then the expected number in each cell under the null hypothesis 
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can be easily calculated. In the case of Males hatching at 16C this is just the 
total proportion of males times the total proportion of turtles hatching at 
16C times N; or 
 
(#Males/N) × (#16C/N) × N = (120/190) × (100/190) × 190 = 63.2 
 
The expected numbers can be calculated similarly for the remainder of the 
cells.  With the resulting table 
 
EXPECTED DATA 
Temp 16C 25C  Total 
Male  63.2  56.8  120 
Female  36.8  33.2    70 
Total 100  90  190 
 
 
The Chi-square statistic can be calculated as the sum of the observed counts 
minus expected counts squared divided by expected counts over all cells of 
the table (as per the formula above). In this example, the resulting value of 
the Chi-square statistic is 15.7.  The degrees of freedom are calculated as the 
total number of cells minus the "number of constraints placed on the 
expected cell totals". In this case, there are three constraints placed on the 
expected cell values:  the total number of observations in the entire data set, 
the total number of Males, and the total number of turtles hatched at 16C. 
That is, once you are given these three values (i.e., conditional upon these 
three values) all the expected values are completely determined (convince 
yourself or this). So, in this example, there are 4-3 = 1 degree of freedom 
(this will generally be the case with 2X2 tables). One minus the cumulative 
Chi-square distribution looks like this for one degree of freedom. That is, 
each point on the line can be thought of as the probability of observing a 
Chi-square statistic larger than that value. The horizontal line shows the 5% 
level, or the value of the Chi-square statistic for which we only expect to 
observe larger values if the cell counts are independent five percent of the 
time. 
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Figure 2: One minus the chi-square cumulative distribution with one degree of freedom. The red 
horizontal line shows the 5% probability level.  Notice that 15.7 would fall far to the right of the 
figure. 
 
Thus, it is apparent that the probability of observing a number as extreme 
as 15.7 is quite rare by chance alone (for values as low as six the probability 
is approaching zero). The implication is that we can reject the null 
hypothesis that the sex-ratios are independent of rearing temperature as the 
probability of observing Molly's data is very low under the null hypothesis. 
Molly is confident that rearing temperature affects sex-ratio in her newly 
discovered turtle species. 

 
Confidence Interval on a Variance Estimate 

 
 
The Chi-square distribution is used in a number of different contexts in 
statistics.  For example, it turns out that 
 
((n-1) s2)/σ2 is distributed as a Chi-square with n-1 degrees of freedom 
where s2 is the estimated observed variance of a sample of size n from some 
population and σ2 is the (unknown) true variance of the distribution from 
which a sample is taken. We will state without proof that it follows that 
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(n −1)s2

q2

, (n −1)s2

q1

 

 
 

 

 
  is a 95% confidence interval on σ2, the true variance 

from which the sample was drawn, provided that 
 
Pr(χdf =n−1

2 < q1 ) = 0.025  and Pr(χdf =n−1
2 < q2 ) = 0.975 . This property of the Chi-

square distribution can be useful for determining if the variance of a sample 
differs from a theoretical prediction. The only "trick" required to calculate a 
95% confidence interval on a true (unknown) variance is to calculate values 
for q1 and q2. These q’s are referred to as quantiles of a statistical distribution, 
and can be thought of as the value of the “x” axis conditional on the value 
of the “y” axis in cumulative distribution plots such as Figures 2 and 3.   
 
Below is a cumulative Chi-square distribution for degrees of freedom = 99 
(i.e., the sample variance estimated from 100 observations).  The red 
horizontal lines are at 0.025 and 0.975.  It can be seen from the figure that 
the a value of q1 approximately equal to 75 satisfies the first equation (
Pr(χdf =n−1

2 < q1 ) = 0.025) and a value of q2 approximately equal to 125 the 
second equation (Pr(χdf =n−1

2 < q2 ) = 0.975).  That is, the values of q1 and q2 are 
obtained by taking the value of the x-axis where the red line intersects the 
cumulative Chi-square distribution for 

 

Pr(χdf = 99
2 < x).  Later in the course we 

will use a computer program to obtain these quantiles. 

 
Figure 3: Cumulative Chi-square distribution for degrees of freedom = 99. Horizontal red lines 
are at 0.025 and 0.975. 
 
Desiccation resistance in flies selected to resist starvation (t-Distribution). 
 
Many organisms have genetic mechanisms that allow them to respond to 
"stressful" situations (think high temperatures or food shortage as opposed 
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to a term paper being due tomorrow). One hypothesis regarding the 
genetics of stress resistance is that there are general mechanisms of 
responding to stress, such that an organism evolved to counter one stress is 
often good at tolerating a second “unrelated” stress.  In order to test this 
hypothesis a hypothetical scientist, Parvin, creates 10 evolved populations 
of Drosophila, along with a set of 10 matched controls. Each evolved 
population and its matched control are derived from a different base 
population.  The selection is carried out by placing flies in vials without 
food (but with water) until 80% of the flies die, and then allowing the 
survivors to reproduce.  After 25 generations the evolved populations are 
qualitatively better at surviving starvation then the controls. 
 
In order to examine “cross-tolerance” of her evolved populations Parvin 
carries out an experiment where both the starvation evolved lines and their 
controls experience desiccation stress.  This is accomplished by placing 500 
flies in a bottle in the presence of a desiccant, and then measuring the time 
in hours until all the flies are dead.  Parvin believes that the experiment 
primarily measures desiccation resistance, as the survival times are an 
order of magnitude shorter than would be observed in the case of a purely 
starvation stress.  Below are the data she observes.    
 
 

 
Survival times in hours 

  
Population  A B C D E F G H I J 

Control 8.4 8.1 5.1 7.6 4.7 10.7 5.7 4.1 8.1 6.8 
Starvation- 

resistant 
12.4 15.8 11.7 8.6 12.6 11.1 10.5 7.3 7.2 10.8 

 
In Parvin's case the null hypothesis is that the means of the two treatments 
are the same, and the alternate is that they differ: 
 
H0:  mean desiccation resistance of control populations equals that of the 
evolved populations 
H1:  mean desiccation resistance is different 
 
It turns out there is a convenient statistic, the t-statistic, whose statistical 
properties are well known.  The t-statistic is: 
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t =
X 1 − X 2
s1

2

n2

+
s2

2

n1

, where X with a bar over it is called "X-bar" 

 and represents the sample mean of each group and s2 the sample variance 
of each group, and n is the number of observations in each group (this is a 
special case of the t-statistic for the case in which the variances of the two 
groups are fairly similar, which is all you have to worry about).  This 
statistic is distributed according to a t-distribution with n1 + n2 - 2 degrees 
of freedom, and the cumulative distribution looks like this: 
 
 

 
Figure 4 The cumulative t-distribution. As before, red horizontal lines are at 0.025 and 
0.975. 

 
In Parvin's case the value of the t-statistic is -3.69.  Less than 1% of the t-
distribution falls below the observed t-statistic measure in Parvin's case.  
Thus it appears that Parvin can reject the null hypothesis that selection for 
starvation resistance results in NO cross-tolerance to desiccation resistance. 
 

What Does it Take to Reject the Null Hypothesis? 
 
 
By convention, if the value of some statistic is such that fewer than 5% of 
observations are likely to exceed it by chance alone the null hypothesis is 
rejected at a "p-value" of 0.05.  Thus a p-value of 0.05 or 5% is equivalent to 
the statement that only 5% of the time would one observe this data or data 
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more extreme under the null hypothesis.   In the case of the example above 
we did a two-tailed t-test (meaning we just wanted to see if desiccation 
resistance was different between the two groups).  Thus, for the above 
degrees of freedom and looking at Figure 3 the t-statistic would have to be 
either larger that approximately 2.1 or smaller than -2.1 to be significant (the 
values of the x-axis, where horizontal lines at 0.025 and 0.975 cross the 
cumulative distribution). 
 
 
 
 
 

Confidence Interval on the Sample Mean 
 
 

Suppose we have a sample of consisting of n-observations, x1, x2, …, xn. From 

these we can easily calculate the sample mean,  ∑
=

=

=
ni

i
ix

n
x

1

1 , and variance 

( )∑
=

=

−
−

=
ni

i
ixx

n
s

1

22

1
1 .  A (1-α) × 100% confidence interval on  x  is equal to 

( )nstxnstx nn /,/ 2
1),2/(1

2
1,2/ −−− ++ αα , where  

 

ta,N  is the value of a t random 
variable with N degrees of freedom that is greater than a × 100% of all such 
random variables.  The value of this t variable can be found using R  (see next 
chapter) with the command: qt(a,N).  
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R: A Language for Doing Statistics 
 
 
We will use a program called R to help us do statistical calculations and 
later simulate more complex phenomena.  What follows is an introduction 
to R designed with the information you need to do your problems. 
 

Why R 
 
 
R is a freely available flexible statistical language.  It is an Open Source 
language, which means that computer programmers anywhere in the 
world can modify it when a bug is found.  R is object-oriented and has a set 
of powerful graphic tools. 
 

Links 
 
 
Download R    
http://cran.r-project.org/ 
Introduction to R   
http://cran.r-project.org/doc/manuals/R-intro.pdf 
A second Introduction to R  
http://cran.r-project.org/doc/contrib/Rdebuts_en.pdf 
One page R "cheat sheet"  
http://cran.r-project.org/doc/contrib/refcard.pdf 

 
Starting and Quitting R 

 
 
Throughout this introduction commands typed into R will be in a different 
(Courier) font.  Everything in this (Times) font is an explanation of what 
you are doing. 
 
To get R just download and install R and RStudio from the following two 
websites: 
https://cran.rstudio.com/ 
https://www.rstudio.com/products/rstudio/download/ 

 
Everything in R is an object.  q followed by parentheses executes the quit function, 
whereas q without brackets lists the contents of an object called ‘q’, which should 
be the q() function .  This will be true of all the functions and objects you encounter. 

http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/refcard.pdf
https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/
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Try typing “q” without parentheses.  Try typing a capital “Q”. 
 
> q 
> Q 
> Q() 
 
There is a differences between asking for the contents of q and executing q 
as a function.  R is also “case sensitive” meaning in general X does not equal 
x. 
 
Before proceeding further, view the “Introduction to R” video series (link 
below). As you watch it, make sure that you follow along in RStudio and 
perform the same actions as in the video. You will not learn without doing. 
Be aware that some of the URLs referenced in the video may have changed 
since the video was uploaded. 
 
Introduction to R: 
http://bit.ly/E115L_LearningR 
 

Some Useful Functions 
 

Before continuing, WATCH THE VIDEO PLAYLIST above! Now, switch 
to RStudio and let’s look at a few useful functions. First, notice the help tab 
on the right-hand side (it was in the videos). Next, type the following two 
commands into the window (omitting the literal ‘>’ signs): 
 
> mydata <- c(1,2,3,4,5) 
> mydata 
> mydata.squared <- (mydata)^2 
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The first line makes an object called mydata which contains the listed set of 
numbers. Later we will learn how to import data. mydata is just a arbitrary 
label for where we will put the data. The c(...) tells R to concatenate the 
number in the parentheses. The arrow tells R to put whatever is on the right 
side into the variable on the left side. mydata is a vector of observations. In 
R vectors are series of data of one “kind” in one dimension (their length). 
For example, you cannot have a vector with text and numbers or R will 
convert the numbers into text.  
 
The second line lists the contents of mydata. The third line squares each 
value in mydata. mydata.squared again is a new variable name where we 
will put something (in this case the squared values of mydata). 

 
Try typing the following into RStudio: 
> plot(mydata, mydata.squared) 
> plot(mydata, mydata.squared, type=”l”) 
> mean(mydata) 
> var(mydata) 
> length(mydata) 
The first two lines make an xy-plot of the data. The plot command is of the 
form plot(x-axis, y-axis, options). Specifying type = "l" is a line 
plot. The final three lines give the mean, variance, and number of 
observations in mydata, repectively. Notice how the plot now replaces the 
help menu. 
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Below is a table of commonly used functions and operators 
 
+ addition 
- subtraction 
* multiplication 
/ division 
^ exponentiation 
abs absolute value 
exp exponential (e to a power) 
log natural log 
log10 log base ten 
sqrt square root 
cor correlation between two vectors 
cumsum cumulative sum of a vector 
mean mean 
median median 
min minimum 
max maximum 
sum sum 
var variance (or covariance, if given a matrix) 
 
It is useful to see what these functions do to your data. Try some of them 
out. 
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A few important notes 

 
1) Write your code in a separate file (not in the console) 
 
2) Annotate your code so that you remember what you did and why 
  
To annotate code, you just add **#** before any line of text, that way R knows 
that it is not an instruction. For example, type: 
 
> This is just an instruction 
 
What happened? Now try:  
 
> #This is just an instruction 

 
Vectors 

 
Vectors are a series of objects (it can be of length 1) in R. They have only one 
dimension of a certain “length”.  You can ask R the length of a vector with 
the command length(). 
 
> mydata <- c(1,2,3,4,5) 
> length(mydata) 
 
Note: We can ask if our R object is a vector with is.vector(). In R, 
functions (we will learn more about them) are always followed by a set of 
parentheses to give arguments for the function.  
 
Vectors can contain many elements. These are some ways to create vectors in 
R: 
 
> v1 <- c(2,4,6,8) 
> v2 <- 1:12 
> v3 <- 1:4 
> v4 <- seq(0,50,1) 
> v5 <- rep(7,9) 
 
What is each of these functions doing? Could you describe it? What do you 
think will happen if you type v1+v3? 
 
> v1+v3 
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Getting up to Speed with R Using swirl() 

 
By now, you should be able to do a number of basic tasks in R by using 
RStudio. However, there are a lot of basics that are necessary to understand 
to continue. And the rest of the course relies heavily on these concepts. 
Perhaps the most important prep work you’ll do for the remainder of the 
course will be completing the swirl() tutorial. This is an interactive R 
tutorial taught in R! To access it, first open RStudio, and type the following 
into the Console: 
 
> install.packages("swirl") 
> library(swirl) 
>install_course_github("swirldev", "R_Programming_E") 
> swirl() 

 
As usual, omit the “>” symbols, as they represent the console prompts. 
Now, the RStudio console will prompt you for your name and ask you 
which course you’d like to take (see screenshot above). Enter the number 
associated with “R Programming E” (it was 1 for me) and press return. For 
this course, you should complete the whole tutorial except for possibly the 
“Dates and Times” section. We won’t be working on that in class. The 
tutorials are short, interactive, and very directly relevant to completing the 
class. At the very least you should complete the tutorials to convince 
yourself that you know enough to complete the course. I will be reviewing 
the major concepts in class, but it will be a review. If you haven’t reviewed 
the material ahead of time, it will be hard to learn in class. 
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Matrices 

 
Often, we will work on matrices instead of vectors. A matrix is a 
representation of numbers in the form of a table with some number of rows 
and columns. Generally a row of a matrix will be observations and columns 
different variables. We will now generate a matrix. First, we need to make 
an additional vector: 
 
> mydata <- 1:5 
 
this is shorthand for generating a sequence of numbers from 1 to 5 
 
> cbind(mydata, (mydata)^2) 
 
cbind stands for “column bind”, and will bind columns together to make a 
matrix. Another function, rbind, will bind rows. Say we want to do 
further work on this matrix. To do so, we must make it an object. How do 
we do this?? 
 
 
Try: 
> mymatrix <- cbind(mydata, (mydata)^2) 
> mymatrix 
 
Try applying some of the functions above to your new matrix. What do min, 
max, and mean do?  What about cor and var? 
 
You can see that many functions don't really work the way you might like 
them to. It would be useful to have a way to refer to only parts of mymatrix.  
We can do this fairly easily. 
 
Try the following, what happens 
 
> mymatrix[1,1] 
 
Note the first number refers to the row number and the second the column 
number. 
 
> mymatrix[3,2] 
> mymatrix[,2] 
> mymatrix[3,] 
> mymatrix[1:3,2] 
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What happens when you apply functions to these "submatrices"?? 
 
Now try this: 
 
> mymatrix[mymatrix[,2] > 16,] 
 
This is pretty complex, but powerful.  Do you see what we accomplish by 
using this command?  
 
What is the variance/covariance matrix associated with the first three rows 
of mymatrix? 
 

Scripting R procedures 
 
Two common complaints about R are:  1) that it is difficult to learn the 
syntax of the language, and 2) why use a command line interface when we 
are accustomed to “point and click” in the other programs we routinely use. 
While the syntax can indeed be difficult to pick up, it more than makes up 
for this challenge. One advantage of a command line interface is incredible 
flexibility. If the “correct” procedure or plot you want is not easily 
generated using point and click type defaults it can be modified at the 
command line. Sometimes it is painful to do so, but it is at least possible.  
 
More importantly it is possible to save all the commands you used to 
produce a figure or analysis and then repeat that procedure exactly on the 
same dataset, the same dataset with a subset of observations changed (say 
it turned out that 15% of a sample of pH readings making up your dataset 
were collected with a borrowed instrument that you discovered was 
imprecise), or an entirely different dataset. If the same set of operations are 
often applied to different datasets it is possible to even write your own 
custom function to do this procedure (below).  This is very useful the day 
you want to re-generate a certain p-value or figure and you cannot 
remember the exact sequence of point and click operations that allowed you 
to do this.... 
 
The easiest way to do this is to work in RStudio’s script editor. Re-running 
an analysis merely requires pasting the “code” back into a R window where 
it is executed one line at a time. 
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As an example, consider the commands below taken from the earlier 
examples. I have edited these earlier commands by merely removing the 
“>” prompt. Try pasting them into the R window. 
 
mydata <- c(12,19,24,17,15) 
mydata.squared <- (mydata)^2 
plot(mydata, mydata.squared) 
mean(mydata) 
var(mydata) 
mydata2 <- 1:5 
mymatrix <- cbind(mydata2, mydata) 
mymatrix[1:3,2] 
mymatrix[mymatrix[,2] > 16,] 
 
Now let’s imagine we discovered the first data point of mydata was not a 
“12” but a “21” because of a transposition error entering the data.  We could 
correct our mistake easily. 
 
mydata[1] <- 21 
mydata 
 
We want the values of mymatrix for which the values in the second column 
are greater than 16.  What happens if we just re-run the last line of the above 
script? 
 
mymatrix[mymatrix[,2] > 16,] 
 
It doesn’t work correctly, as we have to re-run all the intermediate steps 
(such as creating mymatrix) to reflect the changes to mydata.  So we can re-
run our analysis on mydata by re-running all the lines subsequent to the 
initial “mydata” assignment. Do this by highlighting those lines and 
clicking on the “Run” button in the RStudio script editing window. 
 
In the remainder of the notes I leave out the prompt “>” sign so you can directly 
paste examples into R. When a line of code is indented, under a preceding line, 
that’s an indication that it is a continuation of the previous line, and represents a 
single line of code. 
 

Importing 
 
The best way to input data into R is as a "tab" delimited table.  If data is 
saved such that the first line is a set of tab separated names and subsequent 
lines are the data (each with a row label) then the function read.table 
can be used.  For example say you have the following data saved as 
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"house.data" in the “desktop directory” on your PC (to get the file to your 
“desktop” go to the file server and drag the appropriate file to the 
“desktop”).  Now in R change your working directory to the “desktop” 
(under “FILE” -> “CHANGE WORKING DIRECTORY”): 
 
 Price Floor Area Rooms 
01 52 111 830 5 
02 54.75 128 710 5 
03 57.50 101.5 1000 6 
04 57.50 131.0 690 6 
... 
 
This data can be read into R using the following command: 
 
Housedata <- read.table("house.data") 
 
What do you think the following command does? 
 
Housedata[,"Floor"] 
 
R has another way to refer to parts of a “data.frame” such as “Housedata” 
using a “dollar sign” notation. 
 
Housedata$Floor 
Housedata$Floor[1:3] 
Housedata$Floor[Housedata$Floor > 115] 
 

Applying functions to rows or columns of a dataframe or a list 
 

Lets load the decidedly non-biological example “mtcars” data set into R 
 
data(mtcars) 
mtcars[1:10,] 
dim(mtcars) 

 
For each car we have the following  variables that are recorded: mpg, cyl, 
disp, hp, drat, wt, qsec, vs, am, gear, and carb.  It is obvious what some of 
these variables are.... others your guess is as good as mine. Say we wanted 
to calculate the mean and minimum observations for each of the recorded 
variables 

 
mean(mtcars) 
min(mtcars) 
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Interestingly the function mean is “smart enough” to know mtcars is a 
dataframe and calculate the mean for each column, min is not nearly so 
smart. There is a function “apply: that lets one apply some operation to each 
row or column of a matrix (or dataframe). The first argument to apply is a 
matrix or dataframe, the second to apply the operation to rows or columns 
(rows = 1, columns = 2), and the third the function to be applied.  The 
function can be a built in function taking a single argument (like min), a 
custom function, or defined within the apply command: 

 
apply(X = mtcars, MARGIN = 2, FUN = min) 
apply(x = mtcars, MARGIN = 2, FUN = function(x) 

(100*sd(x))/mean(x)) 
# coefficient of variation 

 
It is not difficult to calculate such statistics conditional on the state of one of 
the other variables.  For example say we want the average statistics for each 
of the 4 cylinder cars. 

 
mtcars.4cyl <- mtcars[mtcars[,"cyl"] == 4,] 
apply(X = mtcars.4cyl, MARGIN = 2, FUN = mean) 

 
In fact, we can calculate statistics of interest conditional on the number of 
cylinders using the “split” function in concert with the “lapply” function.  
“split” will split a dataframe by a given variable into a “list” of dataframes, 
each member of the list being a dataframe subselected by the slitting factor. 
 
{More advanced sub-setting commands are discussed below} 

 
mtcars.cyl <- split(x = mtcars, f = mtcars["cyl"]) 
#  apply the min and mean to each element of the list 

mtcars.cyl 
 
 
lapply(X = mtcars.cyl, FUN = function(x) 

apply(x,2,min)) 
lapply(X = mtcars.cyl, FUN = function(x) 

apply(x,2,mean)) 
#  we much nest the apply within the lapply since each  
#  element of mtcars.cyl is a dataframe itself! 
 
“tapply” is similar to “lapply” and is useful when tabling results. 

 
tapply(X = mtcars$mpg, INDEX = mtcars[c("cyl", "am")], 

FUN = mean) 
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It appears 4 cylinder cars with a radio are your best bet if you want to 
conserve fuel!  (although perhaps this is not significant!) 
 
“tapply”, “lapply”, and “apply” can be combined in a variety of manners 
to produce useful results (we will not worry so much about these complex 
operations).   For example: 

 
apply(X = mtcars[,c("mpg","disp","hp","cyl","am")], 

MARGIN = 2, FUN = function (x) tapply(X = x, 
MARGIN = mtcars[c("cyl", "am")], FUN = mean)) 

 
Although the results are readily apparent, I suspect the code is not so 
transparent.  Luckily, nothing this sophisticated with be required to do the 
problems! 

 

Making your own functions 
 
In many situations you will do something often enough that it is useful to 
have your own function to simplify this task.  In fact many of the functions 
you use in R are written in R.  Let’s look at a simple example that cubes a 
number 
 
cube.it <- function(x) x*x*x 
cube.it(3) 
cube.it(-3) 
 
Although this could have been accomplished using –3^3, it is instructive to 
look at making a function.  This is generally of the form 

 
yyy <- function(x1, x2, ...){ 
 
operations on xi’s 
final line in the object to be returned 
} 

 
And is called as 
 
yyy(x1,x2,...) 
 
The covariance of two data vectors X and Y is defined as 
 

 

Cov(X,Y ) =
(Xi − X )(Yi −Y )

i
∑

n −1
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So we will make a function called “foo.cov” (we do not want to call is cov 
or it would replace the built in function for covariance!) 
 
foo.cov <- function(x, y){ 
 
X.bar <- mean(x) 
Y.bar <- mean(y) 
Xi.minus.Xbar <- x-X.bar 
Yi.minus.Ybar <- y-Y.bar 
numerator <- sum(Xi.minus.Xbar * Yi.minus.Ybar) 
answer <- numerator/(length(x)-1) 
#  length is the number of observations in a vector 
 
# answer we must include the last line so “answer” is  
# returned 
} 
 
We can compare our function that calculates Covariance to the built in R 
routine 
 
XX <- Housedata$Price 
YY <- Housedata$Area 
XX 
YY 
foo.cov(XX,YY) 
cov(XX,YY) 
 
or the same can be accomplished in one line, as: 
 
foo.cov(Housedata$Price, Housedata$Area) 
 

Graphics 
 
The incredible flexibility of graphics in R, combined with publication 
quality postscript output is one of the primary reasons that many 
statisticians migrated to the R statistical language.  As with statistical and 
mathematical operations in R, graphics can also be included in functions (or 
scripted).  As a result very complex figures can be easily recreated if a data-
set changed a small amount.  Chapter 12 of the R-intro.pdf is a thorough 
introduction to graphics in R.  We will give a much less detailed 
introduction here. If you really want to read this document, it can be found 
here: http://bit.ly/R-Intro-pdf 
 
First lets get some data to plot.  R has a number of built in data-sets. 
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data(package = base)  # list available datasets 
data(faithful)        # load data of intervals between 
                      # eruptions of old faithful 
 
faithful[1:10,] 
attach(faithful) 
 
“eruptions” are the magnitude of observed eruptions and “waiting” is the 
waiting time between eruptions in minutes. 

 
Lets look at a histogram of eruption waiting times 
 
hist(waiting) 
hist(waiting, breaks = 30)  # more bins 
hist(waiting, breaks = 30, xlim=c(30,110)) 
# set xaxis limits 
hist(waiting, breaks = 30, xlim=c(30,110),prob=TRUE) 
# yaxis is now frequency versus counts 
help(hist) 
 
We can add lines to the histogram that estimate the “density” of eruption 
intervals (more about what this is later...for now think of it as a smooth 
curve to the data). 
 
lines(density(waiting, bw=1)) 
 
What does changing “bw” do? 
How would you find out other feature of “lines” or “density”? 

 
lines(density(waiting, bw=5),col=2) 

 
We can , of course make a similar plot for eruptions, try this (note you may 
have to make the “bw” parameter much smaller as I do below). 
 
hist(eruptions, breaks = 30, xlim = c(1,5.5), prob = 

TRUE, col = 3) 
lines(density(eruptions, bw=0.1), col = 2) 
rug(eruptions)   # I also add the raw observations 
 
 
You can save these plots from RStudio using the “Export” button above 
them. You can also do so by prefacing the plot commands with a “png” or 
“pdf” command and suffixing the plot commands with the “graphics.off()” 
command to plotting is redirected to the “screen”. 

 
png(filename = ”eruptions.ps”) 
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hist(eruptions, breaks = 30, xlim = c(1, 5.5), prob = 
TRUE, col = 3) 

lines(density(eruptions, bw = 0.1), col = 2) 
rug(eruptions)   # I also add the raw observations 
graphics.off() 
 
pdf(file = ”tony1.pdf”) 
hist(eruptions, breaks = 30, xlim = c(1,5.5), prob = 

TRUE, col = 3) 
lines(density(eruptions, bw=0.1), col=2) 
rug(eruptions)   # I also add the raw observations 
graphics.off() 
 
It is interesting that both waiting and eruptions are “bimodal”.  Is it 
conceivable that longer waits between eruptions are associated with bigger 
eruptions? 

 
plot(waiting, eruptions) 
plot(waiting, eruptions, pch = 16, col = 2) 

 
Can you change the “x” and “y” limits and add a title to the plot? 
 
R makes constructing beautiful plots easy.  Below is a “fun” example with 
the faithful data...more intended to “show off” R than teach you how to do 
this.   

 
faithful.m <- apply(faithful, 2, mean) 
faithful.sd <- apply(faithful, 2, sd) 
fm <- apply(faithful, 1, function(x)  
       (x - faithful.m)/faithful.sd) 
 
#  transform both columns to have 0 mean 
#  and variance of 1 
#  we will learn how to do this later in the course! 
 
image(as.matrix(fm)) 
 
# oooh, I don’t like these heat colors 
# turns out the color spectrum is easily manipulated 
 
my.colors <- c(rgb(r=(30:15)/30,g=0,b=0), 
               rgb(g=(15:30)/30,r=0,b=0)) 
 
image(as.matrix(fm), col=my.colors) 
 
# or yellow -> blue for those R/G color blind males 
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my.colors <- c(rgb(r=(30:15)/30, g=(30:15)/30, b=0), 
               rgb(b=(15:30)/30, r=0, g=0)) 
 
image(as.matrix(fm), col = my.colors) 
 
Stronger yellows are associated with small eruptions and short waiting 
times, whereas stronger blues are associated with larger eruptions and 
longer waiting times. 
 
For the data here with only two columns a scatter plot is likely to be more 
informative, but these image plots are of particular utility when the data is 
highly dimensional. They have become a very popular way of presenting 
gene expression patterns for thousands of genes over a number of different 
treatments.  It seems they may also be of utility in other contexts...for 
example ecological data-sets in which a large number of species each have 
the same 10 measures. 
 
ggplot 

In addition to the already available capabilities of R for graphics, you can  install 
an additional package that makes making beautiful plots really  simple (once 
you get the hang of it). To start with ggplot we first need to  install it:  
 
> install.packages("ggplot2") 

> library("ggplot2") 
 
There is a lot of great documentation about ggplot online. For now, th 
important parts to know are that: 
 1. ggplot works by adding layers (each added with +)  
 2. It has "variables" (defined with ‘aes’) that vary according to the value 
(usually the columns in your data). 
 3. And it has parameters like a particular color or shape that are defined 

 outside ‘aes’.  
   
Let's try it using the data “iris”. This is a famous dataset introduced by the 
evolutionary biologist Ronald Fisher in his 1936 paper “The use of multiple 
measurements in taxonomic problems”. Ronald Fisher was a man that 
developed a lot of useful tools and theories in statistics and evolution but 
unfortunately was also a eugenicist. Luckily for us, this dataset is much 
more innocent. The iris dataset contains three species of irises (setosa, 
virginica, versicolor) and four traits measured for each sample. All 
measurements are in cm.  
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Ok, let’s try ggplot! The first layer just defines the space and overall 
variables. Each of our columns is one of our variables (x, y, color) and that 
is why they are defined within the `aes` parenthesis. They will change 
depending on the value of our columns.  
 
> ggplot(data = iris, aes(x = Petal.Length, y =   
 Petal.Width,  color = Species)) 
 
Now let's add some points and save our plot as an object to avoid copying 

 the same many times.  
 
> myplot <- ggplot(data = iris, aes(x = Petal.Length,  

   y= Petal.Width, color = Species))+ 
geom_point()+ 
 
To make things clearer let's add a trend line. Ways of plotting the data 

 (points, lines, boxplots) are ‘geom’ layers. Layers that summarize the data 
 in some ways are often ‘stat’ (as in statistics) layers.  

 
> myplot + stat_smooth(method= "lm") 
 
If we want to have a trend for all species together, we can set the variable 

 for color only in the points. We can change the color of the trend line 
 outside the ‘aes’ parenthesis.  

 
> myplot2 <- ggplot(data = iris, aes(x = Petal.Length, y 

= Petal.Width))+ 
geom_point(aes(color = Species))+ 
stat_smooth(method="lm",color = “black”) 

 
Finally, we could change axis and colors (you can call colors by their name 

 in R, or use hexadecimal codes to call any color you want.  
 
> myplot2 + xlab("Petal length (cm)")+ 

ylab("Petal width (cm)")+ 
scale_color_manual(values=c("#D00000",  

"#FFBA08", "#3F88C5")) 
 
 
 
 
 



             Mueller, Rose, Emerson, Rebolleda-Gomez and Long  Evolution Lab Manual – Spring 2023 

Evolution Laboratory Notebook  page 71 

 

Cleaning up 
 

“ls()” list all the functions in your working directory and “rm()” can be used 
to remove objects no longer needed. 

 
ls() # There is foo.cov and several objects starting 

with “my” 
ls(pattern = "my") # Yup, this lists only the “my” 

objects 
rm(list = foo.cov) 
rm(list = ls(pattern = "my")) 

 
When you quit R (q()), R will ask if you want to save your work.  If you 
say "n" all variables in your directory will be lost.  If you say "y" they will 
be saved to your working directory as ".RData".  Next time you start R from 
the directing which contains ".RData" all these files will be loaded into your 
workspace.  This can potentially create a great deal of system overhead....so 
it is worthwhile to clean house occasionally.  Or make a number of working 
directory for different projects! 
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R as a Set of Statistical Tables 
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R can supply critical values and other useful information for some of the 
distributions we discussed earlier.  We will examine six of these 
distributions in more detail. 
 
Statistical R name additional argument 
Distribution  in R command           
 
binomial binom size, prob 
chi-squared chisq df 
F f df1, df2 
normal norm mean, sd 
Student's t t df 
uniform unif min, max 
 
The trick is that each distribution must be preceded by a single letter a d, p, 
q, or r. This letter tells R that you want either the density, cumulative 
density (or probability), a quantile, or a random deviate. 
 
Prefix meaning first parameter 
d density=probability at point x x=the point you want 

the probability at 
p cumulative density=probability up to 

that point 
x=point that you want 
the probability up to 

q quantile=the value of the statistic 
which has a probability p of an 
observation less than it 

p=the desired 
probability 

r random deviates from that 
distribution 

n=the number of 
deviates 

 
These functions are best understood by going back to a previous example, 
Ted the coin toss guy. 
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Figure 1. The binomial distribution. 

 
What is plotted in Fig. 1 is the binomial distribution for N = 20 and p = 0.5.  
The bars are the density function or the probability at any given point.  We 
could generate the bar at 9 (that is the probability of seeing exactly 9 Heads 
and 11 Tails) by typing: 
 
dbinom(9, size = 20, prob = 0.5) 
 
or the probability of 9 or fewer Heads by typing: 
 
pbinom(9, size = 20, prob = 0.5) 
 
Consider the following vector: 
 
x <- 0:20 
 
x is now a vector of the numbers 0 through 20 
 
Can you think of a clever way to calculate the probability for every 
observed number of heads?  How about the cumulative probability?  How 
about making a figure? [Hint:  Does the first parameter passed to these 
functions have to be a single number?] 
 
> y <- dbinom(x, size = 20, prob = 0.5) 
> plot(x, y , type = "l", col = "red") 
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We can also plot continuous pdf’s. 
 
x <- seq(from = -3, to = 3, by = 0.1) 
#  try typing help(seq) to see what seq does 
y <- dnorm(x = x, mean = 0, sd = 1) 
plot(x = x, y = y, type = "l") 
 
We can also use the R statistical table to calculate quantiles. 
 
qbinom(p = 0.25, size = 20, prob = 0.5) 
qbinom(p = c(0.025, 0.975), size = 20, prob = 0.5) 
 
What do these two functions tell us? 
 
Can you now calculate the 2.5% and 97.5% quantiles (q1 and q2) associated 
with a chi-square distribution with 99 degrees of freedom (corresponding 
to the horizontal red lines on page 50)? 
 
How might we put a 95% confidence interval on the probability of a head 
given we observe 9 Heads in 20 trials? (see Box 1).  Here is a way to "cheat" 
and let the computer do this for you 
 
> binom.test(x = 9, n = 20, p = 0.5) 
 
 
Box 1:  Confidence intervals on an observed proportion 
 
We want to establish the underlying binominal probabilities that would 
result in the observed numbers of successes “or worse” in the observed 
number of replicates.  Therefore if we observe S successes in N trials we 
want: 
 
Prob(X ≤ S; N, pUB) = 2.5% for the upper bound 
Prob(X ≥ S; N, pLB) = 2.5% for the lower bound 
 
Note that Prob(X ≥ S) = 1 – Prob(X ≤ S-1) for integers, Thus we can solve 
 
Prob(X ≤ S-1; N, pLB) = 97.5% for the lower bound.  In R we would find a 
pLB) such that 
 
> pbinom(x = S-1, n = N, p = pLB) = 0.975 
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Some Useful Statistical Tests 

 
 
R has a number of built in statistical tests.  You were introduced to the 
binomial test in the above example.  Two other useful built-in functions let 
you carry out a chi-square test and a t-test.  Let's examine the Chi-square 
test first.  First we have to enter the data in the earlier example (Is sex-ratio 
influenced by rearing temperature in turtles?) into R. 
 
male.hatch <- c(50, 70) 
female.hatch <- c(50, 20) 
sex.ratio <- rbind(male.hatch, female.hatch) 
sex.ratio 
 
Remember that the rbind function “glues” rows together to create a 
matrix.  Now let's tell R to do a Chi-square test: 
 
chisq.test(sex.ratio) 
 
(you may notice that the Chi-square statistic is slightly different from the 
one we calculated previously. This is due to the Yates' continuity correction.  
We will not worry about that here.) 
 
Enter the data from "Desiccation resistance in flies selected to resist starvation" 
into R. 
 
cntrl <- c(8.4,8.1,5.1,7.6,4.7,10.7,5.7,4.1,8.1,6.8) 
strv <- 

c(12.4,15.8,11.7,8.6,12.6,11.1,10.5,7.3,7.2,10.8) 
 
We can do a t-test on this data using the t.test function 
 
t.test(x = cntrl, y = strv) 
 
 Sometimes we do a t-test on "paired" samples.  In the case of the example 
the data above the data are naturally paired, since each population is 
derived from a different base population.  If instead all the populations 
used in the experiment were derived from a single base population then the 
data is not necessarily paired.  Paired data is commonly encountered in 
biological datasets, as often-times an experiment collects observations from 
a set of individuals before and after some treatment (e.g., blood pressure 
before and after a patient receives Lipitor®).  In the case of paired data the 
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null hypothesis becomes: the average difference between treatment over 
matched pairs is zero.  And a paired t-test is carried out by typing 
 
t.test(x = cntrl, y = strv, paired = TRUE) 
 
Notice that performing the t-test and paired t-test yield different test 
statistics and p-values. 
 

Other Resources 
 

Download "An Introduction to R" under Documentation at: 
  "https://cran.us.r-project.org/". 
 

Problem Set #1 (10 points): 
 

1.  i) Plot a binomial distribution for three different pairs of values of p and 
N; ii) plot a Chi-square distribution for three different degrees of freedom, 
and; iii) plot a t-distribution for three different degrees of freedom. For 
EACH set of distributions, note how the shape of the distribution is affected 
by changing parameters. You must choose an appropriate range of values 
for the x-axis so that the at least 99% of the density of the distribution is 
visible. A common mistake is to plot a range that doesn’t capture the shape 
of the distribution. Doing this will lost credit. 
 
2. i) Plot a cumulative probability distribution similar to the one in the coin 
toss experiment, but for the probability of the number of sixes rolled in 10 
rolls of a die (a die has 6 sides!).   
ii) If we observe four sixes in 10 rolls, is this die likely to be loaded?  If we 
observe a six four times out ten what is a 95% confidence interval on the 
underlying probability of rolling a six? 
iii) Say instead we had rolled 40 sixes out of 100.  Is the die likely to be 
loaded? What is a 95% confidence interval on the probability of rolling a 
six?   
iv) Say instead we had rolled 400 sixes out of 1000.  Is the die likely to be 
loaded? What is a 95% confidence interval on the probability of rolling a 
six? 
Hint: use binom.test() for parts ii-iv. 
 
3.  If two heterozygous parents (i.e., both Aa) mate, they produce offspring 
in the expected Mendelian proportions (i.e., 1/4 AA, 1/2 Aa, 1/4 aa).  We 
observe a big Drosophila family of 40 offspring of which 7 are aa.   
i) Construct a 95% confidence interval on the observed proportion of aa 
offspring (7/40).  What does this confidence interval tell us about our null 
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hypothesis?  Hint: our null hypothesis is that Mendelian laws have not been 
violated.   
ii) Are 7 or fewer offspring statistically consistent with Mendelian 
expectations?  Hint: figure out the probability of observing 7 or fewer 
offspring in such a family, if Mendelian laws have not been violated. 
iii) How few offspring of type aa would we have to observe in order to be 
suspicious that Mendelian proportions are being violated? Is your answer 
a test of a one-tailed hypothesis or a two-tailed hypothesis? 
 

Problem Set #2 (10 points): 
 

1.  Make up a story with new data like "Is sex-ratio influenced by rearing 
temperature in turtles?" for a different problem (unrelated to sex or 
temperature) that can be tested using a Chi-square analysis.  Analyze it in 
R.  State your null and alternative hypothesis and interpret the p-value. 
 
2.  Make up a non-biological story and data to go with it similar in flavor to 
"Desiccation resistance in flies selected to resist starvation" that requires a t-test.  
Analyze it in R. State your null and alternative hypothesis and interpret the 
p-value. 
 
3.  Input the dataset "ASC.data.txt" into R (you will have to load this 
data into your computer using read.table).  The first four columns are 
bristle number measures taken from different parts of the fly calculated in 
males and females and the remaining columns are molecular 
polymophisms in a gene region call achaete-scute known to effect bristle 
number development. Rows are different lines we maintain in the lab.  It is 
hypothesized that a subset of the DNA polymorphisms in this region have 
effects on bristle number.  
i) Calculate the mean, variance, standard deviation, and min and max for 
each column. Hint: While you must use apply() for var() and sd(), the 
function summary()works on columns of matrices by default, and 
produces mean, min and max. 
ii) Calculate the variance/covariance, and correlation matrices associated 
with this data.  Hint: var() and cor() will produce covariance and 
correlation between all possible combinations of columns. NB: The 
covariance between a column and itself is its variance. Confirm this by 
comparing your answers here to your answers in i) above. 
iii) To visualize this data, make at least one scatter plot (using the "plot" 
command), and at least one histogram.  Pick any subsets of the variables 
you wish to do this, and describe in words the relationships between the 
variables. 
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4.  In the "Desiccation resistance in flies selected to resist starvation" example, is 
there any evidence that the variances in survival times in the control 
populations versus the starvation-resistant populations differ? Hint:  
construct a 95% confidence interval on the observed variances (see page 49).  
You will have to calculate quantiles of the chi-square distribution to 
estimate q1 and q2. 
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Monte Carlo Simulation 
 
 
The last chapter focused on the concept of hypothesis testing. We 
introduced you to a distilled view of how statistics works.  Namely: 
 
1.  You set up a null hypothesis and an alternative hypothesis. 
2.  You record your data and then calculate some "statistic" or summary of 
the data. 
3.  You count on a statistician having determined the distribution of your 
statistic given that the null hypothesis is true. 
4.  You look and see where the observed value of your statistic falls in that 
theoretical distribution.  You determine if your observed values are likely 
to have occurred by chance alone? 
 
We also introduced you to some statistical distributions used for testing 
certain types of data.  Specifically, you were introduced to the binomial, 
Chi-square, and t-distributions.  In our introduction to R we described a 
number of other distributions but didn't discuss the circumstances under 
which these distributions are used.  We attempted to plot the distributions 
whenever possible so that the concept of a test-statistic being "extreme" was 
visually illustrated. 
 
This is all very convenient.  If we lived in a truly tidy universe hypothesis 
testing would be simple.  But what do we do if we can not write down the 
distribution of some test statistic under the null hypothesis? 
 
Lets consider the example below: 
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Above a normal probability distribution function (i.e., dnorm(x,0,1)) and a 
normal cumulative probability distribution function (i.e., pnorm(x,0,1)).  
Note:  qnorm(prob,0,1) would give the value of the “x-axis” in the lower 
panel associated with any given probability (“prob”) fed to the qnorm 
function. 
 
Certain statistics of interest under specific null hypotheses come from 
KNOWN distributions such as those above.  Examples include the t-statistic 
which under the null is distributed as a t-distribution and the Chi-square 
statistic which under the null is distributed as a Chi-square distribution (we 
will see this in Lecture 10).   Note the distinction between a statistic and a 
distribution.  A statistic is some sort of summary number we can calculate 
from the data, whereas a distribution is a theoretical construct represented 
by a function that integrates to one. 

 
Now lets imagine a process which is not nearly so neatly specified by a 
theoretical distribution.  A great example of this is a Japanese game of 
chance called “pachinko” in which steel balls are fed into a machine.  The 
steel balls collide with various pins while falling and depending on the pins 
they collide with (and which way they bounce after hitting pins) end up in 
a different collection bin at the bottom of the game. It’s extremely 
complicated and would be very hard to model statistically. You can find a 
lot of examples by typing in “pachinko” into YouTube: 
https://www.youtube.com/results?search_query=pachinko 
 
For the sake of discussion, we’ll briefly consider a similar, but far simpler, 
game called Plinko,  played on a gameshow called the The Price Is Right. In 
this variant, the player places a disk, rather than steel balls, at the top of the 

https://www.youtube.com/results?search_query=pachinko
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board, that then bounces off of pins as it falls down to eventually land in 
one of nine collection bins (see first picture on next page). 

 
Lets say we number the various bins 1 through 9. An interesting statistical 
question is:  Given that we know the rules which determine how balls fall 
within the Pachinko can we derive the distribution of the frequency that 
any given ball ends up in each of the 9 bins?  Of course, the ability to 
determine these types of distributions have important applications 
whenever we can describe the processes (biological or not) that gives rise to 
the statistic we keep track of. Oftentimes we can determine these 
distributions by a process calls “Monte Carlo Simulation” even when we 
can not write down an analytical solution for the probability distribution 
function.  Thus such Monte Carlo simulations have wide applicability in 
biological situations. Let’s simplify our Plinko board even more. Consider 
a board with only 6 bins and considerably pins. Furthermore, let’s force the 
player to drop the chip directly above the top pin (see second image on the 
next page). 
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Consider the above process on the next page.  What we have here is a 
Pachinko machine in which we know the probability a ball goes right or left 
at any given pin. 
 
In this particular machine the probability of ending up in each of the bins is 
“known” 
 
Bin  Probability 
1  0.5 * 0.4 
2  0.5 * 0.6 
3  0.5 * 0.7 
4  0.5 * 0.3 * 0.333 
5  0.5 * 0.3 * 0.333 
6  0.5 * 0.3 * 0.333 
 
With a resultant probability distribution function: 
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Now say we wanted to run a computer simulation of the process that gives 
rise to the above distribution, as opposed to directly calculating the 
resulting pdf. 

 
Consider the following “program” where “rx” implies getting a single 
uniform random variable between zero and one. 
 

 
The above program would start on the left and through subsequent calls to 
the random number generator “wind” its way down the Pachinko machine.  
Each run of the machine would start at the left hand side and end when it 
reached one of the 6 Bins.   Each run can be thought of as a single realization 
of the process that gives rise to the pdf above – that is it can be thought of 
as one trial of the Plinko game.  By repeating this process a large number of 
times and keeping track of the result each time we can get the distribution 
of the resultant statistic (visually just like the barplot above). 
 
In terms of a computer program we would start all the Bins at zero, run the 
Pachinko trial a large number of times (say one million) and for each trial 
“increment” the value in a Bin by one if the ball ends up in that bin.  In the 
end we would just count up the number of balls in each bin (i.e., the value 

(r1 < 0.5)
(r2 < 0.4)

(r3 < 0.33)

(r3 >0.33 & r3 <0.66)
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of that bin) and divide by the number of trials to get the probability of each 
outcome. 
 
Luckily in the modern world we can often simulate on a computer the 
distribution of some test statistic under the null hypothesis, despite the fact 
that we cannot write down an analytical solution for that test statistic.  We 
do this using something called a Monte Carlo simulation.  This works by 
recreating on the computer the process that gives rise to the data we are 
measuring a large number of times.  We can then use these results to 
empirically estimate the distribution of some test statistic we are interested 
in.  We can do this for something as simple as the binomial distribution, as 
complex as the variance among a set of populations of Drosophila that are 
experiencing random genetic drift, or things much more complex than that. 

 
 

A re-derivation of the Binomial Distribution (p = 0.5, N = 20) 
 
 
We wish to carry out a Monte Carlo simulation to "derive" a binomial 
distribution via computer simulation.  The approach we will use to do this 
is outlined below: 
 

I. Write a function that simulates a single binomial trial comprised of 20 
events, each with a probality of success of 50% 

II. Run this function 10,000 times, recording the number of success in each 
trial 

III. Compare this simulation to the theoretical distribution 
 
Below is a set of R commands which implements our Monte Carlo 
simulation of the binomial distribution for prob = 0.5 and size = 20.  It looks 
difficult so we will walk through it line by line following the code. 
 
# 1: a function to run a single binomial trial 
binom_trial <- function(size, prob) { 
  sum(runif(size) < prob) 
} 
 
# 2: a function to run many binomial trials 
my_rbinom <- function(n, size, prob) { 
  replicate(n = n, expr = binom_trial(size = size, prob = prob)) 
} 
 
# 3: define variables for the simulation 
p <- 0.5; trial_size = 20; num_trials <- 1e4 
 
# 4: simulate! 
result.mc <- my_rbinom(n = num_trials, size = trial_size, prob = p) 
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# 5: table() counts the frequency of each number 
# plot() is smart enough to do the "right thing" with a table 
# type = 'o' overlaps points on top of a line 
plot(table(result.mc)/num_trials, type = 'o', pch = 19, col = 

'gray') 
 
# 6: points adds points to an existing plot 
# this plots the theoretical distribution against our Monte Carlo 

simulation 
points(x = 0:trial_size, y = dbinom(x = 0:trial_size, size = 

trial_size, prob = p), col = 'red', type = 'o') 
 
The first statement (#1) defines a function named binom_trial() which 
simulates a single binomial trial. A binomial trial is composed of observing 
an event size times. Each independent event results in success with a 
probability of prob and failure with a probability of 1-prob. The function 
determines success by generating several random numbers (specified by 
size) uniformly distributed between zero and one using the built in 
runif() function. By definition, a random uniform number has a 
probability of prob to be less than prob. Consequently, we count each 
random number less than prob as a success. By summing up how many 
numbers are less than prob, we count the number of successes. 
 
Statement #2 is far simpler. It defines a function called my_rbinom() that 
calls our binom_trial() function n times by using the built in function 
replicate(). Functions like my_rbinom() which are mainly designed 
to call other functions are often referred to as “wrapper functions”. This 
wrapper function effectively runs n binomial trials. 
 
In the next line (#3), we define the number of events in a trial 
(trial_size), the probability of success of an event (p), and the number 
of trials (num_trials). Then (#4) we call our simulation function and 
supply the variables from #3 and save the number of successes for each trial 
to the variable result.mc. 
 
In the next line (#5), we tabulate the number of trials resulting in 0 
successes, 1 success, 2 successes, etc. using the table() function and 
dividte it by num_trials to get a probability. These numbers are passed 
directly to the plot() function, which is smart enough to plot this number 
appropriately. We specify that the plot is in gray. Finally (#6), we use the 
points() function to plot the theoretical expectation, which we get from 
the dbinom() function. 
 
The plot function has a number of useful options: 
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• type = “p” for points, “l” for lines, b for “both” 
etc 

• lty = 1,2,etc. specifies a line type (solid, dashed, etc.) 
• pch = 0, ...,25 specifies the symbol plotted 
• xlab = ”the label you want on the x-axis” 
• ylab = ”the label you want on the y-axis” 
• xlim = c(min, max) specifies the range of values plotted on the 

x-axis 
• ylim = c(min, max) specifies the range of values plotted on the 

y-axis 
 
Closely related to the plot function are the lines(x,y) and points(x,y) 
functions.  These function add lines or points respectively to a pre-existing 
plot.  They use the same options as the plot command.  We used the 
points() function in the above example to plot the predicted probability 
densities for the binomial on the same figure as our Monte Carlo simulation. 

 
So why is this so cool? 
 
The important point to understand with this example is that we have used 
the computer to produce a binomial distribution without working out the 
probability distribution theoretically or even relying on R to do it for us.  In 
order to do this we simulated a large (10,000) number of samples from a 
process identical to the one the binomial distribution assumes, but without 
recourse to the actual binomial distribution. The powerful feature of this 
approach is that if we then did a coin toss experiment and observed some 
outcome (e.g., 3 Heads), we could assign a probability to the event 
happening by chance alone – without knowing anything about the binomial 
distribution.  Obviously, in the case of the coin toss experiment this was a 
lot of work compared to just using the known distribution.  But the Monte 
Carlo approach can easily be extended to more complex models that are 
difficult, or perhaps even impossible, to model analytically. 
 

A re-derivation of the t-distribution (10 samples versus 10 samples) 
 
 
We will do another example of a Monte Carlo simulation, this time for the 
example "Desiccation resistance in flies selected to resist starvation".  Like the 
last example, we will first look at the algorithm we will try to write R code 
for. 

I. Write a function that simulates a single t-statistic from a two samples, both with 10 
observations. Each sample is drawn from a random normal variable with mean zero and 
standard deviation one. The formulate for the t-stastic we’ll be using is: 
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t =
X 1 − X 2
s1

2

n2

+
s2

2

n1 ; 
II. Write a wrapper for the function above and run it 10,000 times; 

III. Compare a histogram of our simulated t-statistics to the theoretical 
expectation. 

 
Below is the R code. We will work through this example line by line. 

 
# 1: Function to simulate a t-statistic from two samples 
single_rt <- function(size1, size2) { 
  x1 <- rnorm(size1) 
  x2 <- rnorm(size2) 
  ( mean(x1)-mean(x2) ) / sqrt( (var(x1)/size2)+(var(x2)/size1) ) 
} 
 
# 2: A wrapper to run the single_rt() function many times 
my_rt <- function(n, size1, size2) { 
  replicate(n = n, expr = single_rt(size1 = size1, size2 = size2)) 
} 
 
# 3a: Define conditions for a simulation. 
num_reps <- 1e4; N1 <- 10; N2 <- 10 
 
# 3b: Run the simulation and obtain simulated t-statistics 
t.stats <- my_rt(n = num_reps, size1 = N1, size2 = N2) 
# 3c: Get the values of the theoretical t distribution using the 
# degrees of freedom related to our simulation. 
x_theory <- seq(from = -5, to = 5, by = 0.01) # Where to evaluate 

theory 
y_theory <- dt(x = x_theory, df = N1+N2-2) 
 
# 4: Plot the simulation and theory results on the same graph. 
hist(t.stats, prob = TRUE, breaks = 25, xlim = c(-5, 5), ylim = 

c(0, 0.41)) 
lines(x = x_theory, y = y_theory, col = 'red') 
 
First (#1) we write a function that simulates two random samples. The only 
difference between them is one has sample size size1 and the other has sample 
size size2. Next (#2), we wrap the function from #1 in a function that lets us run 
it as many times as we want using the built in replicate() function. 
 
We now (#3a) set variables to hold the number of control and evolved 
populations (N1 and N2) and the number of simulations we want to run 
(num_reps). We use the values to both run the simulation (#3b) and to 
obtain the predictions from theory (#3c). 
 
Finally (#4), we plot a histogram of our simulation and overlay the 
theoretically predicted probability density. Remember, a histogram 
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constructed with prob = TRUE is an approximation of the probability 
density of the distribution underlying the data. If the Monte Carlo 
simulation is working, the observed cumulative distribution should be 
similar to the theory! 
 
A question that may arise is how did we “know” to seed the Monte Carlo 
matrix with numbers from a random normal distribution?  It turns out that 
as n gets big, the t-statistic is distributed according to a t-distribution as long 
as the individual observations are drawn INDEPENDENTLY from the 
SAME distribution.  This claim is explained by something called the Central 
Limit Theorem.  So if I were to define something called: 
 
my.distribution <- c(1, 17, 42, 5, 6, 40, 3, 10, 45, 

40, 1, 4, 7, 6) 
 
That is, the above numbers occur with equal probabilities then I could have 
replaced the following two lines 
 
x1 <- rnorm(size1) 
x2 <- rnorm(size2) 
 
in the above example, with 
 
x1 <- sample(x = my.distribution, size = size1, 

replace = TRUE) 
x2 <- sample(x = my.distribution, size = size2, 

replace = TRUE) 
 
as the sample(x, n, replace = TRUE) will  draw a sample of size n 
with replacement from the vector x.  Where “with replacement” means after 
drawing an observation you put it back in the “pile” to potentially be drawn 
again.  Think of it as drawing a card from a deck, replacing the card, 
shuffling the deck, and drawing again – you could draw the same card 
twice in a row  We will not make use of this observation, but it has very 
important ramifications for more advanced courses on the design and 
analysis of experimental design. 

 
What is the distribution in the variance of allele frequencies in a hypothetical 
drift experiment? 

 
 
In the last two examples the distribution of the corresponding statistic was 
known.  The next two examples deal with distributions that are either not 
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known, or more difficult to figure out.  Lets consider a random genetic drift 
experiment, like the one you did in the lab portion of the course.   
 
We will simulate 10,000 replicates each consisting of 10 populations.  Below 
is the algorithm we will employ: 
 

I. First we will “seed” a simulation.  We will simulate 10 vials, each 
starting with 10 copies of the “w” allele and 10 copies of the “wild 
type”. 

II. Now to generate the next generation for each vial draw a random 
binomial deviate of size 20 alleles with the probabily of drawing a 
"w" allele being equal to its observed frequency in the vial from the 
preceding generation. 

III. Repeat this process for 5 generations.  We are now done the Monte 
Carlo simulation for a single replicate. 

IV. Repeat the above process 10,000 times to get the fully replicated 
simulation. 

 
Or as a picture: 

 
 
We start out with 10 populations with initial allele frequency = 0.5, 
population size = 20 alleles (i.e, 10 diploid individuals) and then let them 
drift for 5 generations.  Each population is then completely characterized 
by 20 copies of the white locus (some fraction WT and some fraction w-). 
We repeat this 10,000 times to get our simulation. We will step through this 
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very careful in the code below. There’s no way to sugar coat this. There is a 
lot of code below and it uses most of the R programming concepts you’ve 
leared up until now. 
 
The next page and a half might seem tough at first. But a few things make 
it not so bad. First, most of the code is actually just comments. Anything 
following the hashtags (#) is a comment and is ignored by R. But those 
comments are useful to us, the people reading the code. Whenever you 
write code, please try to do the same thing. It really makes life easier for 
others. The second reason the code isn’t as bad as it might seem at first is 
that we’ve already sketched out our basic approach both in words and in a 
diagram above. Now all we must do is translate that into code. 
 
If you haven't already, now is the time to review the learning R videos 
and to take the interactive R tutorial. You can review how to run the 
interactive swirl() tutorial in the section above titled “Getting up to Speed 
with R Using swirl()”. The videos can be found here: 
http://bit.ly/E115L_LearningR 
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# This function simulates a binomial experiment with sample size of  
#   size and a probability of success x. The number of successes is  
#   divided by the sample size to get another frequency. 
drift_step <- function(x, size) { 
  rbinom(n = 1, size = size, prob = x)/size 
} 
 
# The goal of this function is to run the drift_step() many times. 
# It will run for several different populations each generation (equal 
# to the number of frequencies specified by pop_frequencies). 
# It will perform num_generations generations of simulation. The  
# starting frequencies are specified by the values in pop_frequencies. 
drift_sim <- function(pop_size, num_generations, pop_frequencies) { 
  # Creates a matrix with num_generations+1 rows and pop_frequencies 
  # columns. 
  # Each column is a single population. Each row is a single generation.  
  # The first row will hold the starting conditions, or generation 0. 
  # Each value in the matrix is an allele frequency for a population at a  
  # particular generation. 
  ans <- matrix(nrow = num_generations+1, ncol = length(pop_frequencies)) 
 
  # This assigns the starting allele frequencies to the first row. 
  ans[1,] <- pop_frequencies # Generation 0 is row 1. 
   
  # We're going to step through each generation. We keep track of which 
  #   generation we're on with the value i. 
  for (i in 1:num_generations) { 
    # Fill the next generation (i+1) with results by simulating 
    # based on frequencies from the current generation (i). 
    # The drift_step() function simulates one step of genetic drift 
    # using a random binomial deviate. sapply() does its magic by  
    # executing the drift_step() function for every value in ans[i,]. 
    # Finally, we pass the parameter size to drift_step() by giving it 
    # sapply(). 
    ans[i+1,] <-  
      sapply( 
        X = ans[i,], 
        FUN = drift_step, 
        size = pop_size 
      ) 
  } 
  return(ans) 
} 
 
# This function simply applies the mean() and var() function to its argument 
# and returns both results with meaningful names. We'll use it later. 
summarize_function <- function(x) { 
  # Calculate mean(x) and var(x) 
  ans <- c(mean(x), var(x)) 
  # Give names to the results. 
  names(ans) <- c('mean', 'var') 
  return(ans) 
} 
 
# In the schematic figure above, this function first simulates a single 
# "sheet". Then it summarizes the generations (ie rows in that "sheet")  
# returning a mean and a variance for each generation simulated. 



             Mueller, Rose, Emerson, Rebolleda-Gomez and Long  Evolution Lab Manual – Spring 2023 

Evolution Laboratory Notebook  page 93 

drift_summary <- function(pop_size, num_generations, pop_frequencies) { 
  # Simulate a "sheet". In each "sheet", a column is a population/vial over 
  # time and a row is a generation. This is carried out by the  
  # drift_sim() function above. 
  sim <- drift_sim(pop_size = pop_size, num_generations = num_generations, 

pop_frequencies = pop_frequencies) 
  # Summarize the rows (ie generations) with summarize_function(), which 
  # we described above. The answer that's returned assigns a row for means 
  # and a row for variances, making the columns generations. This  
  # effectively rotates the table, but oh well. We'll deal with that below. 
  ans <- apply(X = sim, MARGIN = 1, FUN = summarize_function) 
  # Label the columns as generations. Remember that apply rotated the 
  # generations to be columns. 
  colnames(ans) <- paste('gen', 0:num_generations, sep = '_') 
  # This will return a matrix with the columns being mean and variance and 
  # the rows being generations. This is the reverse of above. The magic 
  # comes from the t() function, which swaps rows and columns ("t" is 
  # short for the matrix operation "transpose"). 
  return(t(ans)) 
} 
 
# Simulate many runs of drift_summary, leading to a different matrix for  
# each replicate. 
drift.mc <- 
  replicate( 
    n = 1e4, 
    expr = 
      drift_summary( 
        pop_size = 20, num_generations = 5, pop_frequencies = rep(0.5, 10) 
      ) 
  ) 
 
# Set up a plotting area with three rows and two columns. "mfcol" tells 
#   the plot() function to fill the plot column-wise. 
par(mfcol = c(3,2)) 
hist(drift.mc['gen_1', 'var',], xlim = c(0, 0.2)) 
hist(drift.mc['gen_2', 'var',], xlim = c(0, 0.2)) 
hist(drift.mc['gen_3', 'var',], xlim = c(0, 0.2)) 
hist(drift.mc['gen_4', 'var',], xlim = c(0, 0.2)) 
hist(drift.mc['gen_5', 'var',], xlim = c(0, 0.2)) 

 
 
In a hypothetical experiment, let’s say an experimenter observed a variance 
in allele frequencies of 0.05 in the first generation after establishment.  Based 
on our Monte Carlo simulation, what is the probability of seeing a variance 
larger than 0.05 by chance alone?  In theory we can estimate this from the 
histogram we just made.  Or we could take a slightly more sophisticated 
approach: 
 
sum(drift.mc['gen_5', 'var',] > 0.05)/1e4 
 
In short, we ask for all the independent replications of the entire experiment 
(10,000 or 1e4) for which the variance was greater than 0.05 and take its 
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length.  This is the total number of Monte Carlo replications for which we 
observed a larger variance larger than 0.05.  Now we just divide by 10,000 
to change that to a frequency.  You can do something analogous for any 
time point or statistic you are interested in. 
 

Iterative Solutions to an Equation and Iterative Processes 
 
 
R contains control structures that allow the user to “loop” through a set of 
calculations.  Below is such an example: 
 
x <- 0 
for (i in 1:10) { 
  x <- x+i 
} 
print(x) 
 
The statement for (i in 1:10) sets the variable i equal to 1 and then 
carries out the statement in brackets. The variable i is then incremented to 
2 and the statement in curly brackets is repeated. This goes on until i=10 
and the statement is carried out for the last time. Verify for yourself that 
this will result in the variable x having a value of 55. 
 

Selection and drift 
 
 
{Review making your own function on page 64} 
 
In R it is relatively straightforward to write your own functions.  I have 
written two such functions for you to enjoy. 
 
drift.select(x,N,w11,w12,w22) 
evolve.time(x,N,w11,w12,w22,time) 
 
where x is a column vector of starting allele frequencies p(A) (for example 
the starting frequency of the "w" allele), N is the population size, w11, w12, 
and w22 are the fitnesses of AA, Aa, and aa respectively, and time is the 
number of generations to run the drift/selection experiment.  These two 
functions allow you to easily do a Monte Carlo simulation of a small 
population that incorporates BOTH random genetic drift and natural 
selection.  The easist way to get functions into R is simply to use copy and 
paste.  Then you can view the functions by typing their names with no 
parentheses 
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# This function takes single starting frequency, and applies  
# genetic drift and natural selection to it. 
drift.select <- function(x, N, w11, w12, w22) { 
  # x is column of starting frequencies 
  # N is diploid population size 
  # w11, w12, and w22 are fitnesses 
  if(x != 0 || x != 1) { 
    # drift term 
    x <- rbinom(n = 1, size = N, prob = x)/N 
    #selection term 
    x <- x +  
      (x*(1-x) * ( x*(w11-w12)+(1-x)*(w12-w22) )) /  
      (w11*x^2 + w12*2*x*(1-x) + w22*(1-x)^2) 
  } 
  return(x) 
} 
 
evolve.time <- function(x, N, w11, w12, w22, time) { 
  # x is a vector of starting frequencies 
  # N is diploid population size 
  # w11, w12, and w22 are fitnesses 
  # time is number of generations 
  ans <- matrix(nrow = length(x), ncol = time+1) 
  ans[,1] <- x 
  for(i in 1:time){ 
    ans[,i+1] <- sapply(X = ans[,i], FUN = function(x) 
drift.select(x, N, w11, w12, w22) ) 
  } 
  return(ans) 
} 
 

You run evolve.time() for a given set of starting allele frequencies, 
population size, fitnesses, and number of generations (time).  evolve.time 
will then just run drift.select() for "time" generations.  Each 
generation it generates a new column of allele frequencies and appends it 
to the starting column, subsequent generations using this new allele 
frequency to start the next generation. 
 
drift.select() calculates a new allele frequency based in part on the 
fact that a binomial distribution predicts the change in allele frequency over 
one generation due to genetic drift. The first term is the change due to drift. 
The second term predicts the change in allele frequency due to the action of 
natural selection. The equation used in this term can be found in any 
population genetics or evolution text book. 
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A really useful property of functions is that they can be simply used without 
caring a great deal about how they actually work.  Here is an example of 
evolve.time in action: 
 

# start 75 replicates each at 50% as a column vector 
p.start <- rep(0.5, 75) 
 
# run 50 generations at a diploid population size of 25 
Aa.most.fit <- evolve.time(x = p.start, N = 25, w11 = 0.9, 
w12 = 1, w22 = 0.6, time = 50) 
all.fit.equal <- evolve.time(x = p.start, N = 25, w11 = 1, 
w12 = 1, w22 = 1, time = 50) 
 
par(mfrow=c(2,1)) 
plot(0:50, apply(Aa.most.fit, 2 ,mean), xlab = "generation", 
     ylab = "mean", ylim = c(0,1), type = "l") 
lines(0:50, apply(all.fit.equal, 2 ,mean), col = "red") 
 
Aa.most.fit.var <- apply(Aa.most.fit, 2, var) 
all.fit.equal.var <- apply(all.fit.equal, 2, var) 
varrange <- range(c(Aa.most.fit.var, all.fit.equal.var)) 
plot(0:50, 
  Aa.most.fit.var, xlab = "generation", 
  ylab = "var", ylim = varrange, type = "l") 
lines(0:50, all.fit.equal.var, col = "red")  
 

First we make a column vector consisting of 75 "0.5's".   They represent 75 
populations each with a starting frequency of 50%. 
 
Then we run evolve.time for 50 generations.  In the first case the 
heterozyogote is the most fit, in the second case all three genotypes have 
the same fitness. 
 
Remember apply(matrix, 2, mean) will take the mean of each column of 
matrix.   The output of evolve.time is a matrix in which each column are 75 
replicate evolved populations, and each additional column is a generation 
of evolution.  Therefore the "plot" commands plot either the average allele 
frequency against time, or the variance in allele frequency against time.  I 
have used the "ylim" parameter and the lines command to put the plots on 
the same figure.  
 
When the heterozygote is the most fit, what do we expect the allele 
frequencies to do over time?  Why do the means differ when the 
heterozyogte is most fit compared to when all genotypes have equal fitness?  
Why do the variances differ?  
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Problem Set #3 (10 points): 

 
Reminder for all plots: You won’t get full credit unless your plots show 
appropriate x and y axis ranges. For plotting distributions, this means we 
need to see all or most of distribution. Distributions like the normal have 
non-zero density from -∞ to ∞, so obviously we can’t ask you to plot 
everything. Also, for binomial distributions with a large size parameter, 
most of the distribution fits in a narrow window. Even though you can plot 
the whole distribution, you can plot it for the x range containing most of the 
density. Of course, never chop off the y range of a distribution! 
 
1.  Plot a binomial distribution for the three different pairs of values of p 
and N you used in problem set #1 without using to the theoretical binomial 
distribution provided by R. 

2.  Plot a figure similar to the one in the coin toss experiment, but for the 
distribution of rolling sixes in 10 rolls of a die (a die has 6 sides!) without 
recourse to the binomial distribution.  If I rolled 4 sixes is this die likely to be 
loaded?  What is the probability of rolling 4 sixes in 10 rolls, according to 
your Monte Carlo simulation? Hint: use the “sort” and/or “sum” 
commands.  

3.  In the last assignment you made up a story like "Desiccation resistance in 
flies selected to resist starvation" that required a t-test and analyzed it in R.  Re-
analyze it using a Monte Carlo simulation.  Calculate your t-statistic, 
compare it to your simulated distribution, and explain whether or not you 
reject your null hypothesis. 

4. Use the Monte Carlo simulation for the “Desiccation resistance in flies 
selected to resist starvation” example (p.81) to answer the following questions. 

i) What is the distribution under a Monte Carlo simulation of a t-statistic 
when the standard deviations of the two samples differ by two-fold? 
Compare this distribution with the theoretical t-distribution.  What 
conclusions can you draw from this comparison?   

ii) What is the distribution of the t-statistic when the null hypothesis states 
that the means and the standard deviations of the two groups vary by two 
fold (sample sizes still 10)?   Compare this distribution with the theoretical 
t-distribution.  What conclusions can you draw from this comparison?   

iii) What is the distribution of the t-statistic if the means stay the same, but 
standard deviations vary by two-fold and the sample size of the first sample 
is 4 and the second is 12?  Compare this distribution with the theoretical t-
distribution. What conclusions can you draw from this comparison?   
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Problem Set #4 (10 points): 
 
 
1.  Is the variation in allele frequency estimates from your drift experiment 
different from that expected due to chance alone:   

i) in the Monte Carlo simulation example?  

ii) in a Monte Carlo simulation example with an effective population size 
equal to that of your experiment?  

iii) Is there any evidence for the mean allele frequency differing from that 
expected by chance alone?  

iv) What happens to the variance in allele frequency over time? 

 
2.  Run evolve.time for the parameters given in the example.  Why do the 
means and variances of allele frequencies differ for the two examples?  Run 
evolve.time (500 replicates) of each “experiement” (exp) for the 
following parameter values: 
 
 
 
parameter exp1 exp2 exp3 exp4 
N 50 200 50 200 
w11 0.8 0.8 1 1 
w12 1 1 1 1 
w22 0.6 0.6 0.2 0.2 
time 50 50 50 50 
 
Explain the differences and similarities in summary statistics and figures 
generated from these four Monte Carlo simulations using evolutionary 
arguments.  Hint: in your plots, compare experiment 1 with experiment 3, 
and experiment 2 with experiment 4. 
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Phylogenetic Inference 
 
 
We can obtain DNA sequence from a number of individuals, each being a 
representative of a different species.  We often assume that the majority of 
the DNA sites are evolving in a neutral fashion.  Under this assumption the 
rate at which differences accumulate between species is proportional to the 
mutation rate, µ.  If we  further assume that the mutation rate is 
approximately constant throughout the evolutionary history of the 
molecule being examined, then the number of differences separating any 
two sequences is proportional to the amount of time the species have 
diverged (in generations). 
 
Under the above assumptions we can use the “distance” between sequences 
to construct a phylogenetic tree representing how and when species have 
diverged from one another.  These phylogenetic trees are used in a large 
number of contexts in evolutionary biology.  They are often constructed 
using quite sophisticated algorithms.  This introduction to phylogenetic 
trees will use a very simple tree building algorithm.  The intent of this 
approach is to introduce you to the idea of phylogenetic trees and some of 
their uses. 
 

Constructing a distance matrix 
 
 
Lets read in some example data (remember to download any files needed 
to your desktop and change to the proper working directory) 
 
examp <- read.table("example.txt", row.names=1) 
examp 
 
cat a c g g t c a t t 
puma a c c g t c a t c 
dog t t g g a c a t c 
wolf t t g g t c a t c  
 
This is an example of DNA sequence data. Rows represent different species 
and columns polymorphic DNA sites.  These data are obtained from 
sequencing DNA from the same gene from each of a number of different 
species and aligning these sequences.  For typical genes from "closely 
related taxa" it is easy to align the DNA by hand or computer as the majority 
of sites with be monomorphic.  In order to carry out a phylogenetic analysis 
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only the polymophic sites are informative, and as a result we only need 
work with a fraction of the sequence data.  The row.names option to the 
read.table function tells R to make the first column of the data the name 
of each row. 
 
I have written a function which will automatically construct a distance 
matrix for a set of DNA sequences.  Such a matrix measures the number of 
DNA sequence differences separating all pairs of sequences divided by the 
total number of polymorphic sites examined. This function can be “loaded” 
into R using cut and paste on the code below. 
 
 

seq.dist <- function(seq) { 
  rs <- nrow(seq) 
  cs <- ncol(seq) 
  m <- matrix(nrow = rs, ncol = rs) 
  for(c in 1:rs){ 
    for(r in 1:rs){ 
      x <- sum(apply(seq, 2, function(x) x[c] != x[r]))/cs 
      m[c, r] <- x 
    } 
  } 
  ans <- as.dist(m/2) 
  attr(ans, "Labels") <- rownames(seq) 
  return(ans) 
} 

 
The function will loop over all species pairs (that is all rows of seq) –- this 
is specified in the the for(c in 1:rs) and for(r in 1:rs) commands.  
For each pair of species the function will calculate the total number of sites 
at which species A and B differ and divide by the total number of sites (i.e., 
sum(apply(seq,2,function(x) x[c] != x[r]))/cs).  For each 
comparison the function will take this value of “divergence” and use it to 
build a matrix whose [a,b]th element is the divergence between species A 
and B.  I encourage you to attempt to understand how this function works 
– although it is possible to use it as a “black box”. 
 
Use seq.dist() to calculate the distance matrix associated with our 
example. 
 
examp.dist <- seq.dist(examp) 
 
Each element of example.dist is the distance between two species.  This 
matrix can now be used to construct a phylogenetic tree. 
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Box 2 UPGMA:  Unweighted Pair Group Mean (from B. Gaut) 
 
1. Assume the following distance matrix.  The matrix can represent 

distances between sequences or phenetic distances 
 
Species A B C D E 
A   
B  0.10 
C  0.28 0.32 
D  0.41 0.39 0.40 
E  0.39 0.41 0.40 0.20 
 
2.  Start by choosing the two most closely related species and start to make 

a phylogeny by drawing branches between the two species.  Take the 
distance and divide it by 2.  For example the branches connecting 
species A and B should look like this: 

 
Notice the scale bar on the bottom.  Notice also that the horizontal branch 
length going to B is length 0.05 (0.10/2).  The vertical branch length doesn’t 
really mean anything – it’s just there to differentiate between the branch 
leading to A and the branch leading to B. 

 
3. Re-make the dissimilarity matrix by combining species A and B.  In the 

matrix above, species A is 0.28 different from species C and species B is 

0.20 0.15 0.10 0.05 0.00

A

B

Percent dissimilarity
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0.32 different from C; we combine by averaging – e.g., (0.28 + 0.32)/2 = 
0.30.  If you do this for all species, you will get a matrix like this: 

 
Species A-B C D E 
A-B   
C  0.30 
D  0.40 0.40 
E  0.40 0.40 0.20 
 
4. Choose the two most similar species from the matrix.  The dissimilarity 

value between D and E is 0.20, and thus we draw branches of 0.20/2 = 
0.10 in length.  At this point, we only want to connect species D and E 
to each other; we don’t want to connect them to A and B (that will come 
later).  The phylogeny will look like this: 

 

 
5. Now its time to once again remake the matrix, combining D and E in 

the process.  You should get the matrix: 
 
Species A-B C D-E 
A-B   
C  0.30 
D-E  0.40 0.40 
 
6. Combine A-B and C, as the pair with the least distance on the tree.  

Here’s what the phylogeny should look like: 

0.20 0.15 0.10 0.05 0.00

A

B

D

E

Percent dissimilarity
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7. Recompute the matrix, combining A-B with C, and finish the tree. 
 

Making a UPGMA tree in R 
 
 
UPGMA trees can be conveniently calculated from a distance matrix in R.  
We will be using the function hclust(), which we will view as a "black box" 
function that we need to construct pyhlogenetic trees. What it does is 
equivalent to applying the UPGMA algorithm to the distance matrix 
generated earlier 
 

examp.tree <- hclust(as.dist(0.5*examp.dist), method = 
"average") 
 
In short hclust is a clustering algorithm, and when this algorithm is used 
with the method set to “average” it is equivalent to a UPGMA approach.  
The only other thing we have to do is pre-multiply the distance matrix by 
0.5  (i.e, 0.5*example.dist) so that the resulting tree is scaled to the total 
distance between sequences. Finally, we can plot the tree. 
 

plot(examp.tree, labels = rownames(examp), hang = -1) 
 
In this case we use the labels option to add our species names to the tree, 
and a hang = -1 option to extend branches to the bottom of the tree. 
 

Problem Set #5 (10 points) 

0.20 0.15 0.10 0.05 0.00

A

B

C

D

E

Percent dissimilarity
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1.  Plant species often have multiple copies of the catalase genes in their 
genome.  All copies of this gene are descended from one ancestoral copy, 
but some duplication events occurred prior to the diversification of 
"grasses" (maize, rice and barley are all grassed), and some duplicated 
within a specific lineage (for example maize).  We define homologs as 
copies of a gene that trace their origin back to a single common ancestor of all 
grasses, and paralogs as copies of a gene that trace their origin back to 
different copies present in the common ancestor of grasses.  Load the sequence 
data liqing.txt into R (use something like liqing <- 
read.table("liqing.txt",row.names=1)).  Note that you will have 
to change your "working directory" so R can see liqing.txt.  Use UPGMA to 
make a phylogenetic tree.  Numbered genes are duplicate copies of the 
catalase genes in different plant species.  Which copies of genes are likely 
to be homologs of one another?  Which pairs of genes duplicated prior to 
the speciation events associated with maize, rice, and barley?  Which pairs 
are likely to have duplicated since speciation? 
 
2.  Load the sequence data andi.txt into R (use something like andi <- 
read.table("andi.txt")).  Use UPGMA to make a phylogenetic tree.  
Rows are different alleles of a gene called Delta obtained from D. 
melanogaster, and columns are polymorphic sites.  Numbered alleles are all 
from a single population of wild caught flies from North Carolina; whereas 
SAM, and STANDARD are strains from elsewhere in N. America.  Is there 
any evidence for “population structure” (different populations evolving 
independently) in Drosophila?  Say lines 10, 15, 31, 46, 50, 51, 116, and SAM 
all had a dark body color phenotype in common.  Where is the most 
parsimonious place in your tree for this body color mutation to have 
occurred? 
 
3.  Load the sequence data sets peek1.txt and peek2.txt into R (use 
something like peek1 <- read.table("peek1.txt" 
,row.names=1)).  Use UPGMA to make a phylogenetic tree for each data 
set.  For each data set rows are different strains of E. coli and columns are 
polymorphic sites.  The data set peek1 is for a gene called mdhs1 and for 
data set peek2 is for a gene called fimas1.  These two genes are at different 
positions in the E. coli genome.  Bacterial geneticists have often claimed that 
E. coli rarely recombines in the wild.  A corollary of this claim is that 
different genes in E. coli should give the same phylogenetic tree since the 
genome is always inherited vertically as a unit.  An alternative hypothesis 
is that different strains of E. coli in nature exchange DNA sequences (that is 
experience recombination).  A corollary of this hypothesis is that different 
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genes should give different trees.  Which hypothesis does your data 
support?  Are there public health implications associated with this result? 
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April 2023 
Sunday  Monday Tuesday Wednesday Thursday Friday Saturday 

 3 Place drift flies in 
vials 
 

4 
 
 

5  Empty drift vials 
 
Start and finish 
sexual selection 
experiment 
 

6  
 

7 8 

9 10 Statistics 11 12  Statistics with R 
 
 

13 14 
 

15 

16 17*Census drift flies 
& transfer 
*Start age-specific 
selection  
*Start age-specific 
fecundity assay 
 

18 19*Empty drift flies 
*Count eggs from 
age experiment, 
*Start natural 
selection lab,*SS lab 
report due 1PM 
 

20 21 22 

23 24  Empty flies from 
natural selection expt 
*Start age-specific 
fecundity assay 
*Census adult 
populations 
 

25 
 

26 *Count eggs from 
age expt 
 
 
Problem Set #1 due 
4PM 

27 
 

28 29 



             Mueller, Rose, Emerson, Rebolleda-Gomez and Long  Evolution Lab Manual – Spring 2023 

Evolution Laboratory Notebook  page 107 

30 May 1 
*Census adult 
populations 
*Start age-specific 
fecundity assay 
*Census/transfer drift 

2 3*Count eggs from 
age expt 
*Census selection 
flies 
*Empty drift flies 

4 5 
 
 
 

6 
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May 2023 
Sunday  Monday Tuesday Wednesday Thursday Friday Saturday 

7 8*Census adult 
populations 
 
*Start age-specific 
fecundity assay 

9 10 *Count eggs from 
age expt 
 
Work on PS#2 
 

11 12 13 

14 15*Census drift flies 
and end 
expt,*Census adult 
populations, *Start 
age-specific 
fecundity assay, 
Problem Set 2 due 4 
PM 
 

16 17 Count eggs from 
age expt 
 
Monte Carlo 
@2:30PM 
 

18 
 

19 
 

20 

21 22 Monte Carlo 
 
*Drift lab due 1PM 

23 24 Monte Carlo 
 
 
Problem Set #3 due 
1PM 

25 26 
 

27 

28 29 Work on PS #4 
 
*NS lab due 1PM 
 

30 31 Work on PS #4 
 
Problem Set #4 due 
4PM 
 

June 1 
 

2 
 

3 
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4 5 Phylogeny 
 

6 7 Work on PS #5 
*AS lab due 4PM 
 

8 9 10 

 

June 2023 
Sunday  Monday Tuesday Wednesday Thursday Friday Saturday 

11 12 Problem Set 5 
due 5PM 

13 14  
 
 
 

15 
 

16 17 

18 19  
 

20 21 
 

22 23 24 

25 26 27 28 29 30  
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